Úlohy ke cvičení

Úloha 1: Determine, whether the following sets of real functions form a subspace of the vector space of all real functions:

- The polynomials of degree at most 7,
- the polynomials f of degree at most 7 satisfying that f(0) = 3,
- the polynomials of degree at most 7 satisfying that -5 and 2 are among their roots,
- the monotone functions,
- the piecewise linear continuous functions.

Yes, no (the zero function is missing), yes, no (two monotone may yield non-monotone), yes.

Úloha 2: Let u, v, w be linear independent vectors in a vector space V over the field \mathbb{R} . Decide, whether the following sets of vectors are linearly independent or not.

a) $\{u + v, u - v, u + w, u - w\}$.

 $\{u + v, u - v, u + w, u - w\}$ is linear dependent, for example by the use of coefficients $(1, 1, -1, -1)^T$.

b)
$$\{u + v, u + w, v + w\}$$
.

 $\{u + v, u + w, v + w\}$ is linear independent.

Úloha 3: Decide, whether the following set of vectors is independent in the arithmetic vector spaces $\mathbb{R}^4, \mathbb{Z}_3^4$ and \mathbb{Z}_5^4 .

If not, find an expression of some vector as a linear combination of the others.

a) $X_3 = \{(1, 0, 2, 0)^T, (2, 1, 0, 2)^T, (0, 2, 2, 1)^T, (2, 2, 1, 1)^T\}.$

 X_3 is linear independent in \mathbb{R}^4 ,

it is linear dependent in \mathbb{Z}_3^4 as witnessed by $(0, 1, 2, 2)^T$,

and it is linear dependent in \mathbb{Z}_5^4 as witnessed by $(2, 0, 1, 4)^T$.

Úloha 4: Let V be a vector space and $X \subseteq Y \subseteq V$. Decide, which of the following claims are valid or not:

a) The se X is not independent, while the set Y is independent.

Incorrect: $X = \{(1,0)^T\}$ and $Y = \{(1,0)^T, (0,1)^T\}$ and these are both independent in \mathbb{R}^2 .

b) If the set X is independent, so is the set Y.

Incorrect: $X = \{(1,0)^T\}$ is independent, but $Y = \{(1,0)^T, (2,0)^T\}$ is dependent in \mathbb{R}^2 .

c) If the set Y is independent, o is the set X.

Correct: Every n-tuple of vectors in Y is independent, thus the very same must hold also for all n-tuples of vector in the set X.