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1.

(i) Prove that the n× n array L whose (i, j)-entry is defined by

L(i, j) = i+ j (mod n)

is a Latin square.

(ii) Let p be a prime and 1 ≤ k ≤ p − 1. Prove that the p × p array Lk whose (i, j)-entry is
defined by

Lk(i, j) = ki+ j (mod p)

defines a Latin square.

(iii) Prove that when k 6= ` the Latin squares Lk and L` defined in (ii) are orthogonal.

[Adaptation of Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 9.3, exercise 5,

which uses the same construction for a finite field on a prime power number of elements more generally;

here the finite field is Zp.]

2. Use the Pigeonhole Principle to show that any finite graph has at least two vertices of the
same degree.

[P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge Univ. Press, 1994.
Chapter 10, exercise 2]

3.

(i) Show that if n ≥ (r− 1)(s− 1)(t− 1) + 1 then any sequence of n real numbers must contain either
a strictly increasing subsequence of length r, a strictly decreasing subsequence of length s, or a
constant subsequence of length t.

[First consider the case where only (r − 1)(s − 1) or fewer distinct values occur and apply the
Pigenhole Principle to deduce the existence of a suitably long constant subsequence. Otherwise
there are at least (r−1)(s−1)+1 distinct elements: apply the Erdős–Szekeres theorem as formulated
in class.]

(ii) Show also that the result of (i) is best possible, i.e., construct a sequence of (r−1)(s−1)(t−1) real
numbers with no strictly increasing subsequence of length r, no strictly decreasing subsequence of
length s, and no constant subsequence of length t.

[P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge Univ. Press, 1994.
Chapter 10, exercise 4]



Figure 1: The graph (unique up to isomorphism) on 17 vertices with clique number 3 and
independence number 3 witnessing r(4) > 17. If in K17 we colour the edges of this subgraph
red and the edges of the complement of this subgraph blue then there is no monochromatic K4.
(Compare C5, which as a subgraph of K5 witnesses r(3) > 5 since K5 with edges of a 5-cycle
coloured red and edges of the complement coloured blue has no monohromatic triangle.)
(Image source: Matoušek & Nešetřil, Invitation to Discrete Mathematics, Section 11.3.)

4. For n ∈ N define
f(n) = min

G:|V (G)|=n
[α(G)ω(G)],

where the minimum is over all graphs G with n vertices, ω(G) is the largest number of mutually adjacent
vertices in G (clique number), and α(G) is the largest number of mutually non-adjacent vertices in G
(independence number). So for example f(2) = min{2 · 1, 1 · 2} = 2 (G is either a single edge K2 or its
complement).

(i) Show that for n ∈ {1, 2, 3, 4, 6} we have f(n) ≥ n.

(ii) Prove that f(5) < 5.

(iii) Show that f(n) is nondecreasing and that it is not bounded above by a constant.

(iv)* For natural numbers n, k, 1 < k ≤ n/2 we define a graph Cn,k as follows. We begin with Cn, i.e.,
a cycle of length n, and then we connect by edges all pairs of vertices that have distance at most
k in Cn. Use these graphs (with a judicious choice of k) to prove that f(n) < n for all n ≥ 7.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 11.2, exercises 2, 3]

5. The graph witnessing r(4) > 17 (see Figure 1 above) may look complicated but actually it is easy
to remember. For example, it is enough to remember this: 17; 1, 2, 4, 8. Or this: quadratic residues
modulo 17. Can you explain these two somewhat cryptic memory aids?

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 11.3, exercise 3]


