Discrete Mathematics Exercise sheet 4

24 October/ 1 November 2016

- 1. [Bookwork] Let $R \subseteq X \times X$ be a relation on a set X. Define what is means for R to be
 - (a) reflexive,
 - (b) symmetric,
 - (c) anti-symmetric,
 - (d) transitive,
 - (e) an equivalence relation,
 - (f) a partial order,
 - (g) a linear order.

2. The adjacency matrix of a binary relation R on $[n] = \{1, 2, ..., n\}$ is the matrix whose (i, j)-entry is defined for $i, j \in [n]$ by

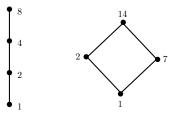
$$a_{i,j} = \begin{cases} 1 & (i,j) \in R\\ 0 & (i,j) \notin R. \end{cases}$$

(See Section 1.5 of Matoušek & Nešetřil, *Invitation to Discrete Mathematics*, for a detailed exposition.)

- (a) How many relations are there on [n] in total? [Hint: an $n \times n$ matrix with entries 0 or 1 defines the adjacency matrix of a relation. Count how many such matrices there are.]
- (b) How many reflexive relations are there on [n]?
- (c) How many symmetric relations are there on [n]?
- (d) How many anti-symmetric relations are there on [n]? [*Hint: for a pair* (i, i) there are two choices (either $(i, i) \in R$ or $(i, i) \notin R$), while for (i, j) with $i \neq j$ there are three mutually exclusive choices, $(i, j) \in R$, $(j, i) \in R$ or neither.]
- (e) How many linear orders are there on [n]? [You may find the adjacency matrix point of view not so helpful to answer this question, but rather take another viewpoint.]

3. Let D_n be the set of divisors of n. Show that the relation \leq on D_n defined by $a \leq b$ if and only if a divides b is a partial order.

(b) For n = 2, 3, ..., 11 draw the Hasse diagram of the poset (D_n, \preceq) of divisors of n. For example, the posets of divisors of 8 and 14 are as below:



- (c) What property does the number n have if (D_n, \preceq) is a linear order (as for n = 8)?
- (d) When is (D_n, \preceq) isomorphic to the poset $([m], \subseteq)$ for some m (as is the case for n = 14 with m = 2)?
- (e) What is the size of the longest chain in (D_n, \preceq) ?

What is the size of the largest antichain in (D_n, \preceq) ? [Hint: give your answer in terms of the factorization of n into a product of prime powers. A prime power is a number of the form p^a for some prime p and integer $a \ge 1$. For a number n > 1 we have $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_m^{a_m}$ for primes p_1, \ldots, p_m and integers $a_1, \ldots, a_m \ge 1$. For the above examples, $8 = 2^3$ and $14 = 2 \cdot 7$.]