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2 Flows and tensions

2.1 Orientations

An undirected graph G = (V,E) can be made into a digraph in 2|E| ways: for
each edge uv ∈ E we decide to direct u towards v, or to direct v towards u. If
the edge is a loop, i.e. u = v, then we still think of there being two opposite
ways to orient the loop – this is a matter of convenience for later definitions
(and makes sense when we talk about orienting plane graphs, where the two
possible directions can indeed be distinguished).

We orient a graph in order to extract structural properties of the underlying
undirected graph, but the orientation that is chosen is arbitrary: the results
obtained are independent of this choice. (The reader may recall the rôle played
by an orientation of G in proving Kirchhoff’s Matrix Tree Theorem, which gives
an expression for the number of spanning trees of G.)

Suppose then we are given an orientation ω of G = (V,E). By this we mean

that ω assigns a direction to each edge uv ∈ E, either u
ω
−→ v or u

ω
←− v.

We write Gω for the digraph so obtained. For U ⊂ V let ω+(U) denote the
set of the edges which begin in U and end outside U in the digraph Gω, i.e.,
ω+(U) = {uv ∈ E : u ∈ U, v ∈ V \ U u

ω
−→ v}. The set ω−(U) = ω+(V \ U)

comprises edges which in Gω begin outside U and end in U .
For a vertex v ∈ V the set ω+({v}) consists of those edges directed out of

v by the orientation ω and ω−({v}) is the set of edges directed into v. The
indegree of a vertex v in Gω is |ω−({v})| and its outdegree is |ω+({v})|.

If G is a plane graph then each orientation ω of G determines an orientation
ω∗ of its dual G∗. This orientation is obtained by giving an edge e∗ of G∗ the
orientation that is obtained from that of e by rotating it 90o clockwise: the edge
e∗ travels from the face to the left of e to the face to the right of e.

More formally, given an orientation ω of the plane graph G = (V,E) we
define the orientation ω∗ of G∗ = (V ∗, E∗) as follows. Let V ∗ be the set of

faces of the embedded graph G. For each arc u
ω
−→ v of Gω, suppose uv lies on

the boundary of faces X and Y . Suppose further that X is the face that would
be traversed anticlockwise if the direction of u

ω
−→ v were followed all the way
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round it (so that Y would be traversed in a clockwise direction following the

direction given by u
ω
−→ v). Then under the orientation ω∗ we direct edge XY

of G∗ as the arc X
ω∗

−→ Y .
See Fig.1
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Figure 1: Dual orientation ω∗ of an orientation ω of a plane graph

Question 1

(i) What is the dual orientation of ω∗?

(ii) If C is a circuit of G all of whose edges follow the same direction under orientation
ω (i.e. it is cyclically oriented) then what is the dual of C and how is it oriented
under orientation ω∗?

2.2 Circuits and cocircuits

We use terminology for graphs here that corresponds to viewing a graph G =
(V,E) in terms of its cycle matroid; the sense of “circuit” and “cycle” therefore
differs from traditional graph theoretical usage.

A cycle is a set of edges defining a spanning subgraph of G all of whose vertex
degrees are even (i.e., an Eulerian subgraph). A circuit is an inclusion-minimal
cycle (i.e., a connected 2-regular subgraph). A cycle is the edge-disjoint union
of circuits. A subset of edges is dependent in a graph G = (V,E) if it contains
a cycle and independent otherwise. An independent set of edges forms a forest.
A maximal independent set of edges (add an edge and a cycle is formed) of a
connected graph is a spanning tree.

A cutset K is a subset of edges defined by a bipartition of V , i.e., K =
{uv ∈ E : u ∈ U, v ∈ V \ U} where U ⊆ V . A cocircuit (or bond) is an
inclusion-minimal cutset of G = (V,E). A cocircuit of a connected graph is
a cutset {uv ∈ E : u ∈ U, v ∈ V \ U} with the additional property that the
induced subgraphs G[U ] and G[V \U ] are both connected. The rank of a graph
decreases when removing a cutset. A cutset K is a cocircuit if and only if
deleting K produces exactly one extra connected component, i.e., in this case
r(G\K) = r(G) − 1.
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The nullity of the graph G is defined by n(G) = |E| − r(G)|. The nullity of
G decreases when contracting the edges of a cycle of G into a single vertex, and
for a circuit C we have n(G/C) = n(G) − 1. In terms of the cycle matroid of
G, a circuit C is a minimal set of dependent edges: removing an edge from C
destroys the cycle that makes C dependent.

Question 2

A bridge in a graph G forms a cutset of G by itself. Dually, a loop in G forms a cycle of
G by itself. Show that

(i) an edge e is a bridge in G if and only if e does not belong to any circuit of G.

(ii) an edge e is a loop in G if and only if e does not belong to any cocircuit of G.

A subset B is a cocircuit of a connected graph G if and only if contracting
all edges not in B (and deleting any isolated vertices that result) produces a
“bond-graph”, consisting of two vertices joined by |B| parallel edges. (A subset
K is a cutset of G if and only if the result is a graph whose blocks are bond-
graphs – the vertices in this graph correspond to the connected components of
G\K.) Likewise, a subset C is a circuit of G if and only if deleting all the edges
not in C (and deleting any isolated vertices that result) produces a cycle-graph
(2-regular) on |C| edges.

Question 3

Show that if G = (V,E) is a plane graph and G∗ is its dual then a subset of edges B is
a cocircuit of G if and only if B is a circuit of G∗. (Assume the Jordan Curve Theorem:
a simple closed curve – such as that bounding a circuit in a plane graph – partitions
the plane minus the curve into an interior region bounded by the curve and an exterior
region.)

A spanning tree of a connected graph G is a maximal set of independent
edges: adding an edge creates a cycle. A spanning tree of G is a basis of the
cycle matroid of G. More generally, when G is not connected, a maximal set of
independent edges is a maximal spanning forest of G (add an edge and it is no
longer a forest).

Suppose G = (V,E) is connected and T is a spanning tree of G. Then

(i) for each e ∈ E \ T there is a unique circuit of G contained in T ∪ {e},
which we shall denote by CT,e, and

(ii) for each e ∈ T there is a unique cocircuit contained in E\T ∪ {e}, which
we shall denote by BT,e.

Let C be a circuit of G. The two possible cyclic orderings of the edges of C
define two cyclic orientations of the edges of C. Choose one of these orientations
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arbitrarily, making a directed cycle
−→
C . Define C+ to be the set of edges whose

orientation in Gω is the same as that in
−→
C , and define C− to be the set of those

edges directed in Gω in the opposite direction to that in
−→
C .

This signing extends to cycles (Eulerian subgraphs) more generally, since any
cycle is a disjoint union of circuits: when the cycle is the union of k edge-disjoint
circuits there are 2k choices for signing it.

Similarly, for a cocircuit (bond) B of G, defined by U ⊂ V such that B =
{uv ∈ E : u ∈ U, v 6∈ U}, we orient the bond B by directing edges from U

to V \ U to make
−→
B . (Again there are two choices of orientation, depending

on which side of the cut we nominate to be U and which side V \ U .) We
then define B+ and B− in an analogous way to circuits. Clearly this procedure
of signing cocircuits extends to cutsets more generally by directing edges from
one side of the cut to the other. (Alternatively, a cutset is a disjoint union of
cocircuits (why?), so in a similar way to cycles we can sign a cutset by signing
its constituent cocircuits.)

We have already encountered signed cutsets in Section 2.1: for a subset
U ⊂ V the set ω+(U) of edges that begin in U and terminate outside U comprise
the positive elements of the cocircuit defined by U , and ω−(U) = ω+(V \ U)
the negative elements.

In this way, for a given orientation of G as a digraph Gω, we have separated
the edge sets of (co)circuits into positive and negative elements. In fact, given
G and its set of (co)circuits, if the partition of each (co)circuit into positive
and negative elements is given, then we can recover the orientation of edges
(provided the way the (co)circuits have been signed is consistent with some
orientation – what conditions are required for this to be the case?).

Question 4

A matroid is regular if there is an orientation of its circuits and cocircuits such that for
all circuits C and all cocircuits B

|C+ ∩ B+|+ |C− ∩B−| = k ⇔ |C+ ∩B−|+ |C− ∩B+| = k.

Explain why this statement holds for graphic matroids.

Definition 1. Let C be a signed circuit of an oriented graph Gω on edge set E.
The signed characteristic vector −→χ C ∈ {0,±1}E of C is defined by

−→χ C(e) =





1 if e ∈ C+,

−1 if e ∈ C−

0 if e 6∈ C.

The signed characteristic vector −→χ B of a signed cocircuit B is similarly defined.

A fundamental relationship between signed characteristic vectors of circuits
and cocircuits (and of cycles and cutsets more generally) is given by the follow-
ing:
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Proposition 2. The signed characteristic vector of a circuit C is orthogonal to
the signed characteristic vector of a cocircuit B:

∑

e∈E

−→χ B(e)
−→χ C(e) = 0.

Proof. Given a cocircuit K with positive elements ω+(U) and negative elements
ω−(U), the inner product

∑
e∈E
−→χK(e)−→χ C(e) is the number of edges of the

circuit C going from U to V \ U in its circuit-orientation, minus the number of
edges going from V \ U to U , and this is equal to zero. (In the simple closed
walk that follows the edges of the circuit, for each edge followed in the direction
from U to V \ U there is a corresponding edge followed in the reverse direction
from V \ U to U .)

2.3 The incidence matrix of an oriented graph

We suppose still that we are given an orientation ω of the graph G = (V,E).

Definition 3. The incidence matrix of an oriented graph Gω is the matrix
D = (dv,e) ∈ {0,±1}

V×E whose (v, e)-entry is defined by

dv,e =





+1 if e is directed out of v by ω,

−1 if e is directed into v by ω,

0 if e is not incident with v, or e is a loop on v.

A loop e corresponds to a zero column of D indexed by e (the fact that
under any orientation the loop e is both going out of and going into v implies
any flow along this edge is self-cancelling); each column of D indexed by an
ordinary edge or bridge contains one entry +1, one entry −1, and remaining
entries all 0.

The row of D indexed by u is equal to −→χ ω+({u})∪ω−({u}) (regarded as a row
vector). If G is connected then if we delete any row of D the remaining rows
form a basis for the signed characteristic vectors of cutsets. This is because

−→χ ω+(U)∪ω−(U) =
∑

u∈U

−→χ ω+({u})∪ω−({u}),

and we may choose U to not contain the vertex whose row has been deleted.
More generally, for any graph G there are r(G) rows of D spanning signed
characteristic vectors of cutsets, which can be obtained by deleting, for each
component of G, one row indexed by a vertex in the component.

Let A be an additive Abelian group (for us A will either be Z or finite).
Scalar multiples of a {0,±1}-vector by an element of A are defined by using the
identities 0a = 0, 1a = a and (−1)a = −a for each a ∈ A. The Abelian group A
is a Z-module, with the action of Z defined inductively by ta = (t− 1)a+ a for
integer t > 0 and ta = −|t|a (inverse of |t|a in A) for integer t < 0.

The set of vectors with entries in A indexed by E is denoted by AE , and
likewise AV those vectors with entries indexed by V . We shall think of elements
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of AE interchangeably as elements of the additive group formed by taking the
|E|-fold direct sum of A with itself, as vectors indexed by E, or as functions
φ : E → A.

The incidence matrix defines a homomorphism D : AE → AV between
additive groups, and its transpose likewise a homomorphism DT : AV → AE .
For each φ : E → A,

(Dφ)(v) =
∑

e=uv

u
ω
←−v

φ(e)−
∑

e=uv

u
ω
−→v

φ(e).

The map D : AE → AV is called the boundary, assigning the net flow to each
vertex from the given mapping φ : E → A.

For κ : V → A and edge e = uv,

(DTκ)(e) =

{
κ(v)− κ(u) if u

ω
←− v

κ(u)− κ(v) if u
ω
−→ v.

By the first isomorphism theorem for groups we have imD ∼= AE/ kerD and
imDT ∼= AV / kerDT .

Proposition 4. Let G be a graph with connected components on vertex sets
V1, . . . , Vc(G).

(i) The incidence mapping D : AE → AV has image

imD = {κ : V → A;
∑

v∈Vi

κ(v) = 0, for each 1 ≤ i ≤ c(G)} ∼= Ar(G).

(ii) The transpose DT : AV → AE has kernel

kerDT = {κ : V → A; κ constant on Vi, for each 1 ≤ i ≤ c(G)} ∼= Ac(G).

Proof. (i) Given φ : E → A we have
∑

v∈Vi

(Dφ)(v) =
∑

v∈Vi

∑

e∈E

dv,eφ(e)

=
∑

e∈E

φ(e)
∑

v∈Vi

dv,e

= 0,

the last line since the entries {dv,e : v ∈ Vi} in the column ce of D are either all
zero (when e is not an edge in the component on Vi), or contain precisely +1
and −1 as non-zero elements.

Conversely, suppose that κ : V → A is such that
∑

v∈Vi
κ(v) = 0 for each

1 ≤ i ≤ c(G). For given i, choose any u ∈ Vi. Then, letting κi denote the
restriction of κ to Vi,

κi =
∑

v∈Vi

κ(v)δv =
∑

v∈Vi\{u}

κ(v)(δv − δu)
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where δv is defined by δv(w) = 1 is w = v and δv(w) = 0 otherwise. Since
G[Vi] is connected, for each v ∈ Vi there is a path from u to v, say u =
v0, e1, v1, . . . , vℓ−1, eℓ, vℓ = v and

δv − δu = (δvℓ − δvℓ−1
) + · · ·+ (δv1 − δv0) = D(±δeℓ) + · · ·+D(±δe1),

where δe(f) = 1 if e = f and 0 otherwise, and the signs are chosen according to
whether the directed path from u to v follows the orientation ω or goes against
it. Hence δv − δu ∈ imD for each v ∈ Vi, whence κi ∈ imD also. This implies
finally that κ itself belongs to imD.

(ii) Suppose that κ : V → A is such that DTκ = 0. For an edge e = uv

with orientation u
ω
←− v, (DTκ)(e) = κ(v)−κ(u) = 0, so that κ takes the same

value on the endpoints of any edge. If u and w are in the same component of
G then there is a walk starting at u and finishing at w and so κ(u) = κ(w).

Conversely, if κ is constant on every component then DTκ = 0.

The subgroups kerDT and imD of AV are of less interest from the point of
view of their relationship to the combinatorial properties of the graph G than
the subgroups kerD and imDT of AE . From Proposition 4 we know that as
additive groups kerD ∼= An(G) and imDT ∼= Ar(G). The combinatorial interest
comes from the fact that there are generating sets for these groups associated
with circuits and cocircuits of G, and that further structural properties of kerD
and imDT (namely properties of the intersections kerD ∩ BE and imD ∩ BE

where B ⊂ A) correspond to combinatorial features of the graph. We shall be
concerned in particular with the case B = A \ {0}, and when A = R also with
the case B = Z.

2.4 A-flows and A-tensions

From now on we assume that A is a commutative ring and we consider AE and
its subgroups kerD and imDT as modules over A.

When A = Z we take ordinary integer multiplication. When A is finite,
by the classification theorem for finite Abelian groups A takes the form Zk1

⊕
Zk2
⊕ · · · ⊕ Zkr

, where 2 ≤ k1 | k2 | · · · | kr (the notation a | b meaning
that a divides b), where kr is the least common multiple of the orders of the
elements of A. Componentwise multiplication then endows A with the structure
of a commutative ring R ∼= Zk1

⊕ Zk2
⊕ · · · ⊕ Zkr

. Note however that if A is
the r-fold direct sum of Zp for prime p then there is another natural choice of
multiplication, namely that which makes A the finite field Fpr .

Let us start by defining flows1 on a graph in what is the usual way, by

1In other sources what we call a “nowhere-zero flow” is often just called a “flow”, while what

we have chosen to call a “flow” is called a “circulation”. Compare too a “proper colouring”

of vertices if a graph, which is conventionally just called a “colouring”, while an arbitrary

assignment of colours to vertices is given some other name or “colouring” is qualified by a

parenthetical “not necessarily proper”.
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stipulating that the Kirchhoff condition holds at each vertex. We shall then
derive various other equivalent definitions.

Definition 5. An A-flow of G is a mapping φ : E → A such that

∑

e∈ω+({v})

φ(e)−
∑

e∈ω−({v})

φ(e) = 0 for each v ∈ V .

A nowhere-zero A-flow is an A-flow φ : E → A with the additional property that
φ(e) 6= 0 for every e ∈ E.

In other words, an A-flow φ as a vector is an element of kerD, since the
signed characteristic vectors −→χ ω+({v})∪ω−({v}) are the rows of D.

For any U ⊆ V we have

∑

u∈U

−→χ ω+({u})∪ω−({u}) =
−→χ ω+(U)∪ω−(U),

since when e = uv ∈ E has both u ∈ U and v ∈ U we have e ∈ ω+({u}) and e ∈
ω−({v}), or vice versa, so that −→χ ω+({u})∪ω−({u})(e)+

−→χ ω+({v})∪ω−({v})(e) = 0.
For any U ⊆ V we have

∑

u∈U




∑

e∈ω+({u})

φ(e)−
∑

e∈ω−({u})

φ(e)




=
∑

e∈ω+(U)

φ(e)−
∑

e∈ω−(U)

φ(e)

since when e = uv ∈ E has both u ∈ U and v ∈ U we have e ∈ ω+({u}) and
e ∈ ω−({v}) so that cancellation of φ(e) with −φ(e) occurs for the edge e.

Hence it is equivalent to define an A-flow as a mapping φ : E → A such that

∑

e∈B+

φ(e) −
∑

e∈B−

φ(e) = 0 for every cocircuit B of G.

Introduce a bilinear form 〈 , 〉 on AE by setting

〈φ, ψ〉 =
∑

e∈E

φ(e)ψ(e).

In this notation, Proposition 2 says that 〈−→χ B ,
−→χ C〉 = 0 for each signed bond B

and signed circuit C.
Since the signed characteristic vectors−→χ Bv

of the signed bonds Bv = ω+(v)∪
ω−(v) span the characteristic vectors−→χ B of all bonds B, it is equivalent to define
φ to be an A-flow if and only if

〈φ,−→χ B〉 = 0 for each signed bond B.
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Since signed characteristic vectors of bonds are orthogonal to signed charac-
teristic vectors of circuits, φ is an A-flow of G if

φ =
∑

C∈C

aC
−→χ C for some aC ∈ A indexed by C ∈ C.

The converse is immediate when A is finite or a field: in the first case by counting
(we know that kerD ∼= An(G) and there are n(G) linearly independent signed
characteristic vectors −→χ C) and in the second case by orthogonal decomposition
of vector spaces. When A = Z the fact that all flows take the form φ =∑

C∈C aC
−→χ C for aC ∈ Z amounts to the fact that the signed characteristic

vectors −→χ C form an integral basis for kerD as a lattice in R
E .

Let B and C denote respectively the set of signed bonds and signed circuits
of the oriented graph Gω on edge set E. The set of A-flows of G is given by

ZA = {
∑

C∈C

aC
−→χ C | aC ∈ A}.

A graph G has a nowhere-zero k-flow if there is a flow φ ∈ ZZ such that
0 < |φ(e)| < k for all e ∈ E, and a nowhere-zero A-flow if there is a flow φ ∈ ZA

such that φ(e) 6= 0 for all e ∈ E.
The row space of the incidence matrix of Gω is spanned by the signed char-

acteristic vectors of cocircuits of G. The dual notion to flows is that of tensions
(also known as coflows), which are defined as elements of imDT :

Definition 6. Let B denote the set of signed bonds of an oriented graph Gω on
edge set E.

The set of A-tensions is defined by

KA = {
∑

B∈B

aB
−→χ B | aB ∈ A}.

By Proposition 2 the signed characteristic vectors of circuits and cocircuits
are orthogonal (as vectors over Z). Once multiplication is defined making A
into a ring, this extends to the following key relationship between flows and
tensions:

Theorem 7. Suppose A is a commutative ring. If φ is an A-flow of a graph G
and θ is an A-tension of G then φ and θ are orthogonal as vectors over A:

∑

e∈E

φ(e)θ(e) = 0.

An A-flow or A-tension whose value on each edge of G belongs to B ⊆ A
is called a B-flow or B-tension respectively. In the next section we shall be
particularly interested in the case B = A \ 0.

Proposition 8. A vector is a Z2-flow if and only if it is the characteristic
function of an Eulerian subgraph of G and is a Z2-tension if and only if its is
the characteristic vector of a cutset of G.
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When working overZ2 the signed characteristic functions of signed (co)circuits
become characteristic functions of (co)circuits. The set of Z2-flows is a binary
vector space called the cycle space of G, comprising characteristic vectors of
Eulerian subgraphs of G, and the set of Z2-tensions is called the cocycle space
of G, comprising characteristic vectors of cutsets of G.

Question 5

(i) To what does an integer 2-flow of G correspond? When does G has a nowhere-zero
2-flow?

(ii) Dually, when does G have a nowhere-zero 2-tension?

(iii) Is it true that G has a nowhere-zero 2-flow if and only if G has a nowhere-zero
Z2-flow? And dually, what is the analogous statement for nowhere-zero 2-tensions
and nowhere-zero Z2-tensions?

3 Tensions and colourings

An A-potential of G is a mapping κ : V → A and can be thought of as a (not
necessarily proper) vertex colouring of G with colours the elements of A. Given
an orientation ω of G, the mapping DTκ is called the potential difference or
coboundary of κ.

We identify colourings of the vertices of G, where the colours are taken in
A, with the corresponding A-potential of G. An A-tension of G corresponds
to |A|c(G) different A-colourings of G: to each θ ∈ KA corresponds |A|c(G)

colourings κ : V → A with DTκ = θ. This relationship of tensions to vertex
colourings is what underlies the duality between colourings and flows, as we
shall see.

For a proper vertex A-colouring the corresponding A-tension is nowhere-
zero. This is a basic observation linking flows and colourings and leads to the
following:

Proposition 9. Let G be a graph and let A be an Abelian group of order k ≥ 2.
Then χ(G) ≤ k if and only G admits a nowhere-zero A-tension.

Question 6

(i) Prove Proposition 9.

(ii) Explain why a nowhere-zero A-tension of G = (V,E) remains a nowhere-zero
A-tension of G\e, where e is any edge of G.

(iii) Dually, show that if φ is a nowhere-zero A-flow of G then, with no change in its
values on E \ {e}, it is also a nowhere-zero A-flow of G/e.
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Although flows and tensions are defined relative to an orientation of G, the
structure of ZA and KA (in particular, their size) is independent of the choice
of orientation. Given an A-flow φ under orientation ω, by replacing φ(e) by
−φ(e) for each edge e on which ω and ω differ we obtain an A-flow of G under
orientation ω′. A similar observation can be made for A-tensions.

The support of φ ∈ CA is defined by supp(φ) = {e ∈ E : φ(e) 6= 0}. A
subset S ⊆ E is a minimal support if S = supp(φ) for some flow φ and the
only flow whose support is properly contained in S is the zero flow. The set
of A-flows with a given minimal support (together with the zero flow) form a
one-dimensional space of flows, namely of the form a−→χ C for some a ∈ A and
circuit C. A primitive A-flow is a flow φ with minimal support and for which
each φ(e) is 0, 1 or −1. In other words, φ is equal to ±−→χ C for some circuit C.
A Z-flow π conforms to a Z-flow φ if supp(π) ⊆ supp(φ) and π(e)φ(e) > 0 for
e ∈ supp(π).

Question 7

(i) Explain why for a given Z-flow φ there is a primitive Z-flow π which conforms to
φ. Show that any Z-flow φ is the sum of integer multiples of primitive Z-flows,
each of which conforms to φ.

(iii) Prove that if φ is a nowhere-zero Zk-flow then there is a nowhere-zero Z-flow ψ
for which ψ(e) ≡ φ(e) (mod k) and −k < ψ(e) < k.

(iv) Deduce that if G has a nowhere-zero Zk-flow then it has a nowhere-zero Zk+1-flow.

[Insert here some build-up to the following “equivalence theorem”.]

Theorem 10. Let G be a graph with an orientation of its edges. For every
k ≥ 2, the following conditions are equivalent:

(i) There exists a nowhere-zero Zk-flow in G.

(ii) For any Abelian group A of order k, there exists a nowhere-zero A-flow in
G.

(iii) There exists a nowhere-zero k-flow in G.

Why is the notion of a nowhere-zero Z-flow important? Such a question is
always difficult to answer, but let us at least try.

4 4CC

The Four Colour Conjecture (4CC for short) – people like it so much that they
persist in calling it a conjecture even so long after it has become a theorem! – is
one of the problems which have shaped graph theory into the form we know it
today. And the definition of a nowhere-zero Z-flow allows us to view colouring
of planar graphs from a new perspective.
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Let G = (V,E) be a plane graph with set of faces F(G), and G∗ = (V ∗, E∗)
its dual. Recall from Chapter ?? that we can identify F(G) with V ∗ and E∗

with E. Suppose further that ω is an orientation of G and that ω∗ is the dual
orientation of G∗.

Let κ : F(G) → {1, ..., k} be an arbitrary mapping. This is the subject of
4CC: we want to find such a mapping κ where neighbouring faces get different
values (in which case we shall call κ a colouring of the faces of G) while taking
the value k to be as small as possible. You know that this is the same thing as
asking for the chromatic number of the dual graph G∗. Here we shall need the
oriented version of this concept.

Given a mapping κ : F(G) → {1, ..., k}, the mapping D∗Tκ : E∗ →

{0,±1, ...,±k} is defined by (D∗Tκ)(XY ) = κ(Y ) − κ(X), when X
ω∗

−→ Y .
By duality, the mapping D∗Tκ can be identified with the mapping DTκ once E
has been identified with E∗, i.e., DTκ(e) = D∗Tκ(e∗).

We have then the following:

Theorem 11. For any plane graph G the following statements are equivalent:

(i) κ is a colouring of the faces of G by k colors;

(ii) κ is a colouring of the vertices of the dual graph G∗ by k colors;

(iii) DTκ is a nowhere-zero Z-flow of G which only uses values in {±1,±2, ...,±(k−
1)}.

The equivalence of (i) and (ii) follows from the definitions. Assume (ii).
Let κ : F(G) → {1, 2, . . . , k} be a colouring of the faces of G (vertices of G∗).
To prove (iii) it suffices to consider an arbitrary vertex x of G and to prove
that

∑
x∈e∈ED

Tκ(e) = 0. However
∑

x∈e∈E D
Tκ(e) =

∑
x

ω
−→y

(κ(y)− κ(x)) +∑
x

ω
←−y

(κ(x)− κ(y)).

Let X1, ..., Xt be all the faces which have x on their boundary, listed in
clockwise order. By duality the previous sum is

∑
Xi

ω∗

−→Xi+1

(κ(Xi+1)−κ(Xi))+
∑

Xi
ω∗

←−Xi+1

(κ(Xi)− κ(Xi+1)) = 0. Thus DTκ is an nowhere-zero Z-flow.

Conversely, let φ : E → Z be a nowhere-zero Z-flow taking values in
{±1, . . . ,±(k − 1)}. Fix a face X0 and define κ(X0) = 1. Extend the mapping
κ to all faces X as follows: if κ(X) is not yet defined, while κ(Y ) is defined,

and X
ω∗

−→ Y , then we put κ(X) = κ(Y ) − φ(e), where e is the edge of G
corresponding to XY (and with dual orientation). Similarly if κ(X) is not yet

defined, while κ(Y ) is defined, and X
ω∗

←− Y then we put κ(X) = κ(Y ) + φ(e),
where e is again the edge of G corresponding to XY in G∗. This definition
is correct (of course, this is where we use that φ is a flow) and as φ was a
nowhere-zero Z-flow we obtain a proper colouring of G∗. Of course some of the
colours may be negative numbers. This may be corrected by starting not with
κ(X0) = 1 but with a sufficiently large positive integer.

12



Question 8

Why is the mapping κ correctly defined? Why is its image contained in {1, . . . , k}?

Corollary 12. Every planar graph is 4-colourable if and only if every planar
graph has a nowhere-zero 4-flow.

This is part of the duality between colouring and flows where we have a one-
to-one correspondence (colourings of a planar graph, flows of its dual). But this
does not restrict us (in the same way as is the case for duality in Linear Pro-
gramming) to using these concepts and problems for graphs in general. And this
leads (as we would like to demonstrate) to a very fruitful area of contemporary
combinatorics.

One more question: Why do we care about other formulations of 4CC seeing
that the problem has long been solved? Some may find a reason lies in the fact
that all known proofs of 4CC still do not have a satisfactory air about them; see
[2, 16, 19, 15]. But another reason (and we think it is a more important one) is
that the relevance of this problem is so vast that just to have a new (let us say
essentially new) reformulation of 4CC is welcome and studied intensively. New
equivalences are a rare article. See [9] and [7] for spectacular additions to the
list.

5 Duality of bases for A-tensions and A-flows

For a connected graph we have seen the signed characteristic vectors of cocircuits
are spanned by the linearly independent set of vectors {−→χ ω+({u})∪ω−({u}) : u ∈
V \ {v}}, where v is an arbitrary vertex.

A pair of bases, one for cocircuits and the other for circuits, can be defined
relative to a fixed spanning tree of the graph. These bases are, in a sense we
shall make precise shortly, dual to each other.

Proposition 13. Let G be a connected graph, D its incidence matrix (for some
orientation of G), and T a spanning tree of G.

The signed characteristic vectors of the circuits {CT,e : e ∈ E \ T } form
a basis for the set of A-flows of G. The signed characteristic vectors of the
cocircuits {KT,e : e ∈ E} form a basis for the space of A-tensions of G.

Proof. A given edge e ∈ E \ T belongs to CT,e but no other cycle CT,f for
f 6= e. Hence the signed characteristic vectors {−→χ CT,e

: e ∈ E \ T } are linearly
independent, and form a basis since there are |E \ T | = n(G) of them.

Likewise, a given edge e ∈ T belongs to KT,e but to no other KT,f for
f 6= e, so the |T | = r(G) signed indicator vectors of these cocircuits are linearly
independent.

We now come to an abstract expression of the fact that we have already
encountered that A-tensions of a planar graph correspond to A-flows of its dual:
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Proposition 14. Let G be a connected plane graph with orientation ω and G∗

its dual graph with dual orientation ω∗. Let D denote the incidence matrix of
Gω and D∗ the incidence matrix of (G∗)ω

∗

. Then D∗DT = O. Also, ker(D∗) =
im(DT ) and im((D∗)T ) = ker(D).

Proof. Given a vertex v ∈ V and face X incident with v, there are exactly two
edges e, f belonging to X and with v as an endpoint. Then

(D∗DT )X,v = (D∗)X,e(D)v,e + (D∗)X,f (D)v,f . (1)

Note that reversing the orientation of edge e does not change the value of
(D∗)X,e(D)v,e since both signs are flipped. Likwise for reversing the orientation
of e. Taking the orientation that directs e into v and f out of v (for example), we
calculate that (1) is equal to (+1)(+1) + (+1)(−1) = 0. Hence D∗DT = O, so
that im(D∗) is orthogonal to im(DT ). Since D has rank r(G) and D∗ has rank
r(G∗) = n(G) it follows that im((D∗)T ) = ker(D) and ker(D∗) = im(DT ).

Thus we have it formalized in stone what we already by now know: A-
tensions of G are precisely A-flows of G∗. Moreover A-tensions of G with mini-
mal support are A-flows of G∗ with minimal support. In particular, circuits of
G∗ are cocircuits of G, and cocircuits of G∗ are circuits of G. We learned in
Chapter ?? that this is a defining property of planar graphs, that the dual of
the cycle matroid of G is also a graphic matroid, namely the cycle matroid of
the planar dual graph G∗ (Theorem ??).

Since faces of G correspond to vertices of G∗, another natural basis for
circuits of a connected plane graph G consists of the characteristic vectors of
all but one of the face boundaries (say all but the outer face). This corresponds
to the cocircuit basis of G∗ obtained by taking the characteristic vectors of the
edges incident with a common vertex, for all but one vertex of G∗.

Call a graph G∗ the abstract dual of a graph G if E(G) = E(G∗) and the
cocircuits of G∗ are precisely the circuits of G. This is to say that the cutset
space of G∗ is the cycle space of G: the cycle matroids of G and G∗ are dual.
We have seen that a connected planar graph has an abstract dual, equal to its
geometric dual when it is embedded in the plane. This is a defining property of
planar graphs:

Theorem 15. (Whitney, 1933) A graph is planar if and only if it has an abstract
dual.

For a proof see for example [6, ch. 4].

6 Examples of nowhere-zero flows

We saw earlier in Proposition 8 that if φ is a Z2-flow of a graph G then the
support of φ (the set of edges where it is non-zero) is an edge-disjoint union of
circuits. The reader is invited to deduce the following corollary:
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Proposition 16. The faces of a plane graph can be properly coloured with two
colours if and only if all the vertices have even degree.

Nowhere-zero Z3-flows are in general difficult customers (we shall later en-
counter a longstanding conjecture of Tutte concerning them), but by restricting
attention to 3-regular graphs things become easier:

Proposition 17. A cubic graph G has a nowhere-zero Z3-flow if and only if it
is bipartite.

Proof. Given a nowhere-zero Z3-flow of G, choose the orientation of G so that
the value on each edge is +1. Then in this orientation every vertex is either
a source or sink and this yields a proper vertex 2-colouring of G. Conversely,
if G has a proper 2-colouring κ with colours 0, 1 ∈ Z3 then, directing vertices
coloured 0 towards vertices coloured 1, the potential difference δκ is equal to 1
everywhere and so is not only a nowhere-zero Z3-tension but also a nowhere-zero
Z3-flow, since G is cubic.

When translated to planar graphs this gives a theorem of Heawood from
1890:

Proposition 18. A plane triangulation G has a proper vertex 3-colouring if
and only if it has a proper face 2-colouring (equivalently, G is Eulerian).

Question 9

Prove Proposition 18.

Thus we have found examples of graphs with a nowhere-zero 3-flow. What
about a nowhere-zero 4-flow? Let us try to give some examples. You have
probably heard of this one:

Proposition 19. A simple cubic planar graph has a edge 3-colouring if and
only if its faces can be properly coloured with four colours.

(A graph G is said to be edge k-colourable if we can colour the edges of G
with k colours such that any two incident edges have different colours.)

This is Tait’s theorem (from 1880)[18] which was isolated in order to give
one of the first proofs of 4CC. It also led to study of Hamiltonian graphs and to
the Petersen graph. This text wouldn’t be complete without its picture.

The same argument that Tait used to prove Proposition 19 can be generalized
to non-planar graphs:

Proposition 20.

A cubic graph G has a nowhere-zero 4-flow if and only if it is has a proper edge
3-colouring.
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By Theorem 10 a graph has a nowhere-zero 4-flow if and only if it has a
nowhere-zero Z2×Z2-flow. Let the non-zero elements of Z2×Z2 be a, b, c. We
have a + b + c = 0 and a + a = b + b = c + c = 0. From this it is easy to see
that a mapping f : E(G)→ Z2 ×Z2 is a nowhere-zero Z2 × Z2-flow if and only
if it is a proper edge 3-colouring using the colours a, b, c.

Question 10 Using the equivalence of Proposition 20, show that the Petersen graph
does not have a nowhere-zero 4-flow. (Hint: consider edges of a fixed colour in a putative
edge 3-colouring, at least one of which must occur on the outer 5-cycle in Figure 2. What
does this imply about the number of occurrences of this colour on the inner 5-cycle?)

The Petersen graph does however have nowhere-zero 5-flows, as shown in
Figure 3.

The following is an alternative characterization of graphs with a nowhere-
zero 4-flow:

Proposition 21. A graph G = (V,E) has a nowhere-zero 4-flow if and only if
E = E1 ∪ E2 and each of the graphs (V,E1) and (V,E2) is Eulerian.

By Theorem 10 has a nowhere-zero 4-flow if and only if it has a nowhere-zero
Z2×Z2-flow φ. Write φ = (φ1, φ2) and observe that the φi’s are Z2-flows which
are nowhere-zero Z2-flows on the support Ei of φi. However, as we observed at
the beginning of this section, this happens if and only if the subgraph on edge
set Ei has all vertex degrees even. Moreover φ is a nowhere-zero Z2 × Z2-flow
if and only if E = E1 ∪ E2.

Proposition 18 gives a nowhere-zero Z2-flow condition for a plane triangu-
lation to have a proper 3-colouring of its vertices (a nowhere-zero Z3-tension).
Underlying this is the dual version of Proposition 17.

Using Proposition 21 and tension-flow duality, a planar graph has a proper
4-colouring of its vertices if and only if its dual is the union of two if its Eulerian
subgraphs. This criterion for a graph to have a nowhere-zero 4-flow emerges
by using the fact that a Z2 × Z2-flow is supported in each component on an
Eulerian subgraph. If we had considered nowhere-zero Z4-flows rather than
Z2 × Z2-flows then what criterion would we obtain instead? For a cubic graph
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Figure 3: The Petersen graph (in two of its guises) with on the left a nowhere-
zero 5-flow (also a nowhere-zero Z5-flow) and on the right a nowhere-zero Z5-
flow.

we would find a perfect matching (edges receiving the value 2) together with
a collection of oriented circuits (edges with value ±1), each of which has the
property that relative to the circuit orientation the values assigned to its edges
alternate between 1 and −1 (i.e., the circuit is even and edge 2-coloured). This
is effectively Proposition 20, which gives an edge 3-colouring equivalent to the
existence of a nowhere-zero 4-flow of a cubic graph.

Question 11

Characterize graphs G that have a nowhere-zero Z
r

2-flow in terms of Eulerian subgraphs.
What is the dual version: when does a graph have a nowhere-zero Z

r

2-tension?

An Eulerian orientation of a graph G is an orientation of G with the property
that the indegree at a vertex is equal to its outdegree. Clearly G must be
Eulerian, and by decomposing G into an edge-disjoint union of cycles there
exist Eulerian orientations of G in this case.

Proposition 22. Let G be a 4-regular graph. Then there is a one-to-one cor-
respondence between nowhere-zero Z3-flows of G and Eulerian orientations of
G.

Proof. For a given nowhere-zero Z3-flow of G, arrange the orientation σ of
G so that each flow value is equal to 1. Then the only way to obtain net
flow zero at a vertex is to have two edges directed out and two edges directed
in. In other words, the orientation σ is Eulerian. (Put alternatively, keep the
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fixed orientation σ of G and for a given nowhere-zero Z3-flow of G preserve the
orientation when flow value is +1 and reverse the orientation when flow value
is −1: the result is an Eulerian orientation, uniquely defined by the flow values
and σ.)

In Chapter ?? we shall return to the topic of Eulerian orientations. Nowhere-
zero Z3-flows of a graph G more generally correspond to orientations of G in
which every vertex has indegree congruent to outdegree modulo 3. See Chap-
ter ?? for Tutte’s still open conjecture as to which graphs have a nowhere-zero
Z3-flow.

We move on now to nowhere-zero Z2 × Z2-flows, whose significance in the
history of attempts at proving the Four Colour Theorem we shall briefly de-
scribe. First a lemma which is not only of immediate use, but also to the
problem of counting nowhere-zero A-flows that we consider in the next section.
Let G = (V,E) be a connected graph and T a spanning tree of G. Let A be an
Abelian group and φ0 : E \ T → A. Then there is a unique A-flow φ of G such
that φ(e) = φ0(e) for e ∈ E \ T .

Proof. The vector

φ =
∑

e∈E\T

φ0(e)
−→χ CT,e

as a linear combination of basis vectors for CA is an A-flow and since e 6∈ CT,f

when f 6= e the value of φ at e is given by φ(e) = φ0(e). Conversely, if an
A-flow takes value φ0(e) at each e ∈ E \T then it is equal to φ as defined above,
since any vector in CA has a unique expression as a linear combination of basis
vectors.

Theorem 23. A graph with a Hamiltonian circuit (a circuit traversing all ver-
tices of G) has a nowhere-zero Z2 × Z2-flow.

Proof. Let H be a Hamitonian circuit of G and T a spanning tree (a path)
obtained from H by removing one of its edges. Let φ1 be a Z2-flow of G with
support containing E \ T , which exists by Lemma 6 (taking φ0(e) = 1 for
e ∈ E \ T ). Let φ2 be the Z2-flow with support the circuit H . Then (φ1, φ2) is
a nowhere-zero Z2 × Z2-flow of G.

In the early years of trying to prove 4CC, Tait conjectured in 1884 that
every 3-connected planar graph was Hamiltonian (an example of 2-connected
planar non-Hamiltonian was known, consisting of 20 vertices and 12 pentagonal
faces). Tutte in 1956 gave a counterexample with 46 vertices. (See e.g. [17] for
diagrams and a succinct historical account of variations on 4CC.) See also the
Herschel graph depicted in Figure XX in Chapter ??.

We have found many graphs that have a nowhere-zero A-flow when |A| ≤
4. In the dual problem, no matter how large we choose |A| there will always
be graphs that do not have a nowhere-zero A-tension, namely those graphs
with chromatic number exceeding |A|. The simplest obstruction to a proper
k-colouring is an induced clique on k + 1 vertices. Is there an obstruction to
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a nowhere-zero A-flow when |A| ≥ 5? Certainly not cliques, as we shall see
shortly. But which graphs do not have a nowhere-zero Z5-flow? Tutte (again!)
had thoughts upon this matter, as we shall see in Chapter ??, and no one has
yet resolved the question. But let us keep to simple things for the moment
and see off the complete graphs as being quite tame creatures when it comes to
nowhere-zero flows.

The complete graph K2 is a bridge and therefore does not have a nowhere-
zero flow. K3 is Eulerian and so has a nowhere-zero Z2-flow. K4 has a proper
edge 3-colouring and hence has a nowhere-zero Z2×Z2-flow. On the other hand,
K4 does not have a nowhere-zero Z3-flow since it is a non-bipartite cubic graph
and does not have a nowhere-zero Z2-flow since it is not Eulerian.

Proposition 24. Kn has a nowhere-zero Z2-flow when n ≥ 3 is odd. Kn has
a nowhere-zero Z3-flow when n ≥ 6 is even.

Proof. The case of odd n follows since Kn is Eulerian. For n = 6 we have K6 is
the edge-disjoint union of two copies of K3 and one copy of K3,3. Each of these
graphs has a nowhere-zero Z3-flow(K3,3 since it is a cubic biparitite graph). The
union of these flows makes a nowhere-zero Z3-flow of K6.

Consider now even n > 6 and assume the assertion of the theorem holds
for n − 2. The graph Kn is the edge-disjoint union of Kn−2 and K+

2,n, where
the latter is K2,n with an edge e added between the vertices of degree n. By
hypothesis Kn−2 has a nowhere-zero Z3-flow. To make a nowhere-zero Z3-flow
of K+

2,n take the sum of nowhere-zero Z3 flows on each of the n triangles: this
is non-zero on all but possibly the edge e. If necessary, make the value on e
non-zero by adding in the flow again from a single (aribitrary) triangle of edges
e, e1, e2: this makes the value on e non-zero, and reverses the sign of the flow
on e1 and e2. We have thus constructed a nowhere-zero Z3-flow of Kn.

7 The flow polynomial

We turn to the problem of counting nowhere-zero A-flows. (The dual problem
of counting nowhere-zero A-tensions is the subject of the next chapter.)

Theorem 25. (Tutte, [20].) Let A be a finite Abelian group of order k and
G a graph with an orientation of its edges. Then the number of nowhere-zero
A-flows of G is

F (G; k) =
∑

F⊆E

(−1)|E|−|F |kn(F ).

Proof. By Lemma 6 the number of A-flows of any subgraph (V, F ) of G = (V,E)
is equal to k|F |−r(F ), since a maximal spanning forest of (V, F ) has r(F ) edges.
Equivalently, kn(F ) is the number of A-flows of G whose support is contained
in F . The result follows by the inclusion-exclusion principle.

The polynomial F (G; k) is called the flow polynomial of G. Theorem 25
implies that the number of nowhere-zero A-flows depends only on |A|, not on
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the structure of A as a group. In particular, the existence of an A-flow only
depends on |A|, i.e., if A and A′ are Abelian groups with |A| = |A′| then G
has a nowhere-zero A flow if and only if G has a nowhere-zero A′-flow. As a
consequence, the existence of a nowhere-zero A-flow implies the existence of a
nowhere-zero A′-flow when |A′| > |A|. This is because (as Tutte first showed in
1950 – see e.g. [8], [14], [6] for details – and you have already shown in Question
X above) a nowhere-zero k-flow exists if and only if a nowhere-zero Zk-flow
exists, whence if k′ > k then there is a nowhere-zero Zk′ -flow whenever there
is a nowhere-zero Zk-flow. (Thinking of A-flows as duals of A-tensions, it is
obvious that if G has a nowhere-zero A-tension then it has a nowhere-zero A′-
tension, by using the correspondence of nowhere-zero A-tensions with proper
A-colourings.)

Proposition 26. The flow polynomial satisfies

F (G; k) =





F (G/e; k)− F (G\e; k) e ordinary,

0 e a bridge,

(k − 1)F (G\e) e a loop,

1 E = ∅.

Proof. When E = ∅ the subgraph expansion for F (G; k) gives F (G; k) = 1.
When G has a bridge e it does not have a nowhere-zero flow, for {e} is a cut of
G. If e is a loop, on the other hand, then we can freely assign any non-zero value
to it and still have a nowhere-zero flow. When e is ordinary, we have a bijection
between nowhere-zero flows of G\e and flows of G that are zero only at e, and
between nowhere-zero flows of G/e and flows of G that are nowhere-zero except
possibly at e. (This argument also works when e is a bridge, but it needs to be
shown that in this case F (G\e; k) = F (G/e; k), which amounts to showing that
F (G; k) = 0.)

Question 12

Suppose G = (V,E) is a connected graph and A a finite Abelian group of order k.

(i) Given a spanning tree T and θ0 : T → A, prove there is a unique A-tension θ of
G such that θ(e) = θ0(e).

(ii) Deduce that the number of nowhere-zero A-tensions of G is given by

F ∗(G; k) =
∑

F⊆E

(−1)|E|−|F |kr(F ).

(iii) Formulate and prove a deletion-contraction recurrence satisfied by the polynomial
F ∗(G; k).

Kochol [10] shows that the number of nowhere-zero k-flows is also a poly-
nomial in k (not the same as the flow polynomial F (G; k)) - this polynomial
counting integer flows does not satisfy a deletion-contraction recurrence.
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For any finite Abelian group A there are loopless graphs G that do not
have a nowhere-zero A-tension (take G with χ(G) > |A|). The situation for
nowhere-zero A-flows is quite different, where bridges are the only obstruction
to having a nowhere-zero A-flow once |A| is sufficiently large. In fact Seymour
showed that |A| ≥ 6 will do, and it is a famous conjecture of Tutte that in fact
|A| ≥ 5 suffices. Within the class of planar graphs – and as Whitney showed
(see Theorem 15) this class is precisely the set of graphs closed under duality –
4CC tells us that we do have a symmetric situation: if |A| ≥ 4 then any planar
graph has a nowhere-zero A-tension and a nowhere-zero A-flow. It is when we
move out of the class of planar graphs that a fundamental difference between
the dual notions of flows and tensions arises. Of course within the more general
world-view of matroids this asymmetry disappears (there are regular matroids
with arbitrarily large flow number, as well as with arbitrarily large chromatic
number).

But we shall wait until Chapter 8 to take up this story again. First we
shall continue the theme of counting nowhere-zero A-flows and nowhere-zero
A-tensions, for the latter brings us to an historically very important graph
invariant: the chromatic polynomial.

8 Colourings and flows in the ice model

We finish this chapter with a charming illustration of how tensions and flows
feature in models of physical processes. This is to but scratch the surface of an
extensive literature on the appplication of combinatorics to physics – we shall
meet another example in Chapter ??.

Square ice consists of an n×n lattice arrangement of oxygen atoms. Between
any two adjacent O-atoms lies one hydrogen atom, and there are also H-atoms at
the left and right boundaries. The problem is to count all possible configurations
in which evey O-atom is attached to exactly two of its surrounding H-atoms,
forming H2O.

There is a bijection between n×n ice configurations and Eulerian orientations
on the lattice graph of O-atoms, with boundary conditions. Let u and v be two
adjacent O-atoms. Orient the edge u −→ v if the H-atom between u and v is
attached to v. On the left and right boundaries all edges are incoming (each
H-atom on the boundary is attached to an O-atom horizontally). On the top
and bottom boundaries all edges are outgoing. See Figure 4.

In this way we get an Eulerian orientation of the n × n lattice graph with
hanging boundary edges (each missing one endpoint).

The number of ice configurations is the number of Eulerian orientations of
the n×n lattice graph with boundary conditions (incoming edges left and right,
outgoing edges top and bottom). Each O-atom has six possible attachments
to neighbouring H-atoms, corresponding to the six possible orientations at a
vertex of degree 4 with two incoming and two outgoing edges. (This gives the
alternative name of “six-vertex model” for the ice model.)

The n× n lattice graph of O-atoms with directed edges added as described
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Figure 4: A configuration in the 3 × 3 square ice model, and its associated
orientation.

gives an (n+ 1)× (n+ 1) array of square cells, where each O-vertex is incident
with four cells. The cells can be Z3-coloured by the following rule. Colour the
top left corner 0. Suppose a and b are neighbouring cells such that the edge
that separates them has orientation having a to the left and b to the right, and
that a and b have colours c(a) and c(b) respectively. Then c(b) = c(a) + 1. In
other words add one modulo 3 going from left to right across a directed edge.
The boundary colours appear in sequence 0, 1, 2, 0, . . ., with the bottom right
corner coloured 0 like the top left. (The sequence along the top is the mirror
image of that along the bottom, and likewise for left and right boundaries.)

This gives a bijection between n × n ice configurations and proper Z3-
colourings of the (n+1)× (n+1)-array of cells, observing the boundary condi-
tions.

An alternative way to see this 3-colouring procedure is to first add edges
to the n × n lattice graph Ln,n to make it a 4-regular graph as follows. Given
Ln,n on vertex set [n] × [n], add edges between (i, 1) and (1, i) for each i ∈ [n]
and edges between (i, n) and (n, i) for each i ∈ [n]. This yields a 4-regular

planar graph L̃n,n (with loops at the two corners (1, 1) and (n, n)). An Eulerian

orientation of L̃n,n is obtained by the same rule of directing O-atom u towards
O-atom v when v is attached to the H-atom between u and v, the orientation
of edges joining boundary O-atoms being determined by always directing edge
into those vertices on the left or right boundaries. By tension-flow duality, each
nowhere-zero Z3-flow (Eulerian orientation) of L̃n,n corresponds to a nowhere-

zero Z3 tension of the dual graph L̃∗n,n, i.e. to three proper Z3-colourings of the

faces of L̃n,n. Fixing the colour of either of the loop faces to be 0, it is easy to
see that this corresponds to the cell-colouring described above. See Figure 5.

This 3-coloured version of the square ice problem is the starting point for
the proof of the remarkable formula obtained by Zeilberger and Kuperberg in
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Figure 5: Eulerian orientation of 4-regular graph corresponds to a nowhere-zero
Z3-flow, whose dual is a nowhere-zero Z3-tension, from which we get a proper
face 3-colouring.

1996: the number of n× n ice configurations is equal to

(3n− 2)!(3n− 5)! · · · 4!1!

(2n− 1)!(2n− 2)! · · · (n+ 1)!n!
.

See [1, Chapter 10] and [5].
In the general case, an ice model concerns the number of ways of orienting

a 4-regular graph G such that each vertex has 2 incoming edges and 2 outgoing
edges, i.e., an Eulerian orientation of G.

In Proposition 22 we saw that Eulerian orientations of a 4-regular graph
correspond to nowhere-zero Z3-flows of G, so that there are F (G; 3) ice config-
urations on G.

Although finding an Eulerian orientation can be done polynomial time, in
general computing the number of them is #P-complete, as proved by Mihail
and Winkler [13]. In other words, computing F (G; 3) is #P-complete even on
the class of 4-regular graphs. (In Chapter ?? we shall have another look at
the graph parameter counting the number of Eulerian orientations of a not
necessarily 4-regular graph.)

Proposition 27. Let G = (V,E) be a 4-regular graph. Then F (G; 3) ≥
(
3
2

)|V |
.
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Proof. Use induction on the number of vertices of G. The case of a single vertex
with two loops has F (G; 3) = 4 ≥ 3

2 .
For a graph on n vertices, choose one, say v, and partition Eulerian orienta-

tions of G according to which of the six possible configurations is at v. Fix an
Eulerian orientation of G. Let a, b, c, d be the neighbours of v and suppose that
a −→ v, b −→ v, v −→ c, v −→ d.

Define a 2-in 2-out digraph G1 on vertex set V \ {v} as follows. Take the
same edge orientations as G for edges not incident with v, together with directed
edges a −→ c, b −→ d to replace the four edges of G incident with v. Similarly,
define the 2-in 2-out digraph G2 by in a similar way except taking directed edges
a −→ d and b −→ c.

According to the configuration of oriented edges incident with v the resulting
digraphs G1 and G2 have each one of the three types of “transition” at v, as
illustrated in Figure 6 below.

βα

γ

α

γ γ γ

β

α

β

α

β

b b bb b b

Figure 6: Two possible transitions at a vertex for each of the six configurations
of orientations of its four incident edges (given in the top row). Three types of
transition: white (α), black (β) and crossing (γ).

Depending on which of the six possible configurations of directed edges is
at v, the digraphs G1 and G2 are Eulerian orientations of two of three possible
4-regular graphs Gα, Gβ , Gγ , according as the transition type at v is white (α),
black (β) or crossing (γ). See Figure 7 below.
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Figure 7: The three possible types of transition (black, white, crossing) at a
vertex v of a 4-regular graph G. Which transition occurs depends on how the
oriented edges incident with v are “tied together” when eliminating v from G
to obtain either of the two 4-regular graphs G1 or G2.

In Figure 7 notice that the transition type α occurs four times, with all four
possible configurations of orientations of the two edges. A similar observation
holds for the transition types β and γ.

Therefore, by considering the two possible ways to “tie together” two edges
with matching directions in all six configurations of orientations of edges incident
with v, we find that

F (Gα; 3) + F (Gβ ; 3) + F (Gγ ; 3) ≤ 2F (G; 3),

and by induction hypothesis

3 ·

(
3

2

)n−1

≤ 2F (G; 3),

yielding the desired lower bound.

In the square ice model we take G ∼= L̃n,n the n× n grid with edges added
between (i, 1) and (1, i) and edges between (i, n) and (n, i), for each i ∈ [n].

Lieb proved in 1967 that for the square lattice

lim
n→∞

F (L̃n,n; 3)
1

n2 =

(
4

3

) 3
2

≈ 1.5396.

This is quite close to the lower bound of 3
2 given by Proposition 27.

Suppose for a moment that G is the medial graph of a cubic planar graph
H . Then P (G; 3) is the number of proper edge 3-colourings of H , so if we
had a positive lower bound for F ∗(G; 3) rather than F (G; 3) we would have a
quantative version of 4CC: bounding the number of proper edge 3-colourings of
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a cubic planar graph H from below positively would yield a lower bound on the
number of proper face 4-colourings of H (why?). Needless to say such a lower
bound on F (G∗; 3) is not forthcoming.
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