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3 /6 October 2016

1. Prove the following statements by mathematical induction:

(a)
∑n

i=1(2i−1) = n2.

Base case: true for n = 1, as 1 = 12.

Induction hypothesis: assume true for given n ≥ 1, i.e.

n∑
i=1

(2i−1) = n2. (1)

Then

n+1∑
i=1

(2i−1) =

n∑
i=1

(2i−1) + (n + 1)

=
by (1)

n2 + (2n + 1)

= (n + 1)2,

which is the statement for n + 1.

By induction the statement is true for all integers n ≥ 1.

(b) 6n2 + 2n is a multiple of 4.

Base case: true for n = 0 as 0 is a multiple of 4 (and for n = 1 as 8 is a multiple of 4).

Induction hypothesis: assume true for given n ≥ 0, i.e.

6n2 + 2n = 4m for some m ∈ N (2)

Then

6(n + 1)2 + 2(n + 1) = 6n2 + 12n + 6 + 2n + 2

= (6n2 + 2n) + 12n + 8

=
by (2)

4m + 4(3n + 2)

= 4(m + 3n + 2),

which is to say that the statement holds for n + 1.

By induction the statement is true for all integers n ≥ 0.
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(c)
∏n

i=2
i−1
i = 1

n .

Base case: true for n = 2 as 2−1
2 = 1

2 .

Induction hypothesis: assume true for given n ≥ 2, i.e.

n∏
i=2

i− 1

i
=

1

n
. (3)

Then

n+1∏
i=2

i− 1

i
=

(
n∏

i=2

i− 1

i

)
· n

n + 1

=
by (3)

1

n
· n

n + 1

=
1

n + 1
,

which is to say the statement holds for n + 1.

By induction the statement is true for all integers n ≥ 2.

(d)
∑n

i=1 i
2 = 1

3n
3 + 1

2n
2 + 1

6n.

Base case: true for n = 1 as 12 = 1 = 1
3 + 1

2 + 1
6 .

Induction hypothesis: assume true for given n ≥ 1, i.e.

n∑
i=1

i2 =
1

6
n(n + 1)(2n + 1) (4)

in which we have made the factorization

1

3
n3 +

1

2
n2 +

1

6
n =

1

6
n(n + 1)(2n + 1).

(Made in retrospect when carrying out the induction step below, where it makes calcula-
tion easier.)

Then

n+1∑
i=1

i2 =

n∑
i=1

i2 + (n + 1)2

=
by (4)

1

6
n(n + 1)(2n + 1) + (n + 1)2

=
1

6
(n + 1)[n(2n + 1) + 6(n + 1)]

=
1

6
(n + 1)[2n2 + 7n + 6)]

=
1

6
(n + 1)[(n + 2)(2n + 3)]

=
1

6
(n+1)((n+1) + 1)(2(n+1) + 1)

which is to say the statement holds for n + 1.

By induction the statement is true for all integers n ≥ 1.
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Try to give an alternative proof for each of (a), (b) and (c) that does not use induction.

(a) Twice the given sum is

1 + 3 + 5 + · · ·+ (2n− 1) +

(2n−1) + (2n−3) + · · ·+ 3 + 1

and pairing off terms 1 + (2n−1) = 2n, 3 + 2n−3 = 2n, ... , (2n−1) + 1 = 2n we have n
times 2n, i.e. 2n2 in total. Halving this gives 1 + 3 + · · ·+ (2n−1) = n2. More formally,

2
n∑

i=1

(2i−1) =
n∑

i=1

(2i−1) +
n∑

i=1

(2n− (2i−1))

=
n∑

i=1

[(2i−1) + 2n− (2i−1)]

=
n∑

i=1

2n

= 2n2,

from which
∑n

i=1(2i−1) = 1
2(2n2) = n2.

(b) If n = 2m is even then 6n2 + 2n = 24m2 + 4m = 4(6m2 + m) and if n = 2m + 1 is odd
then

6n2 + 2n = (24m2 + 24m + 6) + 4m + 2

= 24m2 + 28m + 8

= 4(6m2 + 7m + 2)

(c) This one can be seen by cancelling numerator and denominator of successive terms in the
product, i.e.,

n∏
i=2

i− 1

i
=

1

2
· 2

3
· 3

4
· · · n− 2

n− 1
· n− 1

n

=
1

2
· 2

3
· 3

4
· · · n− 2

n− 1
· n− 1

n

=
1

n
.

However, this is not really different to the induction proof as you need to use the etcetera
(dot dot dot ...) to stand in for arbitrarily many factors to which you apply cancellation.
Here the induction proof formalizes the intuitive argument of cancelling n−2 denominator-
numerator pairs in the product of n− 1 factors.

2. Prove the following statements using the method of proof by contradiction:

(a) There is no largest natural number.

Suppose that N is a natural number larger than all other natural numbers. Then N +1 is
a natural number, and N +1 > N , a contradiction. Hence no such largest natural number
N exists.

3



(b) If n2 is an odd number then n is odd.

Suppose for a contradiction that n2 is odd and n is even. Then n2 + n = n(n+ 1) is even
(as it is divisible by n) and odd (as it is the sum of an odd numebr and even number),
which is impossible. Hence if n2 is odd then n cannot be even, i.e. n is odd.

(c) If a, b and c are natural numbers such that a2 + b2 = c2 then either a is even or b is even.
Suppose for a contradiction that a2 + b2 = c2 while neither a nor b is even, i.e. both are
odd. Say a = 2u + 1 and b = 2v + 1. Then

a2 + b2 = (4u2 + 4u + 1) + (4v + 4v + 1)

4(u2 + u + v2 + v) + 2

so that c2 is even. Therefore c is even (suppose not, then c = 2w + 1 is odd and c2 =
4(w2 +w)+1 is odd, a contradiction). But if c = 2d is even, then c2 = 4d2 is a multiple of
4, while a2 + b2 = 4(u2 + u+ v2 + v) + 2 is not a multiple of 4. This contradiction implies
our supposition that a and b are both odd is false. Hence at least one of a and b is even.

3. Let Fn be the nth Fibonacci number, defined by F0 = 0, F1 = 1 and for n ≥ 1 by the
recurrence Fn+1 = Fn + Fn−1. Prove the following statements by mathematical induction:

(a)
∑n

i=0 Fi = Fn+2 − 1.

Base case: for n = 0, F0 = 0 = 1− 1 = F2 − 1.

Induction hypothesis: assume true for given n ≥ 0, i.e.
∑n

i=0 Fi = Fn+2 − 1.

Then

n+1∑
i=0

Fi = Fn+1 +
n∑

i=0

Fi

=
by ind. hyp.

Fn+1 + Fn+2 − 1

= Fn+3 − 1 = F(n+1)+2 − 1,

which is to say the statement holds for n + 1. By induction the statement is true for all
integers n ≥ 0.

(b)
∑n

i=0 F
2
i = FnFn+1.

Base case: for n = 0, F 2
0 = 0 = 0 · 1 = F0F1.

Induction hypothesis: assume true for given n ≥ 0, i.e.
∑n

i=0 F
2
i = FnFn+1.

Then

n+1∑
i=0

F 2
i =

n∑
i=0

F 2
i + F 2

n+1

=
by ind. hyp.

FnFn+1 + F 2
n+1

= Fn+1(Fn + Fn+1)

= Fn+1Fn+2,

which is to say the statement holds for n + 1. By induction the statement is true for all
integers n ≥ 0.
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(c) F3n is even

Base case: for n = 0, F0 = 0 is even.

Induction hypothesis: assume true for given n ≥ 0, i.e. F3n is even.

Then

F3(n+1) = F3n+2 + F3n+1

= F3n+1 + F3n + F3n+1

= F3n + 2F3n+1,

which is even by the induction hypothesis that F3n is even. By induction the statement
is true for all integers n ≥ 0.

(d) Fn−1Fn+1 − F 2
n = (−1)n (for n ≥ 1).

Base case: for n = 1, F0F2 − F 2
1 = 0− 1 = (−1)1.

Induction hypothesis: assume true for given n ≥ 1, i.e. Fn−1Fn+1 − F 2
n = (−1)n.

Then

FnFn+2 − F 2
n+1 = Fn(Fn+1 + Fn)− Fn+1(Fn + Fn−1)

= F 2
n − Fn+1Fn−1

=
by ind. hyp.

−(−1)n

= (−1)n+1,

which is to say the statement holds for n + 1. By induction the statement is true for all
integers n ≥ 1.

4. You are at the bottom of a flight of stairs with n steps that you can ascend by taking one
or two steps at a time. How many ways can you go up? (If n = 2, you have 2 choices: take one
step twice in a row, or two steps in one go. If n = 3, you have 3 choices: three single steps, or
one single followed by one double, or one double followed by one single.)

Let Sn denote the number of ways possible to ascend n steps in the given manner. Then Sn

is the number of solutions to x1 + x2 + · · · + xk = n in which xi ∈ {1, 2} and 1 ≤ k ≤ n. For
example, S3 = 3 since 3 = 1 + 1 + 1 = 1 + 2 = 2 + 1, while S4 = 5 since 4 = 1 + 1 + 1 + 1 =
2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 2 + 2.

For n ≥ 1, the ways to ascend n+ 1 steps can be divided into two types: those in which you
start with 2 steps in one go, and those with just 1. If you take 2 steps to begin with, then the
remaining n− 1 can be ascended in Sn−1 ways, while if you take 1 step to start then there are
Sn ways to complete your ascension... Hence Sn+1 = Sn + Sn−1. This is the same recurrence
as that satisfied by the Fibonacci numbers (Fn+1 = Fn + Fn−1). The boundary conditions for
this recurrence are S1 = 1 = F2, S2 = 2 = F3. Hence Sn = Fn+1.

In order to get to S11 for class you ascend two flights of stairs from the ground floor to the
first floor, each flight consisting of 18 steps. How many times would you need to go upstairs
from ground floor to first floor in order to exhaust all possible ways of going up 18 stairs?

By the previous, there are F19 ways to ascend a flight of 18 stairs, and you can make 2 of
them each time you go upstairs from ground floor to first floor. Hence in total you would need
to go upstairs at least F19/2 times.

By direct computation (a computer is a friend here), F19 = 4181, and so 2091 ascents from
ground floor to first floor would be required.
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