Combinatorics and Graph Theory I Exercise sheet 2: Generating functions

5 March 2018 (to hand in 12 March)

Reference: Chapter 12 (Generating Functions) in the 2nd edition of Matoušek & Nešetřil, *Invitation to Discrete Mathematics* (Chapter 10 in the 1st ed.)

- 1. For a polynomial or power series a(x), $[x^k]a(x)$ denotes the coefficient of x^k in a(x). Determine the following coefficients:
 - (a) $[x^5](1-2x)^{-2}$
 - (b) $[x^4]\sqrt[3]{(1+x)}$
 - c) $[x^3](2+x)^{3/2}/(1-x)$
 - (d) $[x^3](1-x+2x^2)^9$

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.2]

2. Find generating functions for the following sequences (express them in closed form, without infinite series!):

- (a) $0, 0, 0, 0, -6, 6, -6, 6, -6, \ldots$
- (b) $1, 0, 1, 0, 1, 0, \ldots$
- (c) $1, 2, 1, 4, 1, 8, \ldots$
- (d) $1, 1, 0, 1, 1, 0, 1, 1, 0, \ldots$

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.3]

3.

- (a) Let $A, B, C \subset \mathbb{N}$ and let $a(x) = \sum_{i \in A} x^i$, $b(x) = \sum_{j \in B} x^j$ and $c(x) = \sum_{k \in C} x^k$ be power series. Explain why the number of solutions to the equation i + j + k = n with $i \in A$, $j \in B$ and $k \in C$ is equal to the coefficient of x^n in the power series a(x)b(x)c(x).
- (b) Let a_n be the number of solutions to the equation

$$i + 3j + 3k = n,$$
 $i \ge 0, j \ge 1, k \ge 1.$

Find the generating function of the sequence $(a_0, a_1, a_2, ...)$ and derive a formula for a_n .

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.5]

- (a) Find the generating function for the sequence $(a_0, a_1, a_2, ...)$ with $a_n = (n+1)^2$.
 - (b) Check that if a(x) is the generating function of a sequence $(a_0, a_1, a_2, ...)$ then $\frac{1}{1-x}a(x)$ is the generating function of the sequence of partial sums $(a_0, a_0 + a_1, a_0 + a_1 + a_2, ...)$.
 - (c) Using (a) and (b) calculate the sum $\sum_{k=1}^{n} k^2$.
 - (d) By a similar method, calculate the sum $\sum_{k=1}^{n} k^3$.
 - (e) For natural numbers n and m, find a closed formula for the sum $\sum_{k=0}^{m} (-1)^k {n \choose k}$.

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.2, Problem 2.2.4, exercise 12.2.9.]

5. Express the *n*th term of the sequences given by the following recurrence relations (generalize the method used for the Fibonacci numbers in Section 12.3):

- (a) $a_0 = 2, a_1 = 3, a_{n+2} = 3a_n 2a_{n+1} (n = 0, 1, 2, ...)$
- (b) $a_0 = 0, a_1 = 1, a_{n+2} = 4a_{n+1} 4a_n (n = 0, 1, 2, ...)$
- (c) $a_0 = 1, a_{n+1} = 2a_n + 3 (n = 0, 1, 2, ...)$

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.3.]

6. Express the sum

$$S_n = \binom{2n}{0} + 2\binom{2n-1}{1} + 2^2\binom{2n-2}{2} + \dots + 2^n\binom{n}{n}$$

as the coefficient of x^{2n} in a suitable power series. Find a simple formula for S_n . [Use $x^k(1+2x)^k = \sum_{i=0}^k 2^i {k \choose i} x^{k+i}$, sum over integers k, and set k+i = 2n to pick out the requisite coefficient.]

[Matoušek & Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.7]