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1. A restaurant cook had the misfortune of losing her engagement ring in a big cauldron of
soup, and the carelessness to lose her wedding ring after it, which also found its way into the
soup. The cook was for some reason not too painstaking in searching for her lost rings and
served up all the soup until the pot was completely empty. The soup was divided among 25
guests, among whom 8 were women. What is the probability that

The possible outcomes Ω for this problem consist of pairs (person, ring), where “person”
ranges over the 25 guests and “ring” ranges over engagement ring and wedding ring, and the
elementary event (person, ring) occurs when the given person gets a ring of given type.

The probability of one of the 252 = 625 elementary events is 1
625 (uniform distribution).

(a) one person got both rings?

The event that one particular person gets both rings occurs with probability
(

1
25

)2
(in-

dependence of events that has engagement ring and has wedding ring in soup) and hence
that one of the 25 people do is

25 ·
(

1

25

)2

=
1

25
.

(Alternative argument: the probability that a person gets the wedding ring given that
he/she gets the engagement ring is 1

25 , and these events are independent.)

(b) no man got a ring?

Probability that a woman gets engagement ring is 8
25 and that a woman gets wedding ring

is 8
25 . Hence the probability that no man got a ring is

8

25
· 8

25
=

64

625
.

(c) two men got a ring each?

There is probability 17
25 that a man gets the engagement ring, and probability 16

25 that a
different man gets the wedding ring. Hence the probability is

17

25

16

25
=

272

625
.

(d) a man got one ring, a woman the other? The probability of this event is the probability
that a man gets the engagement ring and a woman the wedding ring plus the probability
that a man gets the wedding ring and a woman the engagement ring:

17

25
· 8

25
+

8

25
· 17

25
=

272

625
.



2. In this question we assume dice are fair (unbiased), in the sense that each of the six possible
scores of a die are equally likely. Additionally, successive throws of a die are independent, the
outcome of one throw not affecting that of another.

(a) What is the probability that throwing two dice yields an even total score? A multiple
of 3? Space of possible outcomes is [6] × [6] = {(x, y) : 1 ≤ x, y ≤ 6}, the probability of
each elementary event being 1

36 .

The event that there is an even score has probability 1
2 because there are three odd numbers

between one and six and three even numbers between one and size, so the probability their
sum is even must equal the probability that their sum is odd.1

Alternatively, the event there is an even score is given by

{(x, y) ∈ [6]× [6] : x+ y ≡ 0 (mod 2)}

and enumerating all possiblities (1, 1), (1, 3), . . . , (6, 6) gives 18 in all and probability 18
36 =

1
2 .

There are 12 pairs scoring a multiple of 3 (1+2 = 1+2, 1+5 = 2+4 = 3+3 = 4+2 = 5+1,
3 + 6 = 4 + 5 = 5 + 4 = 6 + 3 and 6 + 6), so the probability is 12

36 = 1
3 .

(b) Determine the probability six throws of a die yield a score of three or more at least three
times.

A score of at least three on one die has probablity 4
6 = 2

3 . The probability that exactly i
dice among the six have score three or more is then(

6

i

)(
2

3

)i(1

3

)6−i
.

Summing this over i = 3, 4, 5, 6 gives(
6

3

)(
2

3

)3(1

3

)3

+

(
6

4

)(
2

3

)4(1

3

)2

+

(
6

5

)(
2

3

)5(1

3

)1

+

(
6

6

)(
2

3

)6(1

3

)0

=
656

729
.

1Let (X,Y ) be the pair of random variables giving the scores on the first die and second die. Then,

P(X + Y ≡ 0 mod 2) = P(X ≡ 0 mod 2)P(Y ≡ 0 mod 2) + P(X ≡ 1 mod 2)P(Y ≡ 1 mod 2)

=
1

2
· 1

2
+

1

2
· 1

2

=
1

2
,

where we have used the fact that X and Y are independent.
Similarly,

P(X+Y ≡ 0 mod 3) = P(X ≡ 0 mod 3)P(Y ≡ 0 mod 3) + P(X ≡ 1 mod 3)P(Y ≡ 2 mod 3)) + P(X ≡ 2 mod 3)P(Y ≡ 1 mod 3)

=
1

3
· 1

3
+

1

3
· 1

3
+

1

3
· 1

3

=
1

3
,

since 3, 6 ≡ 0 mod 3, 1, 4 ≡ 1 mod 3 and 2, 5 ≡ 2 mod 3.
How about the probability the sum is a multiple of 4? We have

P(X ≡ 0 mod 4) =
1

6
= P(X ≡ 3 mod 4), P(X ≡ 1 mod 4) =

2

6
= P(X ≡ 2 mod 4)

so the probability we get a score that is a multiple of 4 is

1

6
· 1

6
+

2

6
· 1

6
+

1

6
· 2

6
+

2

6
· 2

6
=

9

36
=

1

4
.

The previous might make you think that the probability of scoring a sum which is a multiple of 5 will be 1
5
.

However, can you see why this probability cannot be 1
5

without performing the calculation?



(c) What is the probability that in three successive throws the scores are strictly increasing?

Let (x, y, z) ∈ [6]×[6]×[6] be the triple of scores observed in three consecutive throws. The
number of triples with x < y < z is equal to

(
6
3

)
(to each such triple (x, y, z) corresponds

a subset {x, y, z} and, conversely, for each subset {x, y, z} ⊆ [6] there is a single way to
put them increasing order).

Hence the probability is (
6

3

)
· 1

63
=

20

216
=

5

54
.

(d) What is the probability that in three successive throws the scores are nondecreasing?

To an outcome x ≤ y ≤ z takes one of the following forms: (a, a, a), (a, a, b), (a, b, b),
(a, b, c), where a < b < c.

The first gives 6 (choose a), the second
(
6
2

)
(choose a and b), the third

(
6
2

)
and the fourth(

6
3

)
. This gives 6 + 15 + 15 + 20 = 56 in all. Hence the probability is

56

216
=

7

27
.

(e) Answer (c) and (d) for k successive throws rather than three, where k ∈ N.

Note that for k > 6 throws it is impossible to have strictly increasing values, so we may
assume k ≤ 6. When k = 6 there is only one outcome in the event, namely xi = i for
i = 1, 2, . . . , 6.

Let (x1, x2, . . . , xk) ∈ [6]k be the k-tuple of scores observed in k consecutive throws.
The number of k-tuples with x1 < x2 < · · · < xk is equal to

(
6
k

)
(to each such k-tuple

(x1, x2, . . . , xk) corresponds a k-subset {x1, x2, . . . , xk} and, conversely, for each subset
{x1, x2, . . . , xk} ⊆ [6] there is a single way to put the elements in increasing order).

Hence the probability is (
6

k

)
· 1

6k
.

(Note that this formula holds for k > 6 as well, since
(
6
k

)
= 0 for k > 6.)

For the second event of non-decreasing scores, again let (x1, x2, . . . , xk) ∈ [6]k be the
k-tuple of scores observed in k consecutive throws.

To a k-tuple (x1, x2, . . . , xk) with x1 ≤ x2 ≤ · · · ≤ xk corresponds a multiset on [6] whose
elements are x1, x2, . . . , xk, and, conversely, given such a multiset, listing the elements in
non-decreasing order yields such a k-tuple.

Hence there are
(
6+k−1
k

)
=
(
5+k
k

)
such k-tuples and the probability that the k successive

scores are non-decreasing is given by (
5 + k

k

)
· 1

6k
.

Check: when k = 1 this is probability 1, corresponding to the fact that a sequence of one
element is vacuously non-decreasing, and when k = 3 this is

(
8
3

)
· 1
63

, as obtained in part
(d).



3. (Birthday Paradox) For this problem we ignore leap years and assume that a person has
his/her birthday among one of the 365 days of the calendar year.

(a) Show that there is more than a 50% chance that in a room containing 23 people there
are two who share a birthday. [Hint: show that the probability that everyone has different
birthdays is less than 1

2 , using a calculator/computer to perform the arithmetic.]

The probability that 23 people have different birthdays is

(
1− 1

365

)(
1− 2

365

)
· · ·
(

1− 22

365

)
=

365

365
· 364

365
· · · 343

365

=

(
1

365

)23

(365 · 364 · 363 · · · 343)

≈ 0.492703

from which the complementary event that some pair of people share a birthday is ≈
0.507297 ≈ 50.7%.

[Remark: the argument that a given pair of people have probability 364
365 of not having the

same birthday, and there are
(
23
2

)
= 253 pairs of people, so the probability that none of

them share a birthday is
(
364
365

)253
is invalid because the events that pairs of people have

different birthdays are not independent. For example, P(x = z|x = y, y = z) = 1 while
P(x = z) 6= 1.]

(b) Use the approximation 1− x ≈ e−x for small x to show that among n people the chance
that two people share a birthday is close to 1− e−n2/730.

The probability that no pair of people share a birthday among n people is given by(
1− 1

365

)(
1− 2

365

)
· · ·
(

1− n− 1

365

)
≈ e−1/365 · e−2/365 · · · e−(n−1)/365

= e−(1+2+···+(n−1))/365

= e−n(n−1)/(2·365)

Hence the probability that some pair of people share a birthday among n people is ap-
proximately

1− e−n(n−1)/730 ≈ e−n2/730.

If n objects are put into d boxes (in the above, a box is a date on the calendar year and
d = 365) then a similar argument gives the probability that at least two out of the n objects
are put in the same box is given approximately by 1− e−n2/2d, provided n/d is small (so as to
apply the approximation e−x ≈ 1− x). In particular, to obtain probability approximately p we
require

1− p ≈ e−n2/2d

from which
ln(1− p) ≈ −n2/2d

2d ln
1

1− p
≈ n2

i.e.

n ≈
√

2 ln
1

1− p
·
√
d.



(Put p = 1
2 and

√
2 ln 2 ≈ 1.177 so n should be around 1.177

√
d which is approximately 22.5 for

d = 365, thereby explaining why we take 23 people in stating the above “Birthday Paradox.”)
Note. The Pigeonhole Principle states that if we take n = d+ 1 then we are guaranteed to

have some pair of objects in the same box, i.e. the probability is 1 that when d+ 1 objects are
put in d boxes there is some pair of objects put in the same box. To get probability p = 1− ε
requires n ≈

√
2 ln 1

ε ·
√
d. For ε = 1

100 this is approximately 9.2
√
d.


