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This article will eventually turn to a very basic question in graph theory. However, we

shall begin with our motivation, which comes from the world of additive number theory.

1 Groups

Let Γ be an abelian group (written additively). For two sets A,B ⊆ Γ we define

A + B = {a + b | a ∈ A and b ∈ B}

and we call such a set a sumset. One of the central problems in additive combinatorics is

understanding the structure of finite sets A for which the sumset A+A is small. Let’s begin

with an easy case where our group is the integers.

Observation 1.1. If A ⊆ Z is finite and nonempty, then |A + A| ≥ 2|A| − 1. Moreover, if

this bound is met with equality, then A is an arithmetic progression.

Proof. Let A = {a1, a2, . . . , an} where a1 < a2 . . . < an. Then we may exhibit 2n−1 distinct

members of the sumset A + A as follows

a1 + a1 < a1 + a2 < . . . a1 + an < a2 + an . . . < an + an.

This gives us the desired bound.

Now we investigate the case where our set A hits this bound with equality. Generalizing

the above procedure, we can construct a list of 2n− 1 distinct members of A+A by starting

with a1 + a1 and moving to an + an by increasing the index of either the left or right term

by one at each stage. If |A+A| = 2n− 1 then we must get the same list of integers however

we do this. Since the kth term in such a list could be either a1 + ak+1 or a2 + ak it follows

that every 1 ≤ k < n must satisfy a2 − a1 = ak+1 − ak. Therefore, A is an arithmetic

progression.

Now we shall turn our attention from the integers to the group Zp = Z/pZ in the case

when p is prime. Here there is a new reason why the set A + A might be small relative to
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A, namely A could be all, or almost all of the group. The following famous theorem asserts

that in this group we either get the same bound we had for the integers, or A + A = Zp.
1

Theorem 1.2 (Cauchy-Davenport). Let p be prime and let A ⊆ Zp be nonempty. Then we

have

|A + A| ≥ min{p, 2|A| − 1}.

There is an also a characterization of the sets A ⊆ Zp for which |A + A| < 2|A| due to

Vosper.2

Theorem 1.3 (Vosper). Let p be prime, let A ⊆ Zp is nonempty, and assume |A+A| < 2|A|.
Then one of the following holds:

1. A is an arithmetic progression.

2. |A + A| ≥ p− 1.

There are similar results which hold in more general contexts, such as the following result

which we do not state precisely. Here we have switched to multiplicative notation for the

group Γ since this is the common convention when working with groups which are permitted

to be nonabelian. So A · A = {a · a′ | a, a′ ∈ A}.

Theorem 1.4 (D.). Let A be a finite generating set of the multiplicative group Γ and assume

1 ∈ A. If |A · A| < 2|A| then one of the following holds

1. Γ has a normal subgroup K so that Γ/K is either cyclic or dihedral.

2. There exists a proper coset K so that Γ \K ⊆ A · A.

In fact, there are very wide sweeping generalizations of these results which concern sets

A for which |A · A| < c|A| for a fixed constant c. There are structure theorems here due to

Green-Ruzsa for abelian groups and due to Breulliard-Green-Tao for arbitrary groups which

yield profound insights into the nature of these groups. We will not pursue this direction,

but shall instead try to take some of the behaviour we see here and prove that similar things

happen without all of the structure of a group.

2 Graphs

Assume now that Γ is a multiplicative group and let A ⊆ Γ. The Cayley Graph Cayley(Γ, A)

is a directed graph with vertex set Γ and an edge (x, y) whenever y ∈ xA. So, in words,

1In fact, this theorem has a more general form which involves sumsets of the form A+B.
2As with Cauchy-Davenport, Vosper’s theorem applies more generally to sets A,B with |A+B| < |A|+|B|.
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there is an edge from x to y if you can get from x to y my multiplying on the right by some

element in A. Let g ∈ Γ and consider the bijection of Γ given by the rule x→ gx. It follows

immediately from our definition that this map sends directed edges to directed edges, so this

gives an automorphism of our digraph. Since there is such an automorphism sending any

vertex to any to any other vertex, every Cayley graph is vertex transitive.

One convenient property of Cayley graphs is that they permit us to analyze questions

about small product sets using graphs. Indeed, for Cayley(Γ, A) the size of A is precisely

the degree of this regular digraph, and the size of the set A · A is precisely the number of

vertices reachable from a given fixed vertex x by taking two (directed) steps. This gives us

hope of following the theme of the previous section in a more general setting of digraphs

instead of Cayley graphs. There are many nice questions in this realm which are unsolved.

Here is one of my favourite.

Conjecture 2.1. Let G be a simple d-regular digraph (all indegrees and outdegrees equal to

d) with no directed cycles of length 1 or 2. Then there exists a vertex x ∈ V (G) so that x

can reach at least 2d vertices by a forward path of length 1 or 2.

If true the above would resolve a very special case of the following very famous unsolved

problem. (Namely the case when G is regular and k = 3).

Conjecture 2.2 (Caccetta-Häggkvist). Let k be a positive integer and let G be a simple

n-vertex digraph. If every vertex in G has outdegree at least n/k, then G has a directed cycle

of length at most k.

As is common in graph theory, digraphs are awfully tricky and undirected graphs behave

better. The following theorem is a related success for undirected graphs. Here the graph Gk

denotes the simple graph with vertex set V (G) and two vertices u, v adjacent in Gk if they

have distance at most k in G.

Theorem 2.3 (D., Thomassé). If G is a simple connected graph of minimum degree d and

diameter at least 3, then the average degree of G3 is at least 7
4
d.

A proof can be found in our paper on the Arxiv.
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