For more on physical models related to the Tutte polynomial see [19, Chapter
4], [10] and [14]. For combinatorics associated with the Ising model see [11] and
also the book [12]. Sokal’s papers [15] and [16] give a lucid explanation of how
combinatorial properties of the partition function of the general Potts model
correspond to physical properties of a system. For more about exactly solved
models in statistical physics see [2].

1 The Ising model

In the general Ising model on a graph G = (V, E) each vertex i of G is assigned
a spin o;, which is either +1 (“up”) or —1 (“down”). An assignment of spins
to all the vertices of G is called a configuration or state and denoted by o.
Each edge e = ij of G has an interaction energy J;; which is constant on the
edge, but may vary from edge to edge.
For each state o the Hamiltonian H(o) is defined by

H(O’) = — Z Jijoio5 — ZMO'ia
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where M represents the energy of the external field.

The Hamiltonian H (o) measures the energy of the state o. In a ferromagnet
the J;; are positive, which has the consequence that a configuration of spins
in which adjacent vertices have parallel spins (0; = o; for ij € E) has a lower
energy than a non-magnetized state in which spins are arbitrary. The external
field has the effect of aligning spins with the direction of the field, thus again
favouring states of low energy.

The partition function Z = Z(G; 3, J, M) is defined by

2(G) = Y e @),

where the sum is over all 2!V! possible spin configurations and § = 1 JkT is a pa-
rameter determined by the absolute temperature T and where k is Boltzmann’s
constant. The probability of finding the system in a state o is given by

Pr(o) = e P 1 7(@).

This is the probability distribution on states ¢ which has maxiumum entropy
for a given mean value —% log Z(G) of the energy H(c). See [7] and [8] for
more on information theory in statistical physics. A high temperature gives a
low value of 3 and the probability distribution of states becomes more flat. On
the other hand, a low temperature gives high § and correspondingly greater
probability to low energy states.

The entropy of a finite probability distribution (p1,...py) is defined by

h(p1,--pn) == Y Pr10gs P,
k

and is a measure of uncertainty in the system whose states follow the given
distribution. The entropy of the Ising model system is

h(G: 6) = — 3 Pr(o) log, Pr(o),



which gives

h(G; B) = ﬁ (Blog,y €) ZH e P L og, Z(G).

Seeing that

8% log 2(6) = i SO _ 5~ ) o

we have

h(G; B) = —(Blog, e) log Z(G) + log, Z(Q).

op
The quantity —8—85 log Z(G) is called the internal energy and the quantity log Z(G) =
log, Z(G)/ log, e is the free energy.

Consider some countably infinite graph such as the two-dimensional square
lattice (vertices Z?2, with vertex (a, b) adjacent to vertices (a=£1,b) and (a,b=+1))
and an increasing sequence of finite subgraphs G,, = (V,,, E,,). Then, under
reasonable hypotheses on the G,,, it can be shown that the (limiting) free energy
per lattice site

. log Z(G,)
lim ———=

exists for non-degenerate physical values of the parameters (3, J, M of Z(G).
Complex singularities of log Z(G,,) (i.e., zeroes of Z(G,,)) may approach the
real axis in the limit n — oo, and in thlb case the points of physical phase
transitions are precisely the real limit points of such complex zeroes. In the fer-
romagnetic Ising model (positive interaction energies J;;), a cooling slab of iron
becomes magnetized at the critical temperature that gives a phase transition.
In particular, the main problem of the Ising model on the two-dimensional

lattice is to determine
log Z(Ly, p)

lim 3

n— o0 n

where L, , is the n x n grid. (In practice, in order to facilitate anlysis L, ,, is
replaced by the n x n toroidal grid.)

1.1 Constant interaction energies, no external field

Assume that M = 0, so that there is no external field, and that J;; = J is
constant over all edges of G.
The partition function is now

Z(G) = Z(G; 8, J Ze*ﬂH

where

— Z Joio;.
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Theorem 1.1. The partition function for the Ising model on G = (V, E) when
there is constant edge interaction J and no external field is given by

Z(@) = 2WVIe=BIn(E) (sinh A1) (T (G; coth 7, €277,

where T'(G) is the Tutte polynomial of G and = 1/kT.



Theorem 1.2 (Van der Waerden, 1941).
Z(G) = 2IVl(coshB))IPIC(G; tanh3)),

where

C(Gszx) = Z x4l
ACE
(V,A) Eulerian

The Eulerian subgraph expansion of the partition function of the Ising model
of Theorem 1.2 is the starting point for reducing the Ising model problem for
square lattices to a dimer (matching) problem, and thence via Pfaffian orienta-
tions to Onsager’s solution in 1944 of the problem of finding lim,, logzrg%”)
In particular it enabled the critical temperature T, to be found for the two-
dimensional lattice.

2 The ¢g-state Potts model

The g-state Potts model on a graph G = (V, E) is a generalization of the Ising
model in which there are g possible states at a vertex rather than the two
up/down states. In this model introduced by Askin and Teller (1943) and Potts
(1952) the energy between two adjacent spins at vertices ¢ and j is taken to be
zero if the spins are the same and equal to a constant J;; if they are different.
For a state o the Hamiltonian is defined by

H(o) =) Jij(1~6(0i,07)),
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where ¢ is the Kronecker delta function (6(a,b) = 1 if @ = b and d(a,b) = 0 if
a # b). We shall assume there is no external magnetic field. The Hamiltonian
H (o) represents the energy of the state o. The partition function of the ¢-state
Potts model is defined by

Z2(G) =Y e ),

where the sum is over all ¢!V'| possible states ¢ and § is the inverse temperature
8= % as for the Ising model.
Just as for the Ising model, we have

e—BH(0)

PI’(O’) = Wa

the Boltzmann maximum entropy distribution on the state space subject to
a given expected value of H(o). (This expected value is the internal energy
of the system, which is constant when the system is isolated/ in equilibrium
with its environment. This is the First Law of Thermodynamics, expressing the
principle of conservation of energy.)

If we replace J;; by —2J;; then the partition function of the 2-state Potts
model is the same as that of the Ising model scaled by e Plijen Jis,

Returning to the g-state Potts model, if J;; = J is constant over all edges
and we write K = 8J then the partition function can be written in terms of the
Tutte polynomial as follows:

K1
e +q eK

2(G) = ¢ (" — 1) Do RIEIT (G =T "),



The point ({;%41'{1, ef) lies on the hyperbola (z — 1)(y — 1) = q.
Here is a summary of correspondences between the Potts model and the
Tutte plane (taken from [18]):

Potts model on G Tutte polynomial T'(G;z,y)

Ferromagnetism Positive (z,y > 1) branch of (z — 1)(y — 1) = ¢
Antiferromagnetism Negative (z < 0) branch of (zx — 1)(y — 1) = ¢ with y > 0
High temperature Asymptote of (x —1)(y — 1) =qtoy =1

Low temp. ferromagnetic Positive branch of (z — 1)(y — 1) = ¢ asymptotic to x = 1
Zero temp. antiferromagnetic | Proper vertex g-colourings, z =1 — ¢,y = 0.

2.1 The Fortuin-Kasteleyn random cluster model

The random cluster model on a connected graph G = (V, E) with parameters
p and q is a probability space on all spanning subgraphs of G. The probability
measure of a subgraph A C F is

u(A) = mpw(l _p)lE\A|qc(A)7

where as usual ¢(A) denotes the number of connected components of the sub-
graph (V, A), and Z(G) is the normalizing constant

Z(G) =Y pi(1 —p)l P AgeA).
ACE

When g = 1 this is the bond percolation model on G, where an edge is open
with probability p and otherwise closed. This model is used for such processes
as molecules penetrating a porous solid, diffusion, and the spread of infection
through a community (passage/contagion is possible along open edges).

When ¢ is a positive integer the random cluster model is equivalent to the
g-state Potts model with p =1 — e K.

Proposition 2.1. The partition function of the random cluster model on a
connected graph G = (V, E) with parameters 0 <p <1 and q > 0 is given by
1

1—
Z(G) = q(1 — p)/BI=VIH1, VIS (G 1 ( pp)q’ —

)a

where T'(G) is the Tutte polynomial of G, and the probability measure of the
subgraph A is given by

P |4 c(A)—1
1p q

P lvl_lT(G.p+q—m L)
(1-p) »p O 1-p

n(A) =

When ¢ > 1 there is a bias towards edges joining vertices in an existing
component than edges uniting two old components, since a larger number of
components are favoured. More precisely, given B C F and e € E'\ B, under
the probability distribution u we have

Pr(A=BU{e})  u(BU{e})

Pr(ec A|A\{e} =B) = Pr(A — {e} = B) :M(BU{e})+N(B)

:{p if ¢(B U {e}) = e(B),

ey fcBU{e})=c(B) -1,




where, for 0 < p < 1,

P <p ifg>1
p+q(l—p) |>p if0<qg<l.

Percolation in the random cluster model (the existence of an infinite compo-
nent of open edges) is intimately related to two-point correlation (long-distance
correlation between vertex colours) in the g-state Potts model. Given fixed ver-
tices ¢ and j, in the Ising model the two-point correlation between i and j is
defined to be the expected value of 0;0; over all states o. For the Potts model
the two-point correlation is the expected value of §(o;, o), i.e., the probability
that o; equals o;.

A key result of Fortuin and Kasteleyn (1969) is the following (see e.g. [5,
Theorem 2.1]):

Theorem 2.2. For any pair of vertices i and j and positive integer q, the
probability that o; equals o; in the q-state Potts model is given by

1 1

R T )

. ( q) {i~j}
where u is the random cluster probability measure on G obtained by taking p =
1—e X and {i ~ j} is the event that there is an open path from i to j, i.e.,

{i~j} = U{A C E:i and j belong to the same component of (V, A)}.

The expression on the right-hand side in Theorem 2.2 can be regarded as
being made up of two parts. The first term 1/q is the probability that under
a uniformly random colouring of the vertices of G the vertices i and j have
the same colour. The second term measures the probability of long-range in-
teraction. So Theorem 2.2 expresses an equivalence between long-range spin
correlations and percolatory behaviour.

Phase transition (in the infinite system) occurs at the onset of an infinite
cluster (connected component) in the random cluster model and corresponds to
spins on the vertices of the Potts model having long-range two-point correlation.

See [19, Chapter 4] for further discussion of percolation in the random cluster
model, as well as the detailed account of [6] from the point of view of probability
theory.

2.2 Monte Carlo methods

Computation of the probability of a state ¢ in the g¢-state Potts model is a
difficult problem (#P-hard) so that approximation is required. One way to do
this is to run a Markov chain whose stationary distribution is the desired Potts
model distribution, and to sample from this Markov chain (when it has run a
sufficiently long time, and if more than one sample is required, choosing samples
sufficiently far apart).

Suppose we wish to sample from a probability distribution 7 on a finite set {2
(e.g. Q = [q] for the Potts model on G = (V, E), with 7(c) = e#(?) /(@) for
o € [q]V). The idea is to construct an irreducible’ Markov chain with transition
matrix P and state space 2 and which has 7 as stationary distribution.?

IStrongly connected transition graph.

2If each state is positive recurrent (finite expected return time) the matrix P has a unique
stationary distribution w, i.e., such that 7P = m, given by n(c) = 1/E(T,), where T, is the
random variable giving the return time to o (when starting from o).



A sufficient condition that the irreducible stochastic matrix P has 7 as its
stationary distribution is that P satisfies the detailed balance condition for m,

namely
w(o)P(o,7) = w(T)P(1,0).

This is to say the Markov chain is reversible: the expected number of accepting
moves from o to 7 is equal to the expected number of moves from 7 to 0. We

have
Zﬂ'(o)P(U, T) = ZT((T)P(T, o) =7(7),
i.e. 7P = m and 7 is the stationary distibution for P.

To construct P we proceed as follows. Start with any irreducible stochastic
matrix A with state space . Let G : (0,00) — [0,1] be any function satisfying
G(r) = 2G(z~1), such as G(z) = min(z,1) or G(z) = Ths

Define the matrix Q = Q(o,7), 0,7 € Q, by

oer-6(046%)

Modify matrix A into P by setting

P(o,7) = A(o,7)Q(0, T) o#T,
P(o,0)=1-— Z P(o, 7).
T#Oo

Then P satisfies, for o # T,

=n(r)P(t,0)

In other words, the detailed balance condition is satisfied by P and it defines a
reversible Markov chain. ot
Now let us apply this to the Potts model distibution w(c) = %

Metropolis method

Choose A with A(o,7) = ﬁ when o and 7 differ at exactly one vertex,
A(o,7) = 0 otherwise, and G(z) = min(1, z). Then, for ¢ and 7 which differ at
just one vertex,

. (e PED A(T,0)
Qlo,7) = min (W )

— min(e BHE-H@) 1)

The Markov chain whose transition matrix P is defined by



then has the desired Potts model stationary distribution.

A random walk on this Markov chain can be descibed thus. When at a
current state o € [¢]V (the chain is initiated by choosing an arbitrary state to
begin with):

(i) choose a vertex v € V uniformly at random and colour ¢ € [¢] uniformly
at random;

(ii) change the colour of v to ¢ and thereby change state o to a new state 7
differing just at v either if H(7) < H(o) orif H(7) > H(c) then change
from o to 7 with probability e~ #(H(T)=H(2)),

Glauber dynamics

A variation on the Metroplis method is to choose G(z) = T4+ which leads
to the following rule for follwing a random walk on states whose stationary
distibution is the ¢-state Potts model probability distribution.

When at current state o,

(i) choose a vertex v € V uniformly at random and colour ¢ € [g] uniformly
at random;

(ii) move from o to the state 7 differing (at most) from o by having colour ¢
at v Wlth probablhty m.

A drawback with the random walks on such Markov chains as defined by the
Metropolis method and Glauber dynamics as defined above is that convergence
to the stationary distribution is not fast, especially near the critical temperature.
Successive states are not statistically independent (they differ in at most one
vertex) and the autocorrelation is O(|V]) (intuitively, and very roughly, there
has to be a large separation of O(|V]) steps in order to have uncorrelated samples
from the same Markov chain).

What is required is a rapidly mizing Markov chain, where the distance
(suitably defined) from the stationary distribution is sufficiently small after
time polynomial in |V|, rather than the exponential time that the Metropo-
lis method requires. See [19, Section 8.6] and [9] for one example of such
a chain. There is much other research, surveyed e.g. in [13], on obtaining
rapidly mixing Markov chains (of which T am ignorant). See e.g. talk slides
at http://mae.ucdavis.edu/dsouza/Talks/msri-June06.pdf for coupled Markov
chains and simulation of the Ising model.

Swendsen—Wang algorithm

An improvement on the Metroplis method both with respect to statistical
independence (autocorrelation) and speed of convergence (although still not
rapidly mixing, I think: see [4]) is the Swendsen—Wang algorithm [17] for the
Potts model on graph G = (V, E) with parameters 3 and J (interaction energy),
with Hamiltonian H (o) = J#{ij € E : 0; # 0;}).

When at current state o move to state 7 defined as follows:

(i) let
E(o)={ij€ E:0; =0,}
be the set of monochromatic edges of the state o. Delete each edge of

E(c) independently with probability e=?”/, giving a random subset A of
E(o).



(ii) For each connected component of the graph (V,A), choose a colour ¢
uniformly at random from [g], and for all vertices ¢ within that component
set 7, = c¢. This defines the new state 7.

The correctness of this algorithm relies on the equivalence between the g¢-
state Potts model and the Fortuin—Kasteleyn random cluster model alluded to
in Section 2.1 above, with percolation probability p = 1 — e™”7 (open edges
between like-coloured vertices).
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