Combinatorics and Graph Theory I

Exercise sheet 1: Estimates

26 February, to hand in by 5 March.

References: Chapter 3 (Combinatorial Counting) and Chapter 12 (Generating Functions) in the 2nd edition of Matoušek & Nešetřil, *Invitation to Discrete Mathematics*. These are Chapters 2 and 10 in the 1st ed.

1. Prove using the Mean Value Theorem that $1 + x \leq e^x$ for all $x \in \mathbb{R}$.

[Use the fact that the function $f(x) = e^x$ is its own derivative, $f'(x) = e^x$, and consider this function on the interval [0, x].]

Prove the following by the method indicated:

- (a) Bernouilli's Inequality $(1+x)^n \ge 1 + nx$ for all $x \ge -1$, by induction on n;
- (b) $e\left(\frac{n}{e}\right)^n \leq n!$, by induction on n;
- (c) $n! \leq en\left(\frac{n}{e}\right)^n$, by induction on n;
- (d) $n! \leq e \left(\frac{n+1}{e}\right)^{n+1}$, by taking natural logarithms and comparing $\ln n!$ with the integral $\int_{1}^{n+1} \ln x \, dx$, and after this derive (b) as a corollary of this inequality.

[Matoušek & Nešetřil, *Invitation to Discrete Mathematics*, 2nd ed., section 3.5, exercises 3.5.11 and 3.5.9, first and second proofs of Theorem 3.5.5]

2.

(a) Prove using integration that for $n \ge 1$,

$$\ln(n+1) < \sum_{k=1}^{n} \frac{1}{k} \le \ln n + 1.$$

[Use the fact that if $\int f(x) dx = F(x) + c$ for constant c then $\int_a^b f(x) dx = F(b) - F(a)$. Also that the area under the curve y = f(x) between the lines x = a and x = b equals the integral $\int_a^b f(x) dx$.]

- (b) Derive a similar estimate as (a) for the series $\sum_{k=1}^{n} \frac{1}{k^{p}}$ for p > 1.
- (c) By considering the series $\sum a_k$ with terms

$$a_k = \frac{1}{k} - \int_k^{k+1} \frac{\mathrm{d}x}{x}$$

show that

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + O(\frac{1}{n}),$$

where γ is the Euler-Mascheroni constant, $0 < \gamma < \sum_{k=1}^{\infty} \frac{1}{2k^2}$. [Use the Taylor expansion for $\ln(1+x)$ with $x = \frac{1}{k}$ to bound a_k , express $\sum \frac{1}{k}$ in terms of $\sum a_k$ and an integral.]

[Matoušek & Nešetřil, *Invitation to Discrete Mathematics*, 2nd ed., section 3.5, exercise 3.5.13(b) extended]

- (a) Prove the arithmetic-geometric mean inequality $\sqrt{ab} \leq \frac{1}{2}(a+b)$.
- (b) Prove by induction on n and using (a) that for $n \ge 1$ we have

$$2\sqrt{n+1} - 2 < \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \le 2\sqrt{n} - 1.$$

[This can alternatively be obtained by integration as in question 3(b).]

(c) Use the inequality $1 + x \le e^x$ and induction to prove the inequality in 3(a)

[Matoušek & Nešetřil, *Invitation to Discrete Mathematics*, 2nd ed., section 3.5, exercises 3.5.12 and 3.5.13.]