Combinatorics and Graph Theory I

Exercise sheet 8: Latin squares, Pigeonhole-Principle, Ramsey theory

23 April 2018

1. Read Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd ed., section 9.3 (Orthogonal Latin Squares).
(i) Prove that the $n \times n$ array L whose (i, j)-entry is defined by

$$
L(i, j)=i+j \quad(\bmod n)
$$

is a Latin square.
(ii) Let p be a prime and $1 \leq k \leq p-1$. Prove that the $p \times p$ array L_{k} whose (i, j)-entry is defined by

$$
L_{k}(i, j)=k i+j \quad(\bmod p)
$$

defines a Latin square.
(iii) Prove that when $k \neq \ell$ the Latin squares L_{k} and L_{ℓ} defined in (ii) are orthogonal.
[Adaptation of Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 9.3, exercise 5, which uses the same construction for a finite field on a prime power number of elements more generally; here the finite field is \mathbb{Z}_{p}.]
2. Use the Pigeonhole Principle to show that any finite graph has at least two vertices of the same degree.
[P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge Univ. Press, 1994. Chapter 10, exercise 2]
3. The Erdős-Szekeres Theorem states that given $n \geq(r-1)(s-1)+1$ distinct real numbers $x_{1}, x_{2}, \ldots, x_{n}$ there is either a strictly increasing subsequence of length r, or a strictly decreasing subsequence of length s.
(i) Show that if $n \geq(r-1)(s-1)(t-1)+1$ then any sequence of n real numbers (not necessarily distinct) must contain either a strictly increasing subsequence of length r, a strictly decreasing subsequence of length s, or a constant subsequence of length t.
[First consider the case where only $(r-1)(s-1)$ or fewer distinct values occur and apply the Pigeonhole Principle to deduce the existence of a suitably long constant subsequence. Otherwise there are at least $(r-1)(s-1)+1$ distinct elements....]
(ii) Show also that the result of (i) is best possible, i.e., construct a sequence of $(r-1)(s-$ $1)(t-1)$ real numbers with no strictly increasing subsequence of length r, no strictly decreasing subsequence of length s, and no constant subsequence of length t.
[P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge Univ. Press, 1994. Chapter 10, exercise 4]
4. For $n \in \mathbb{N}$ define

$$
f(n)=\min _{G:|V(G)|=n}[\alpha(G) \omega(G)],
$$

where the minimum is over all graphs G with n vertices, $\omega(G)$ is the largest number of mutually adjacent vertices in G (clique number), and $\alpha(G)$ is the largest number of mutually non-adjacent vertices in G (independence number). So for example $f(2)=\min \{2 \cdot 1,1 \cdot 2\}=2(G$ is either a single edge K_{2} or its complement).
(i) Show that for $n \in\{1,2,3,4,6\}$ we have $f(n)=n$.
(ii) Prove that $f(5)<5$.
(iii) Show that $f(n)$ is nondecreasing and that it is not bounded above by a constant.
(iv)* For natural numbers $n, k, 1 \leq k<n / 2$ we define a graph $C_{n, k}$ as follows. We begin with C_{n}, i.e., a cycle of length n, and then we connect by edges all pairs of vertices that have distance at most k in C_{n} (thus $C_{n, 1}=C_{n}$). Use these graphs (with a judicious choice of k) to prove that $f(n)<n$ for all $n \geq 7$.
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 11.2, exercises 2, 3]

