Discrete Mathematics

Exercise sheet 3

17 /20 October 2016

Notation: $[n] = \{1, 2, ..., n\}.$

- 1.
 - (a) State how many functions there are from [n] to [m], where $m, n \in \mathbb{N}$.
 - (b) Deduce from your answer to (a) that there are 2^n subsets of [n].
 - (c) Determine the number of ordered pairs (A, B), where $A \subseteq B \subseteq [n]$.
 - (d) Determine the number of ordered triples (A, B, C), where $A \subseteq B \subseteq C \subseteq [n]$.
- 2. A permutation of [n] is a bijection $f: [n] \to [n]$.
 - (a) Look up/remind yourself what is meant by a *cycle* of the permutation f (e.g. section 3.2 of Matoušek & Nešetřil, *Invitation to Discrete Mathematics*, page 65 in 2nd ed).
 - (b) How many permutations of [n] have a single cycle?
 - (c) For a permutation $f: [n] \to [n]$, define the k-fold composition of f recursively by $f^1 = f$ and $f^k = f^{k-1} \circ f$. Let R be the relation on [n] defined by $(x, y) \in R$ if and only if there exists an integer $k \ge 1$ such that $f^k(x) = y$.

Prove that the relation R is reflexive, symmetric and transitive.

3. Let $\binom{n}{k}$ denote the number of subsets of k elements from [n]. (For $n \ge 0$ we have $\binom{n}{0} = 1 = \binom{n}{n}$.)

Prove the following identities by using this combinatorial definition of $\binom{n}{k}$:

(a)
$$\binom{n}{n-k} = \binom{n}{k}$$
 for $0 \le k \le n$.

- (b) $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ for $1 \le k \le n-1$.
- (c)

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

(d)

$$\sum_{k=0}^n (-1)^k \binom{n}{k} = 0$$