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4 Graph invariants and graph homomorphism

profiles

Many graph invariants can be expressed in terms of counting homomorphisms,
including the chromatic polynomial (the familiar example, P (G; k) = hom(G,Kk)
for k ∈ N), the flow polynomial (not so obvious, but we saw how earlier in the
course), the Tutte polynomial (also not so obvious [4]), and other polynomial
invariants such as the characteristic polynomial.

One of the fundamental questions about a graph invariant is whether it
determines a given graph G up to isomorphism: for example, is G determined
by its Tutte polynomial, or even just by its chromatic polynomial? What about
say the chromatic polynomial and characteristic polynomial jointly: do they
together determine G? By using the language of graph homomorphisms we can
unify these sorts of question by using homomorphism profiles.

4.1 Graph invariants

Let G denote the set of all finite (multi)graphs up to isomorphism (i.e., graphs
in G are pairwise non-isomorphic, any given graph is isomorphic to exactly one
graph in G).

Definition 1. Let P ⊆ G be given in some fixed enumeration P = {P1, P2, . . .}.
The left P-profile of a graph G is the sequence (hom(P,G) : P ∈ P) and the
right P-profile is the sequence (hom(G,P ) : P ∈ P).

Definition 2. A graph invariant is a function f : G → S, where S is a set
(often with some algebraic or combinatorial structure that “encodes” some of
the graphical combinatorial structure).

For example, the Tutte polynomial T (G;x, y) is a graph invariant taking
values in the ring Z[x, y]. Multiplication in the ring corresponds to the disjoint
union of graphs, T (G1 ∪ G2;x, y) = T (G1;x, y)T (G2;x, y). As we have seen,
many combinatorial parameters of a graph G are reflected in properties of the
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Tutte polynomial T (G;x, y). For example, a graph G with at least two edges is
2-connected if and only if the coefficient of x is non-zero, and G is k-colourable
if and only if T (G; 1− k, 0) 6= 0.

The left- (or right-) P-profile defines an invariant taking values in N
ω, the set

of infinite sequences of natural numbers. Multiplication in the monoid N
ω cor-

responds to the disjoint union of graphs for the left-profile, hom(G1 ∪G2, H) =
hom(G1, H)hom(G2, H), and to the direct product of graphs for the right-
profile, hom(F,G1 ×G2) = hom(F,G1)hom(F,G2).

A graph invariant induces a partition of G on whose subsets the function f

is constant, i.e., two graphs G and G′ are f -equivalent if f(G) = f(G′). If on
the other hand f(G) 6= f(G′) then the graphs G and G′ are distinguished by f ,
belonging as they do to different subsets of the partition of G induced by f .

If f induces the trivial partition consisting entirely of singletons, then f

determines graphs up to isomorphism. There is great interest in finding graph
invariants with this property, because of the possible implications for the status
of the graph isomorphism problem (still of unknown complexity).

A slightly weaker requirement than that f determine all graphs up to iso-
morphism is that f determine almost all graphs up to isomorphism. Letting
G(n) ⊂ G denote the set of all graphs on n vertices, this is to say that

#{G ∈ G(n), G determined by f}

|G(n)|
→ 1 as n → ∞.

If G1 ⊂ G is a block, or union of blocks, of the partition of G induced by f

then we say the the class G1 is determined by f . In this situation, knowing the
value of f(G) we can determine whether G ∈ G1. Another way of phrasing this is
to say that the property of a graph belonging to the class G1 is an “f -invariant”.
For example, the property of being 2-connected is a Tutte polynomial invariant.
When G1 consists of just a single graph G, the graph G itself is determined by
f up to isomorphism.

Question 1

(i) Explain why the property of having no cycles is a chromatic polynomial invariant.

(ii) Prove that the complete graph Kk and cycle Ck are both determined by their
chromatic polynomials.

Conjecture 3. [2] Almost all graphs are determined by their chromatic poly-
nomial.

Bollobás, Pebody and Riordan also make the weaker conjecture – but still
far from being solved – that almost all graphs are determined by their Tutte
polynomial.

The Tutte polynomial of any forest on m edges is equal to xm; conversely if
T (G;x, y) = xm then G is a forest on m edges. (Why?) Thus, although forests
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not individually determined by the Tutte polynomial, the class of all forests on
m edges is so determined. (Likewise for the chromatic polynomial, except now
one needs to take into account the number of connected components too.)

4.2 Homomorphism profiles determining graph invariants

There are graph invariants that are known to determine each graph G up to
isomorphism. An example, trivial by definition, is the equivalence class of the
adjacency matrix of G (up to permutation of rows and columns). But despite
this triviality one shouldn’t overlook the fact that algebraic properties of the
adjacency matrix A of a graph G correspond to graphical properties of G in a
way that may permit analysis of the latter (for example, the matrix powers of
A enumerate walks on G – see below).

The homomorphism G-profile of G, an infinite sequence of natural numbers,
may also seem to be too unwieldy a graph invariant to be useful (even allowing
that for given G it is possible to truncate the profile to those graphs with at
most as many vertices as G). However, we saw in the final lecture how the
correspondence hom(G,H1×H2) = hom(G,H1)hom(G,H2) between the direct
product of graphs and multiplication in N could be used to prove the non-trivial
result that G ×G ∼= H ×H implies G ∼= H . This required the fact that these
profiles do indeed determine all graphs up to isomorphism:

Theorem 4. (Lovász,[5], and [6]) Let G be the set of all finite graphs in some
enumeration, no two graphs isomorphic.

Then

(i) The left-G-profile of a (possibly edge-weighted) graph G determines G up
to isomorphism.

(ii) The right G-profile of a graph G determines G up to isomorphism.

Can we “thin out” the class G to make a smaller set P with the property
that every graph is still determined by its left- (and right-) P-profile?

Dvořák [3] has given two examples for left-profiles. A graphH is k-degenerate
if each subgraph of H contains a vertex of degree at most k. Every graph with
tree-width k is k-degenerated. 1-degenerated graphs are precisely forests, but
there are 2-degenerated graphs with arbitrary tree-width; the complete graph
with each edge subdivided by two new vertices is 2-degenerate.

Theorem 5. (Dvořák, [3]) Every graph is determined by its left P-profile when

(i) P is the set of all 2-degenerate graphs.

(ii) P consists of all graphs homomorphic to a fixed non-bipartite graph (in
other words, an down-set in the homomorphism order with minimal ele-
ment a non-bipartite graph).

We may extend the terminology of right P-profiles to the case where P is a
collection of edge-weighted graphs.
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Question 2 Show the following:

(i) The right {Kk : k = 1, 2, . . .}-profile of G determines P (G;x).

(ii) The right {K1−k
k : k = 1, 2, . . .}-profile of G determines F (G;x), where K

y

k

denotes the complete graph on k vertices with a loop of weight y on each vertex
(here y = 1− k).

(iii) The right {Ky

k : k, y = 1, 2, . . .}-profile of G determines T (G;x, y). (Here all that
matters is that y ranges over some infinite set of values.) [More fiddly as requires
bivariate polynomial interpolation. See [4] for details.]

(iv) The right {K1

1+Kk : k = 1, 2, . . .}-profile determines the independence polynomial
I(G;x) =

∑
x|U|, where the sum is over all stable sets U in G. (The graph K1

1

is a single vertex with a loop attached; the graph K1

1 + Kk the star K1,k with a
loop on its central vertex.)

Conjecture 3 thus states that the right {Kk : k = 1, 2, . . .}-profile determines
almost all graphs (or in its weaker form, that the right {Ky

k : k, y = 1, 2, . . .}-
profile determines almost all graphs).

How about the right {K1
1 + Kk : k = 1, 2, . . .}-profile? Well, as Noy

showed [7], using the fact that on average a random graph on n vertices has
independence (stability) number O(log n), almost all graphs are not determined
by the independence polynomial. So here we have an example of a homomor-
phism profile by an infinite number of non-isomorphic graphs for which we know
it is not true that the profile determines almost all graphs.

4.3 Spectrum and degree sequence by left profiles

A k-walk in a graph is an alternating sequence of vertices and edges v0, e1, v1, e2,
. . . , vk−1, ek, vk, where ei+1 = vivi+1 for 0 ≤ i ≤ k − 1. A k-walk is closed if
v0 = vk. A 0-walk is just a vertex and is always closed. A 1-walk is a walk from
a vertex to an adjacent vertex. A closed 1-walk is a loop.

Lemma 6. Let H be an edge-weighted graph with adjacency matrix A. Then

hom(Ck, H) = tr(Ak).

Proof. The matrix Ak has (i, j) entry the sum of edge-weighted k-walks from
i to j, as can be proved by induction. (The weight of a walk is the product
of its edge weights, with multiplicities counted for repeated edges.) A closed
k-walk corresponds to a homomorphic image of Ck. The diagonal entries of
Ak then together sum to hom(Ck, H). By diagonalization, A = B−1DB for
orthogonal matrix B and diagonal matrix D = diag(λ1, . . . , λn), where the λi

are the eigenvalues of A taken with multiplicity.

Corollary 7. Let H be an edge-weighted graph H on n vertices with adjacency
matrix A. Then the left {Ck : 1 ≤ k ≤ n} ∪ {K1}-profile of H determines the
spectrum of A.
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Proof. If A has eigenvalues λ1, . . . , λn then tr(Ak) =
∑

i λ
k
i . In particular,

tr(A0) = hom(K1, H) = n gives the number n of vertices of H , i.e., the size
of A. Given the power sums

∑

λk
i for 1 ≤ k ≤ n, Newton’s relations yield

the elementary symmetric polynomials in the λi and hence the λi are uniquely
determined (as the roots of the characteristic polynomial of A).

Restricting attention to simple unweighted undirected graphs, graphs deter-
mined by their spectrum include Kn, Kn,n and Cn. (Curiously, the line graphs
L(Kn) of complete graphs are also determined by their spectrum with the excep-
tion of the case n = 8, where there are three other non-isomorphic graphs with
the same spectrum.) Similar to Conjecture 3 about the chromatic polynomial,
it is conjectured that almost all graphs are determined by their spectrum [8].
On the other hand, almost all trees are not determined by their spectrum, and
there are many constructions of cospectral non-isomorphic graphs. The smallest
pair of graphs with the same spectrum is C4 ∪K1 and K1,4.

The characteristic polynomial of G is defined by φ(G;x) = det(A − xI) =
(x − λ1) · · · (x − λn), where λ1, . . . , λn are the eigenvalues of A (taken with
multiplicity). So in all the above we could have talked about the characteristic
polynomial of G (rather than the spectrum) being determined by the left {K1,k :
k = 0, 1, , . . .}-profile of G.

By Corollary 7 the conjecture of Van Dam and Haemers [8] is that almost
all graphs are determined by their left {K1,k : k = 0, 1, , . . .}-profile.

Lemma 8. Let H be an edge-weighted graph on n vertices with adjacency matrix
A, and let 1 denote the n× 1 all-one vector. Then the left {K1,k : 1 ≤ k ≤ n}-
profile of H determines the vector A1.

Proof. The homomorphic image of K1,k is a multiset of k edges incident with
a common vertex. If H has vertex set [n] = {1, . . . , n} and adjacency matrix
A = (au,v)u,v∈[n] then

hom(K1,k, H) =
∑

v∈[n]

(

∑

u∈[n]

au,v
)k
,

by taking all possible choices of a multiset of k edges incident with common
vertex v as the image of K1,k. By taking k = 1, . . . , n we can determine the
column sums

∑

u∈[n] au,v of A, i.e., the vector 1⊤A. Since A is symmetric this
also gives the row sums and the vector A1.

When H is an unweighted graph, i.e. its adjacency matrix has entries either
0 or 1, with degree sequence d1, . . . , dn (vertex degrees listed in non-increasing
order), we have as a particular case of Lemma 8 that

hom(K1,k, H) =
∑

i

dki .

(The case k = 0 gives us n: hom(K1, H) = |V (H)|.) By taking k = 0, 1, . . . n
we obtain the following:
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Corollary 9. The left {K1,k : k = 0, 1, . . .}-profile of (an unweighted graph) H

determines the degree sequence of H.

Are almost all graphs determined up to isomorphism by their degree se-
quence? If ab and cd are edges of a graph then the (multi)graph obtained from
G by deleting ab and cd and replacing these by edges ac and bd has the same
degree sequence: provided ac and bd are not already edges then this gives an-
other simple graph G′ with the same degree sequence as G. Of course, it may
be that there are no such pair of edges ab and cd for which this exchange both
yields a simple graph and one that is non-isomorphic to G′.
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