Non-embeddability of buildings

Martin Tancer joint work with Kathrin Vorwerk¹

April 26, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

¹KTH Stockholm

Simplicial complexes

Definition

An (abstract) simplicial complex K with vertex set V is a hereditary set system ($K \subseteq 2^V$), that is, if $A \in K$ and $B \subseteq A$, then $B \in K$). Elements of K are faces of K.

- ► In our case we consider only finite simplicial complexes.
- A simplicial complex is uniquely determined by maximal faces.

Simplicial complexes

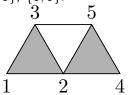
Definition

An (abstract) simplicial complex K with vertex set V is a hereditary set system ($K \subseteq 2^V$), that is, if $A \in K$ and $B \subseteq A$, then $B \in K$). Elements of K are faces of K.

- In our case we consider only finite simplicial complexes.
- A simplicial complex is uniquely determined by maximal faces.

Geometric realization of a simplicial complex Maximal faces of K: {1,2,3}, {2,4,5}, {3,5}.

A geometric realization |K|:



▲日▼▲□▼▲□▼▲□▼ □ ののの

Buildings are highly symmetric simplicial complexes.

- Buildings are highly symmetric simplicial complexes.
- Composed of smaller subcomplexes (apartments) that are Coxeter complexes.

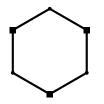
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Buildings are highly symmetric simplicial complexes.
- Composed of smaller subcomplexes (apartments) that are Coxeter complexes.
- A finite Coxeter complex is a symmetric triangulation of a sphere (the symmetry corresponds to some Coxeter group).

- Buildings are highly symmetric simplicial complexes.
- Composed of smaller subcomplexes (apartments) that are Coxeter complexes.
- A finite Coxeter complex is a symmetric triangulation of a sphere (the symmetry corresponds to some Coxeter group).
- In order to get a building, apartments are glued together in such a way that there many automorphisms of the building sending an apartment to another apartment.

- Buildings are highly symmetric simplicial complexes.
- Composed of smaller subcomplexes (apartments) that are Coxeter complexes.
- A finite Coxeter complex is a symmetric triangulation of a sphere (the symmetry corresponds to some Coxeter group).
- In order to get a building, apartments are glued together in such a way that there many automorphisms of the building sending an apartment to another apartment.
- For our purposes, we do not define buildings precisely. We use a well known classification of buildings (described later on). They fall into several types: infinite families of type A, B, and D and also few other sporadic cases.

Examples

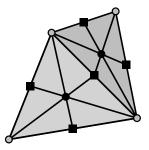


A 1-dim. Coxeter complex



A 1-dim. building (Fano plane)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



A 2-dimensional Coxeter complex

Embedding simplicial complexes

Definition Embedding of a simplicial complex K into \mathbb{R}^d is an injective mapping $|K| \to \mathbb{R}^d$.

Embedding simplicial complexes

Definition

Embedding of a simplicial complex K into \mathbb{R}^d is an injective mapping $|K| \to \mathbb{R}^d$.

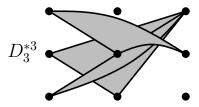
- Embedding 1-dimensional complexes into $\mathbb{R}^2 \equiv \text{graph}$ planarity.
- ► Every k-dimensional simplicial complex embeds into ℝ^{2k+1} by a general position argument.

Embedding simplicial complexes

Definition

Embedding of a simplicial complex K into \mathbb{R}^d is an injective mapping $|K| \to \mathbb{R}^d$.

- Embedding 1-dimensional complexes into $\mathbb{R}^2 \equiv$ graph planarity.
- ► Every k-dimensional simplicial complex embeds into ℝ^{2k+1} by a general position argument.
- ► There are k-dimensional simplicial complexes that do not embed into ℝ^{2k}: e.g., the k-skeleton of (2k + 2)-simplex or the (k + 1)-tuple join of the three-point discrete set D₃^{*(k+1)}.



Results.

Definition

A *d*-dimensional building is thick if every face of dimension d - 1 is contained in at least three maximal faces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Results.

Definition

A *d*-dimensional building is thick if every face of dimension d - 1 is contained in at least three maximal faces.

Theorem

A d-dimensional thick building Δ does not embed into \mathbb{R}^{2d} if

1. d = 1,

- 2. Δ is a type A building,
- 3. Δ is a type B building coming from an alternating bilinear form on \mathbb{F}_q^{2d+2} , or
- 4. Δ is a type B building coming from an Hermitian form on $\mathbb{F}_{q^2}^{2d+2}$ or $\mathbb{F}_{q^2}^{2d+3}$.

1-dimensional buildings

Proposition (classical)

A finite connected graph G is a building if and only if G is bipartite, $\delta(G) \ge 2$, diam(G) = m and g(G) = 2m for some $m \ge 2$ where $\delta(G)$ denotes the minimum degree and g(G) denotes the girth.

▲日▼▲□▼▲□▼▲□▼ □ ののの

1-dimensional buildings

Proposition (classical)

A finite connected graph G is a building if and only if G is bipartite, $\delta(G) \ge 2$, diam(G) = m and g(G) = 2m for some $m \ge 2$ where $\delta(G)$ denotes the minimum degree and g(G) denotes the girth.

Thick 1-dimensional buildings are non-planar:

- If $m \ge 3$, then there are no planar graphs with $\delta(G) \ge 3$ and $g(G) \ge 6$ by Euler's formula.
- If m = 2 then one can easily derive that $G = K_{k,\ell}$ for $k, \ell \geq 3$.

Type A buildings

Definition

Given a poset P, the order complex of P, denoted by $\Delta(P)$ is a simplicial complex with the vertex set P such that the faces of $\Delta(P)$ are chains in P.

Definition

By projective geometry we mean the poset P_q^d of all proper subspaces X of \mathbb{F}_q^d , where by proper we mean dim $X \notin \{0, d\}$. A *d*-dimensional building of type A is the order complex $\Delta(P_q^{d+2})$.

$$\Delta(P_2^{1+2}): \qquad \begin{array}{c} \langle e_1 + e_2 + e_3 \rangle \\ \langle e_1, e_2 + e_3 \rangle \\ \langle e_2 + e_3 \rangle \\ \langle e_2, e_3 \rangle \\ \langle e_2 \rangle \\ \langle e_1, e_2 \rangle \\ \langle e_1 \rangle \\ \langle e_$$

くして 前 ふかく ボット 御 くし

Van Kampen's obstruction

Van Kampen's obstruction

Given a simplicial complex K of dimension k, there is a certain cohomology obstruction $\vartheta(K)$ called Van Kampen's obstruction such that

• if $\vartheta(K) \neq 0$ then K does not embed into \mathbb{R}^{2k} , and also

• if $\vartheta(K) = 0$ and $k \neq 2$, then K embeds into \mathbb{R}^{2k} .

Van Kampen's obstruction

Van Kampen's obstruction

Given a simplicial complex K of dimension k, there is a certain cohomology obstruction $\vartheta(K)$ called Van Kampen's obstruction such that

- if $\vartheta(K) \neq 0$ then K does not embed into \mathbb{R}^{2k} , and also
- if $\vartheta(K) = 0$ and $k \neq 2$, then K embeds into \mathbb{R}^{2k} .

Remark

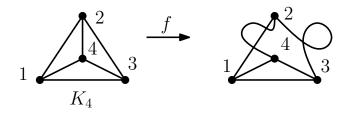
If k is fixed, then ∂(K) is computable in a time polynomial in the size of K.

• We have
$$\vartheta(D_3^{*(k+1)}) \neq 0$$
.

Almost injective maps

Definition

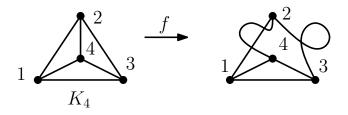
Let K be a simplicial complex, X be a topological space and $f: |K| \to X$ be a map. We say that f is almost injective if and only if for every two **disjoint** faces $\sigma, \tau \in K$ their images $f(|\sigma|)$ and $f(|\tau|)$ are disjoint as well.



Almost injective maps

Definition

Let K be a simplicial complex, X be a topological space and $f: |K| \to X$ be a map. We say that f is almost injective if and only if for every two **disjoint** faces $\sigma, \tau \in K$ their images $f(|\sigma|)$ and $f(|\tau|)$ are disjoint as well.



Proposition (Van Kampen, Shapiro, Wu)

Let K be a d-dimensional simplicial complex with $\vartheta(K) \neq 0$. Let L be another complex and $f: |K| \rightarrow |L|$ an almost injective map. Then L does not embed into \mathbb{R}^{2d} .

• Consider the complex
$$K = D_3^{*(d+1)}$$
; $\vartheta(K) \neq 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Consider the complex $K = D_3^{*(d+1)}$; $\vartheta(K) \neq 0$.
- Find a map $g: V(K) \rightarrow P_q^{d+2}$ with some suitable properties.

・ロト・日本・日本・日本・日本・日本・日本

- Consider the complex $K = D_3^{*(d+1)}$; $\vartheta(K) \neq 0$.
- Find a map $g: V(K) \rightarrow P_q^{d+2}$ with some suitable properties.
- ▶ g can be extended from vertices of K to the face poset F(K) of K, so that this extension g* is a poset map.

- Consider the complex $K = D_3^{*(d+1)}$; $\vartheta(K) \neq 0$.
- Find a map $g: V(K) \rightarrow P_q^{d+2}$ with some suitable properties.
- ▶ g can be extended from vertices of K to the face poset F(K) of K, so that this extension g* is a poset map.

• g^* induces a simplicial map $G: \Delta(\mathcal{F}(K)) \to \Delta(P_q^{d+2}).$

- Consider the complex $K = D_3^{*(d+1)}$; $\vartheta(K) \neq 0$.
- Find a map $g: V(K) \rightarrow P_q^{d+2}$ with some suitable properties.
- ▶ g can be extended from vertices of K to the face poset F(K) of K, so that this extension g* is a poset map.
- g^* induces a simplicial map $G: \Delta(\mathcal{F}(K)) \to \Delta(P_q^{d+2}).$
- $\Delta(\mathcal{F}(K))$ is the barycentric subdivision of K, and therefore $|\Delta(\mathcal{F}(K))| = |K|$.

- Consider the complex $K = D_3^{*(d+1)}$; $\vartheta(K) \neq 0$.
- Find a map $g: V(K) \rightarrow P_q^{d+2}$ with some suitable properties.
- ▶ g can be extended from vertices of K to the face poset F(K) of K, so that this extension g* is a poset map.
- g^* induces a simplicial map $G: \Delta(\mathcal{F}(K)) \to \Delta(P_q^{d+2}).$
- ► Δ(F(K)) is the barycentric subdivision of K, and therefore |Δ(F(K))| = |K|.
- From the properties of g it follows that the associated topological map |G|: |K| → |Δ(P^{d+2}_q)| is almost injective.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Consider the complex $K = D_3^{*(d+1)}$; $\vartheta(K) \neq 0$.
- Find a map $g: V(K) \rightarrow P_q^{d+2}$ with some suitable properties.
- ▶ g can be extended from vertices of K to the face poset F(K) of K, so that this extension g* is a poset map.
- g^* induces a simplicial map $G: \Delta(\mathcal{F}(K)) \to \Delta(P_q^{d+2}).$
- ► Δ(F(K)) is the barycentric subdivision of K, and therefore |Δ(F(K))| = |K|.
- From the properties of g it follows that the associated topological map |G|: |K| → |Δ(P_q^{d+2})| is almost injective.
- Therefore the proposition from the previous screen implies that |∆(P^{d+2}_q)| does not embed into ℝ^{2d}.

- Consider the complex $K = D_3^{*(d+1)}$; $\vartheta(K) \neq 0$.
- Find a map $g: V(K) \rightarrow P_q^{d+2}$ with some suitable properties.
- ▶ g can be extended from vertices of K to the face poset F(K) of K, so that this extension g* is a poset map.
- g^* induces a simplicial map $G \colon \Delta(\mathcal{F}(\mathcal{K})) \to \Delta(\mathcal{P}_q^{d+2}).$
- $\Delta(\mathcal{F}(K))$ is the barycentric subdivision of K, and therefore $|\Delta(\mathcal{F}(K))| = |K|$.
- From the properties of g it follows that the associated topological map |G|: |K| → |Δ(P_q^{d+2})| is almost injective.
- Therefore the proposition from the previous screen implies that |∆(P^{d+2}_q)| does not embed into ℝ^{2d}.

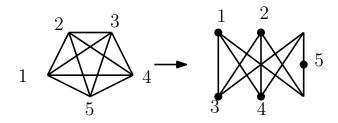
Remark

Buildings of type B arise from the posets other than P_q^{d+2} ; however, the approach is similar.

Intermezzo

Observation

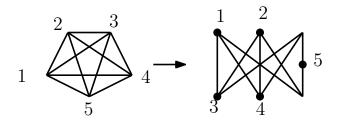
There is an almost injective map $f: K_5 \rightarrow K_{3,3}$:



Intermezzo

Observation

There is an almost injective map $f: K_5 \rightarrow K_{3,3}$:



Therefore by Kuratowski's theorem and the proposition we have:

Corollary

A graph G is non-planar if and only if there is an almost injective map $f: |K_5| \rightarrow |G|$. In addition, if G is nonplanar, then f can be taken "reasonably nice".

Questions and further research

Conjecture

Let Δ be a thick building of dimension d. Then Δ do not embed into \mathbb{R}^{2d} .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Questions and further research

Conjecture

Let Δ be a thick building of dimension d. Then Δ do not embed into \mathbb{R}^{2d} .

A possible approach:

Question

Does the high symmetry of buildings imply that they are higher dimensional analogues of expander graphs?

Question

Is there a notion of higher dimensional expansion of *d*-dimensional simplicial complexes such that all the complexes with high expansion do not embed into \mathbb{R}^{2d} .