Combinatorics and Graph Theory I

Exercise sheet 5: Connectivity, ear decompositions

26 March 2018 (handing in work for this sheet is optional)

Reference: Chapter III (Flows, Connectivity and Matching), Section 2 (Connectivity and Menger's Theorem) in Bollobás Modern Graph Theory, 1998. Section 4.6 (2-connectivity) in Matoušek and Nešetřil, Invitation to Discrete Mathematics, 2nd ed. 2009.

1. The line graph $L(G)$ of a graph $G=(V, E)$ has vertex set E and two vertices $e, f \in E$ are adjacent iff they have exactly one vertex of G in common. By applying the vertex form of Menger's theorem to the line graph $L(G)$, prove that the vertex form of Menger's theorem implies the edge form.
[Bollobás, Modern Graph Theory, III. 6 exercise 15.]
2. Let $G=(V, E)$ be a bipartite graph with vertex classes X and Y of sizes m and n that contains a complete matching from X to Y.
(i) Prove that there is a vertex $x \in X$ such that for every edge $x y$ there is a matching from X to Y that contains $x y$.
(ii) Deduce that if $d(x)=d$ for every $x \in X$ then G contains at least d ! complete matchings if $d \leq m$ and at least $d(d-1) \cdots(d-m+1)$ complete matchings if $d>m$.
[Bollobás, Modern Graph Theory, III. 6 exercise 18.]
3. Prove that if G is k-connected $(k \geq 2)$, then every set of k vertices is contained in a cycle. Is the converse true?
[Bollobás, Modern Graph Theory, III. 6 exercise 14. Cf. for $k=2$, Matoušek \& Nešetril, Invitation to Discrete Mathematics, 2nd, ed. Theorem 4.6.3]
4. Let G be a critical 2-connected graph, i.e. G is 2-connected but no graph $G-e$ for $e \in E(G)$ is 2-connected.
(a) Prove that at least one vertex of G has degree 2 .
(b) For each n, find an example of a critical 2-connected graph with a vertex of degree at least n.
(c)* For each n, give an example of a critical 2 -connected graph with a vertex of degree $\geq n$ that is at distance at least n from each vertex of degree 2 .
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd ed. Section 4.6, Exercise 2]
5. Answer, with justification, the following two questions concerning ear decompositions:
(a) Is it true that any critical 2 -connected graph can be obtained from a cycle by successive gluing of "ears" of length at least 2?
(b) Is it true that any critical 2-connected graph can be obtained from a cycle by successive gluing of "ears" in such a way that each of the intermeidate graphs created along the way is also 2-critical?
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, 2nd ed. Section 4.6, Exercise 3]
