Linear Algebra I

Elementary row operations

1 Augmented matrix
A solution to the system of linear equations over the real numbers!
a1,121 + a12x2 + -+ a1,Ty, = by

2,171 + 222 + -+ - 4+ a2 nTy = b

Am 121 + Am2T2 + -+ + AmpTn = b

in terms of the matrix

ai1  air2 - Glp
A — a/2,1 0/2’2 e a2,n c Rmxn
am,1 Gm2 **° Amn
and vector )
by
b2
b = . e R™
b
is a vector _
T
X2
X = cR"
T,
such that
Ax = b.

In order to find the solution set of the given system of equations by Gaussian elimination
we form the augmented matrix

a1 a1 v i | b
a1 a2 -+ G2n | bo

[A|b] = C | e R,
am,1 Am2 **° Amn bm

(The vertical line is there to remind us that it represents a system of linear equations, but can
be dropped. We can simply write [A b], as in Strang’s textbook.)

!Sometimes a different field to R is considered: for example, the set of rational numbers Q, or the set of complex
numbers C. Most results for linear equations over R carry over to these other fields, as the relevant properties of
R that are used, such as existence of multiplicative inverses (the element t~!such that t 't =1=1tt""! for t # 0)
or distributivity of multiplication over addition (a(b+ ¢) = ab+ ac), are properties shared by any field. Later in
the course we shall look at what makes a field a field (in the mathematical sense!).



2 Elementary row operations

We describe elementary row operations on a general m X n matrix

c1,1 €2t Clip
C C DY c

C = 2,1 2,2 2,n c RmXxn
Cm,1 Cm,2 " Cmn

In practice, C' will be the augmented matrix [A | b] for a system of linear equations.

Proposition 2.1. The two operations of (1) scalar multiplication of row i by t # 0 and (2)
replacing row © by its sum with row j,

Cil Ci2 ccc Cin | P | Gt oo tein (1)
Gl G2 't Cin Ci1t¢Ci1 C2tcC2 o CintCin
Gl G2 Cin Gl €j,2 e Cjn

can be composed to produce the operations of (3) adding a scalar multiple of row j to row i and
(4) swapping rows i and j >

Ci1 Ci2 't Cim Ci1 Htcj1 Cig+1cja - Cin +1lCin
Gl G2 - Cin €1 €j,2 T Cjmn
Ci,1 G2 Cin Ci1 Cj2 Cin
— B “ e <4)
Cil G2 - Cin Gl G2 " Cin

Proof. We write C (N) C’ if the matrix C’ is obtained from C by an application of operation (1)
1
multiplying a row by a non-zero scalar, and likewise C (Ng) C’ of C’ is obtained from C by an

application of operation (2) swapping two rows.

*In Sage operation (3) is given by add_multiple_of_row(i, j, t) and operation (4) by swap_rows(i, j). In
Sage rows and columns are counted starting at zero: for the first row ¢ = 0 and the first column j = 0. E.g.
for the 2nd row and 3rd column you should enter ¢ = 1 and j = 2 in these Sage commands. For an example
worksheet see http://arcikam.kam.mff.cuni.cz:12080/home/pub/1/



The operation (3) is for ¢ # 0 realized by the sequence:

Ci,1 G2 Cin Ci,1 Ci.2 Cin
c c c ) tc; tc; tc
g1 €5,2 Jim J,1 J,2 Jim
i1 tic1 Ciatlicie - Cinticin
(2)
th71 th72 s thm
Giatitcj1 ciag+lilcia -+ Ciptitcin
~ o
(1) s Ca . Ca
7,1 Ji2 Jin

where in the last line we have used the fact that ¢ # 0 has a multiplicative inverse (so that we
can return row j to its original value by dividing through by ¢).

(When t = 0 operation (3) does nothing to the matrix, so this case does not need to be
considered.)

There are other sequence of operations (1) and (2) that can produce the same effect as
operation (3), but the one above involving three steps is the shortest.



The operation (4), swapping rows, is, for example, realized by the sequence:

Ci1l Ci2 - Cin —Ci1 —Ci2 - —Cin
e e O
g1 €52 Jn J,1 J>2 Jn
—Ci1 —Ci2 e —Cin
J,1 i1 €52 1,2 Jn Jn
Ci1 Ci2 Cin
~J
W | oo e e e e o
7,1 1,1 G52 1,2 J:m i,n
Cj,1 Cj,2 T Cjin
~Y
O
7,1 i, 1 7,2 2,2 J,m 7,1
Cj1 Cj,2 Cjn
~Y
(1) o o Cio e i —
Ciil —Cj1 G2 —Cj2 Cin — Cjn
Cj1 G52 Cin
~Y
(2) . _
Cii1 G2 Cin

There are other sequence of operations (1) and (2) that can produce the same effect as operation
(4): have we found the shortest such sequence here?

Note: having already proved that operation (3) is given by a sequence of operations of types
(1) and (2), we could give a shorter proof for operation (4) as follows (in which C (r;) C’ means



(' is obtained by applying operation (3) to C):

Gl Ci2 “tt Cin Ci,l —Cj1 €2 —=Cj2 - Cin—Cjn
~ -
Cj1 Cj2 o G ®) c; ¢ ¢
31 G52 Jmn g1 7,2 Jmn
Ci1—Cj1 C2—Cj2 ' Cin—Cjpn
~ e
(2) A
Ci1 Ci2 Cin
—G1 G2 —Cjin
~Y
(3) .
Ci1 Ci.2 Cin
Cj1 Gj2 Cjn
~ .
(1) .
Cii1 G2 Cin

O

3 Elementary operations on the augmented matrix for a system of linear
equations

Lemma 3.1. Fach of the elementary row operations (1) and (2) preserve the solution sets of
Ax =b. That is, if

(a) [A]D]

2

[A"|b], or

—

(1)

(b) [Alb](Nm[A’lb’]

then the solution set of Ax = b is equal to the solution set of A’x = b’.

Proof. Both operations (1) and (2) just affect row i, the remaining rows staying the same.
Hence the only difference between the system of equations Ax = b and the system of equations
A’x = b’ is the ith equation. Let the (k,[)-entry of A be ay; and the (k,l)-entry of A’ be a} ;.
Then a}, , = aj,; and b} = by, when k # i. 7

Let S be the solution set of Ax = b and let S’ be the solution set of A’x = b’. In order to
prove that S = S’ we show that

(S C 9 if Ax =Db then A’x =Db’, and
(S CS) if A’x = Db’ then Ax = b.
Since only the ith equations differ, all we need to prove is that

(SCS) if iz + aj2x9 + -+ - + a; oy, = b; then a;lm + a§’21:2 4t a;nxn = b}, and



(8"C9) if a;ﬂxl + a;72x2 + 4 a;na?n = b, then a; 121 + ajox2 + - + Qi Ty = b; .
(a) Under operation (1) we have a}, = ta;; and b} = tb; and the ith equation in A’x = b’ is
tamazl + tai72$2 —+ e+ taimmn = tb;

while in Ax = b it is
ainx1 + ai2r2 + -+ QinTn = by

S C S if a1 + aioxe + -+ + @iz, = b; then by multiplying by ¢ € R we obtain
t(ainz1 + ai2xa + - - - + @i nxy) = tb;, and this is the same as ta; 121 + ta; 22 + - - - +
ta; ny = tb;, which is the ith equation of A’x =b’.

S"C S if tajxy + tajeme + - -+ + ta; px, = th; then, since t # 0, we can multiply by t~1
to obtain the equation t_l(tamm +tajpry + - - + ta; pxy) = t=1(tb;), which is the
same as tiltamxl + tilta,;,gzm 4+ 4 tiltamxn = t~b;, and since t 't = 1 this is
the same as a; 121 + a; 222 + - - - + a; n @y = b;, which is the ith equation of Ax = b.

(b) Under operation (2) we have a;; = a;; + a;; and b; = b; + b; and the ith equation in
Ax =D is

(a@l + aj,l)azl + (ai,g + aj,g)xz + -+ (ai,n + ajvn)a:n =b; + bj

while in Ax = b it is
ai11 + ai2T2 + -+ ainTn = b;.

S C S if a; 121+ a; 202+ - -+ a; Ty = b; and aj 171 +ajor2 + - - - + a2, = bj then by
adding these two equalities we obtain

(@11 + ai2T2 + -+ + AinTn) + (@121 + aj222 + - + ajpTn) = b; + by,
and, collecting together coefficients of the x;, this is the same as
(@i1 +ajn)er + (aiz + aj2)er + - + (@in + ajn)n = bi +b;

which is the ith equation of A’x = b/.
S’ C S: the ith and jth equations of A’x = b’ are

(ai1 +aj1)rr + (ai2 + aj2)re + -+ (aipn + ajn)en = b + by,

and
aji%1 + ajpx2 + -+ ajnen = bj

from which
(ai,l—l—aj,l)1‘1+(ai,2—|—aj,2):v2+~ : -+(a¢7n—|—aj,n):vn—(aj,1x1+aj,2m2+' : '+aj,n$n) = bri—bj—bj,

Multiplying out the brackets, rearranging, and collecting together the coefficients of
the z;, this is to say

(ain +aj1—aj1)zr + (a2 +aj2 — aj2)x2 + - + (in + Gjn — @jn)Tn = by,

which is to say
a;1T1 + a; 272 + -+ + a; Ty = by,

which is the ith equation of Ax = b.



If there is a finite sequence of elementary row operations of types (1) and (2) that change
matrix C' to matrix C’ then we write C' ~ C’. (By Proposition 2.1 we can also use operations
(3) and (4) in this definition.)

Proposition 3.2. If [A|b] ~ [A" | V'] then the solution set of Ax = b is equal to the solution
set of A/x = b’.

Proof. By definition, if [A | b] ~ [A’ | b/] then there is a finite sequence of elementary row
operations of types (1) and (2) which transforms [A | b] into [A’ | b].

We proceed by induction on the length of this sequence of elementary row operations. For
length zero there is no operation at all, [A|b] = [A’|b/], and the assertion is trivial. (For length
one, the statement is equivalent to Lemma 3.1 and hence also holds as a base case.)

Assume as induction hypothesis that when there is a sequence of at most r elementary row
operations that transforms [A | b] into [A’|b] it is true that the solution set of Ax = b is equal
to the solution set of A’x = b’. (We have verified the cases r = 0 and r = 1.)

Suppose [A | b] ~ [A" | b/] by a sequence of r 4+ 1 elementary row operations. Let [A” | b”]
be the matrix obtained after applying the first r operations. Then [A | b] ~ [A” | b”] and by
induction hypothesis the solution set S of Ax = b is equal to the solution set S” of A”x = b".
Since we apply a single elementary row operation of type (1) or type (2) to transform [A” | b”]
into [A" | b/], by Lemma 3.1 the solution set S” of A”x = b” is equal to the solution set S’ of
Ax =1

Since S = S” and S” = S’ it follows that S = §’, i.e., the solution set of Ax = b is equal
to the solution set of A’x = b’. This proves the induction step and by mathematical induction
the proof of the proposition is complete. O

A system of linear equations Ax = b represented by augmented matrix [A4|b] can be reduced
by elementary row operations to row echelon form (see lecture notes). In other words, there
is an echelon form matrix [A’ | b’] which by Proposition 3.2 gives a system of linear equations
A’x = b’ with the same solution set as the original system Ax = b.

The Gaussian elimination algorithm converts a given matrix [A | b] by a sequence of oper-
ations of types (1) and (2) (in practice, a sequence of operations of types (3) and (4)) into an
echelon form matrix [A’ | b’]. Since back-substitution can be used to solve A’x = b’, using the
Gauss elimination algorithm we can determine the solution set of any system of linear equations.

Furthermore, by Gauss-Jordan reduction there is a unique matrix [A’ | b'] in reduced row
echelon form which is equivalent to [A | b] by elementary row operations. In this way, using
Gauss-Jordan reduction you can determine whether a system of linear equations A1x = by
has the same solution set as another system of linear equations Asx = bsy, without having to
determine their solution sets.



