Combinatorics and Graph Theory I

Exercise sheet 2: Generating functions

5 March 2018 (to hand in 12 March)

Reference: Chapter 12 (Generating Functions) in the 2nd edition of Matoušek \& Nešetřil, Invitation to Discrete Mathematics (Chapter 10 in the 1st ed.)

1. For a polynomial or power series $a(x),\left[x^{k}\right] a(x)$ denotes the ceofficient of x^{k} in $a(x)$. Determine the following coefficients:
(a) $\left[x^{5}\right](1-2 x)^{-2}$
(b) $\left[x^{4}\right] \sqrt[3]{(1+x)}$
c) $\left[x^{3}\right](2+x)^{3 / 2} /(1-x)$
(d) $\left[x^{3}\right]\left(1-x+2 x^{2}\right)^{9}$
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.2]
2. Find generating functions for the following sequences (express them in closed form, without infinite series!):
(a) $0,0,0,0,-6,6,-6,6,-6, \ldots$
(b) $1,0,1,0,1,0, \ldots$
(c) $1,2,1,4,1,8, \ldots$
(d) $1,1,0,1,1,0,1,1,0, \ldots$
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.3]
3.

(a) Let $A, B, C \subset \mathbb{N}$ and let $a(x)=\sum_{i \in A} x^{i}, b(x)=\sum_{j \in B} x^{j}$ and $c(x)=\sum_{k \in C} x^{k}$ be power series. Explain why the number of solutions to the equation $i+j+k=n$ with $i \in A$, $j \in B$ and $k \in C$ is equal to the coefficient of x^{n} in the power series $a(x) b(x) c(x)$.
(b) Let a_{n} be the number of solutions to the equation

$$
i+3 j+3 k=n, \quad i \geq 0, j \geq 1, k \geq 1 .
$$

Find the generating function of the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and derive a formula for a_{n}.
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.2, exercise 12.2.5]
4.
(a) Find the generating function for the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ with $a_{n}=(n+1)^{2}$.
(b) Check that if $a(x)$ is the generating function of a sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ then $\frac{1}{1-x} a(x)$ is the generating function of the sequence of partial sums ($\left.a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots\right)$.
(c) Using (a) and (b) calculate the sum $\sum_{k=1}^{n} k^{2}$.
(d) By a similar method, calculate the sum $\sum_{k=1}^{n} k^{3}$.
(e) For natural numbers n and m, find a closed formula for the sum $\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}$.
[Matoušek \& Nešetríl, Invitation to Discrete Mathematics, section 12.2, Problem 2.2.4, exercise 12.2.9.]
5. Express the nth term of the sequences given by the following recurrence relations (generalize the method used for the Fibonacci numbers in Section 12.3):
(a) $a_{0}=2, a_{1}=3, a_{n+2}=3 a_{n}-2 a_{n+1}(n=0,1,2, \ldots)$
(b) $a_{0}=0, a_{1}=1, a_{n+2}=4 a_{n+1}-4 a_{n}(n=0,1,2, \ldots)$
(c) $a_{0}=1, a_{n+1}=2 a_{n}+3(n=0,1,2, \ldots)$
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.3.]
6. Express the sum

$$
S_{n}=\binom{2 n}{0}+2\binom{2 n-1}{1}+2^{2}\binom{2 n-2}{2}+\cdots+2^{n}\binom{n}{n}
$$

as the coefficient of $x^{2 n}$ in a suitable power series. Find a simple formula for S_{n}.
$\left[\right.$ Use $x^{k}(1+2 x)^{k}=\sum_{i=0}^{k} 2^{i}\binom{k}{i} x^{k+i}$, sum over integers k, and set $k+i=2 n$ to pick out the requisite coefficient.]
[Matoušek \& Nešetřil, Invitation to Discrete Mathematics, section 12.3, exercise 12.3.7]

