Discrete Mathematics

Exercise sheet 2

10 /13 October 2016

2. Let $f: X \to Y$ and $g: Y \to X$ be functions such that $(g \circ f)(x) = x$ for each $x \in X$ and $(f \circ g)(y) = y$ for each $y \in Y$. Prove that f and g are bijections.

[Note that in the orginal question $g: Y \to Z$, but we must have Z = X.]

First we establish that f must be an injection. Suppose that $f(x_1) = f(x_2)$. Then $x_1 = (g \circ f)(x_1) = (g \circ f)(x_2) = x_2$.

Second we establish that f must be a surjection.

We are given that for each y we have $y = (f \circ g)(y) = f(g(y))$. Also, g(y) = x for some $x \in X$ (the range of g is X). Thus y = f(x). In other words, to each $y \in Y$ there is some $x \in X$ such that f(x) = y, i.e., f is onto.

A similar argument shows that g must be a bijection. [The functions f and g are inverse to each other.]

3.

(a) Let A be a set. What is the set $A \times \emptyset$ equal to?

The definition of the Cartesian product of two sets A and B is

 $A \times B = \{(a, b) : a \in A, b \in B\}.$

If $B = \emptyset$ then there is no element $b \in B$, hence $A \times \emptyset = \emptyset$.

(b) Let A, B, C be sets. Under what conditions does it follow from $A \times C = B \times C$ that A = B?

Given that

$$A \times C = \{(a, c) : a \in A, c \in C\} = \{(b, c) : b \in B, c \in C\} = B \times C,$$

if $C \neq \emptyset$ then choose $c \in C$ and we must have

$$A \times \{c\} = \{(a,c) : a \in A\} = \{(b,c) : b \in B\} = B \times \{c\},\$$

because (a, c) = (b, c') if and only if a = b and c = c'. By projecting on to the first coordinate, i.e. by the bijection $(x, c) \mapsto x$ we conclude that A = B.

- 4. Let X be a finite set and let 2^X denote the set of all subsets of X.
 - (a) Prove that $|2^X| = 2^{|X|}$.

(1) Proof by induction. The empty set has just 1 subset (itself) and $2^0 = 1$. (A singleton set has two subsets, the empty set and itself, and $2^1 = 2$.)

Suppose the assertion is true for |X| = n. (We have verified this is the case for n = 0 and n = 1.)

Let Y be a set of n + 1 elements. Write $Y = X \cup \{y\}$ where |X| = n and $y \notin X$.

A subset S of Y either contains y or does not contain y. In the first case $S = T \cup \{y\}$ for a subset T of X, and in the second case S is subset of X. Conversely, for each subset T of X, the set $T \cup \{y\}$ is a subset of Y, and each subset of X is a subset of Y. Hence $|2^Y| = |2^X| + |2^X| = 2 \cdot 2^{|X|} = 2^{n+1} = 2^{|Y|}$.

This completes the induction step and the proof.

(2) Proof by binary indicator vector. Let $X = \{x_1, \ldots, x_n\}$ and encode subsets S of X by a binary sequence (e_1, e_2, \ldots, e_n) where

$$e_i = \begin{cases} 1 & x_i \in S \\ 0 & x_i \notin S \end{cases}$$

There is a bijection between binary sequences (e_1, \ldots, e_n) and subsets of X, and the number of binary sequences of length n is 2^n . (Actually, to prove this obvious statement formally requires a similar inductive argument.) An equivalent formulation is to encode subsets of X by functions $f: X \to \{0, 1\}$.

(b) Prove that $2^X = 2^Y$ if and only if X = Y.

If X = Y then $2^X = 2^Y$ is clear.

For the converse, suppose $2^X = 2^Y$ and for a contradiction that $X \neq Y$. Without loss of generality we may assume there exists $x \in X$ such that $x \notin Y$. (Otherwise $X \subset Y$ and swap the roles of X and Y in this proof.)

Then $\{x\} \in 2^X$ but $\{x\} \notin 2^Y$, whence $2^X \neq 2^Y$. This is the desired contradiction, hence we must have X = Y.

Alternative proof: use the fact that for any set X we have $X = \bigcup \{S : S \subseteq X\} = \bigcup 2^X$. Given $2^X = 2^Y$, taking unions we have X = Y.

5. Describe the relation $R \circ R$ if R stands for

For $R \subseteq X \times X$, the composition $R \circ R$ is the relation defined by $(x, z) \in R \circ R$ if and only if there exists $y \in X$ such that $(x, y) \in R$ and $(y, z) \in R$.

(a) the equality relation "=" on the set \mathbb{N} of natural numbers,

 $(x, z) \in R \circ R$ iff there is y such that x = y and y = z. This is the case iff x = z. Hence $R \circ R = R$ in this case.

(b) the relation "less than or equal to" (" \leq ") on \mathbb{N} ,

 $(x, z) \in R \circ R$ iff there is y such that $x \leq y$ and $y \leq z$. If $x \leq y$ and $y \leq z$ then $x \leq z$ by transitivity of \leq . Conversely, if $x \leq z$ then there exists such y (e.g. take y = x or y = z). Hence, $R \circ R = R$ is \leq .

(c) the relation "strictly less than" ("<") on \mathbb{N} ,

If x < y and y < z then x < z by transitivity of <.

If x < z - 1 then there exists such y (e.g. take y = x + 1 < z). However, if $x \ge z - 1$ then there is no such y, as necessarily $y \ge x + 1 \ge z$. Hence, $R \circ R$ is defined by $(x, z) \in R \circ R$ if and only if x + 1 < z.

(d) the relation "strictly less than" ("<") on the set \mathbb{R} of real numbers. If x < y and y < z then x < z by transitivity of <.

Conversely, if x < z then there exists such a y (e.g. take $y = \frac{1}{2}(x+z) < z$). Hence, $R \circ R = R$ is <.