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Notation: [n] ={1,2,...,n}.

(a) State how many functions there are from [n] to [m], where m,n € N.
There are m™ such functions (number of sequences of n elements f(1), f(2),..., f(n), each
element chosen freely from [m]).

(b) Deduce from your answer to (a) that there are 2" subsets of [n].

A subset S C [n] is uniquely defined by its characteristic function (or indicator function)
fs : [n] = {0,1}, defined for x € [n] by

1 z€8,
fs(l”)Z{O v d 5.

By (a) there are 2™ functions f : [n] — {0,1}, and hence 2" subsets of [n].

(c) Determine the number of ordered pairs (A, B), where A C B C [n].

The triple of sets (A, B\A,[n]\B) are disjoint and their union is [n] (i.e. they form
an ordered partition of [n]). There is a bijection between such ordered partitions of
[n] into three subsets and functions f : [n] — [3] (for example, by the correspondence

Ao {zeln]: flx) =1} = ' ({1}), B\A & f'({2}) and [n)\B « f~'({3}).
To recover (A, B) with A C B C [n] from the ordered partition (A, B\ A, [n]\B) of [n] into
three subsets, let A be the first subset and B the union of the first two.

Hence there are 3" ordered pairs (A, B) in which A C B C [n].

(d) Determine the number of ordered triples (A, B, C'), where A C B C C C [n].

The quadruple of sets (A, B\A, C\B, [n]\C) are disjoint and their union is [n]. These are
in one-to-one correspondence with functions f : [n] — [4], and in a similar way to (c) we
conclude that there are 4" ordered triples (A4, B,C) with A C B C C C [n].

2. A permutation of [n] is a bijection f : [n] — [n].

(a) Look up/remind yourself what is meant by a cycle of the permutation f (e.g. section 3.2
of Matousek & Nesetiil, Invitation to Discrete Mathematics, page 65 in 2nd ed).

A cycle of f consists of a finite sequence z, f(x), f2(x),..., f*'(z), where ¢ is the least
positive integer such that f¢(z) = z. The next term in the sequence is obtained by
applying f, including the “wrap-around” at the end, f(f*~'(x)) = 2. (There is such
an integer ¢ since [n] is finite: among the n + 1 elements z, f(z), f?(z),..., f*(x), each



belonging to [n], by the pigeon-hole principle there must be 0 < i < j < n such that
fi(x) = fi(x), from which x = f/=%(z) by applying (composing) the inverse function f~*
on both sides of this equality ¢ times, and taking ¢ to be the least positive value of j — i
for such pairs i, j.)

Usually a cycle of a permutation f is written ( = f(z) f*(z) ... f'(z))
Note that rather than at x we could start the cycle at fi(x) for any 0 < i < £ — 1:
( fiz) fHYz) fi2(x) ... f7Yax) ) is the same cycle.
Two cycles
(z1 x2 x3 ... x¢) and (Y1 Y2 Ys ... Ym )

are the same permutation if and only if £ = m and there is 0 < d < £ such that

Titd Z+d§€
Yi = .
! Titd—t t+d>FL

(this just says that you can cyclically permute the elements y; to obtain the elements z;).
Forexample, (1 2 3),(2 3 1)and(3 1 2 )arethesamecycle,while( 3 2 1),
(1 3 2)and (2 1 3 ) are different to these.

(b) How many permutations of [n] have a single cycle?

A sequence of length n is cyclically equivalent to n distinct cycles (including itself). There
are n! sequences of length n with elements in [n]. Hence there are n!/n = (n — 1)!
permutations of [n] consisting of a single cycle.

(c) For a permutation f : [n] — [n], define the k-fold composition of f recursively by f! = f
and f* = f¥=1o f. Let R be the relation on [n] defined by (x,%) € R if and only if there
exists an integer k > 1 such that f*(z) = y.

Prove that the relation R is reflexive, symmetric and transitive.

(z,7) € R: f*(z) = z, where { is the length of the cycle containing z.

(z,y) € R implies (y,z) € R: if f*(x) = y then x, y belong to the same cycle, say of length
¢, and we may assume 0 < k < £. Then f'(y) =y = f*(x), from which f**(y) = x.
(z,y) € R and (y,2) € R imply (z,z) € R: by hypothesis there are positive integers k, j
such that f¥(x) = y and fI(y) = 2. By substitution, z = fI(f*(x)) = f/**(z), so that
(z,z) € R.

3. Let (}’) denote the number of subsets of k elements from [n]. (For n > 0 we have (8) =1=
(77,) )
n

Prove the following identities by using this combinatorial definition of (Z)

(a) (") = (}) for 0 <k <n.

n—k
There is a one-to-one correspondence between subsets S C [n] of size k and their comple-
ments [n]\S, which are subsets of size n — k.

(b) (i) = (")) + () for 1<k <n—1.
Subsets S C [n] of size k may be partitioned into two classes: subsets of [n — 1] of size k
and sets {n} UT where T' C [n — 1] has size k — 1.

()
(1)

k=0



By 1(b) the number of subsets of [n] is 2", and these can be partitioned according to their
size 0 < k < n and by definition there are (Z) subsets of size k.

S () =

k=0

NB The identity holds for n > 1 (when n = 0 the sum is 1).

Taking all the negative terms to the other side of this equality, the assertion is that the
number of subsets of [n] having even size is equal to the number of subsets having odd
size. If n is odd this is immediate by the bijection between subsets and their complements
(these have opposite parity, since n is odd).

For an argument that works for both odd and even n, partition sets as in part (b) into
those that contain n as an element and those that do not. The map S — S U {n} is
a bijection between those not containing n and those containing n, with the property
that it changes the parity of the set (from odd to even, or even to odd). This pairing of
an odd-sized subset with an even-sized subset establishes that the number of odd-sized
subsets is equal to the number of even-sized subsets.

[Alternatively, define a bijection on the set of all subsets of [n] by the map S — SA{n}
(symmetric difference with {n}, i.e., remove the element n if it belongs to S, add n to S
otherwise).|



