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2. Let f : X → Y and g : Y → X be functions such that (g ◦ f)(x) = x for each x ∈ X and
(f ◦ g)(y) = y for each y ∈ Y . Prove that f and g are bijections.

[Note that in the orginal question g : Y → Z, but we must have Z = X.]
First we establish that f must be an injection. Suppose that f(x1) = f(x2). Then x1 =

(g ◦ f)(x1) = (g ◦ f)(x2) = x2.
Second we establish that f must be a surjection.
We are given that for each y we have y = (f ◦ g)(y) = f(g(y)). Also, g(y) = x for some

x ∈ X (the range of g is X). Thus y = f(x). In other words, to each y ∈ Y there is some x ∈ X
such that f(x) = y, i.e., f is onto.

A similar argument shows that g must be a bijection.
[The functions f and g are inverse to each other.]

3.

(a) Let A be a set. What is the set A× ∅ equal to?

The definition of the Cartesian product of two sets A and B is

A×B = {(a, b) : a ∈ A, b ∈ B}.

If B = ∅ then there is no element b ∈ B, hence A× ∅ = ∅.

(b) Let A,B,C be sets. Under what conditions does it follow from A × C = B × C that
A = B?

Given that

A× C = {(a, c) : a ∈ A, c ∈ C} = {(b, c) : b ∈ B, c ∈ C} = B × C,

if C 6= ∅ then choose c ∈ C and we must have

A× {c} = {(a, c) : a ∈ A} = {(b, c) : b ∈ B} = B × {c},

because (a, c) = (b, c′) if and only if a = b and c = c′. By projecting on to the first
coordinate, i.e. by the bijection (x, c) 7→ x we conclude that A = B.

4. Let X be a finite set and let 2X denote the set of all subsets of X.

(a) Prove that |2X | = 2|X|.

(1) Proof by induction. The empty set has just 1 subset (itself) and 20 = 1. (A singleton
set has two subsets, the empty set and itself, and 21 = 2.)

Suppose the assertion is true for |X| = n. (We have verified this is the case for n = 0 and
n = 1.)
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Let Y be a set of n + 1 elements. Write Y = X ∪ {y} where |X| = n and y 6∈ X.

A subset S of Y either contains y or does not contain y. In the first case S = T ∪ {y} for
a subset T of X, and in the second case S is subset of X. Conversely, for each subset T
of X, the set T ∪ {y} is a subset of Y , and each subset of X is a subset of Y .

Hence |2Y | = |2X |+ |2X | = 2 · 2|X| = 2n+1 = 2|Y |.

This completes the induction step and the proof.

(2) Proof by binary indicator vector. Let X = {x1, . . . , xn} and encode subsets S of X by
a binary sequence (e1, e2, . . . , en) where

ei =

{
1 xi ∈ S

0 xi 6∈ S

There is a bijection between binary sequences (e1, . . . , en) and subsets of X, and the
number of binary sequences of length n is 2n. (Actually, to prove this obvious statmenent
formally requires a similar inductive argument.) An equivalent formulation is to encode
subsets of X by functions f : X → {0, 1}.

(b) Prove that 2X = 2Y if and only if X = Y .

If X = Y then 2X = 2Y is clear.

For the converse, suppose 2X = 2Y and for a contradiction that X 6= Y . Without loss of
generality we may assume there exists x ∈ X such that x 6∈ Y . (Otherwise X ⊂ Y and
swap the roles of X and Y in this proof.)

Then {x} ∈ 2X but {x} 6∈ 2Y , whence 2X 6= 2Y . This is the desired contradiction, hence
we must have X = Y .

Alternative proof: use the fact that for any set X we have X =
⋃
{S : S ⊆ X} =

⋃
2X .

Given 2X = 2Y , taking unions we have X = Y .

5. Describe the relation R ◦R if R stands for
For R ⊆ X ×X, the composition R ◦R is the relation defined by (x, z) ∈ R ◦R if and only

if there exists y ∈ X such that (x, y) ∈ R and (y, z) ∈ R.

(a) the equality relation “=” on the set N of natural numbers,

(x, z) ∈ R ◦ R iff there is y such that x = y and y = z. This is the case iff x = z. Hence
R ◦R = R in this case.

(b) the relation “less than or equal to” (“≤”) on N,

(x, z) ∈ R ◦R iff there is y such that x ≤ y and y ≤ z. If x ≤ y and y ≤ z then x ≤ z by
transitivity of ≤. Conversely, if x ≤ z then there exists such y (e.g. take y = x or y = z).
Hence, R ◦R = R is ≤.

(c) the relation “strictly less than” (“<”) on N,

If x < y and y < z then x < z by transitivity of <.

If x < z− 1 then there exists such y (e.g. take y = x+ 1 < z). However, if x ≥ z− 1 then
there is no such y, as necessarily y ≥ x + 1 ≥ z. Hence, R ◦R is defined by (x, z) ∈ R ◦R
if and only if x + 1 < z.

(d) the relation “strictly less than” (“<”) on the set R of real numbers. If x < y and y < z
then x < z by transitivity of <.

Conversely, if x < z then there exists such a y (e.g. take y = 1
2(x + z) < z). Hence,

R ◦R = R is <.
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