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Semidefinite programming (SDP)

X < 0⇔ X is positive semidefinite (PSD)
⇔ there are vectors v1, . . . , vn so that Xi,j = vT

i vj (X is Gram
matrix)

SDP: inf C • X : (∀i) Ai • X = bi ,X < 0,X ∈ Rn×n

when all matrices are diagonal, we get classical linear
programming
effectively solvable – for every ε > 0 one can in time
polynomial to the size of the input and log 1

ε approximate
solution with precision ε.
in most cases, duality holds, similarly as for LP
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Vector coloring

– usual coloring of C5
1

2

12

3

– vector coloring of C5
We are trying to assign unit vectors to vertices of the graph,
so that that adjacent vertices are far apart.
– (variant: strict vector coloring – all edges have to be of the
same length)
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Vector coloring – definition

Definition (Karger, Motwani and Sudan, 1998)

Given: graph G with n vertices
Find: minimal t < 0 s.t. ∃f : V (G)→ Rn

|f (v)| = 1 ∀v ∈ V (G) and
〈f (u), f (v)〉 ≤ t ∀uv ∈ E(G).

t(G) := minimal such t .
χv (G) := 1− 1

t(G) . . . vector chromatic number

t(G) is defined by a semidefinite program =⇒ the minimum
exists and can be approximated with an absolute error < ε in
time polynomial in n and log 1

ε .
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Vector coloring – definition

Definition (Karger, Motwani and Sudan, 1998)

Given: graph G with n vertices
Find: minimal t < 0 s.t. ∃f : V (G)→ Rn

|f (v)| = 1 ∀v ∈ V (G) and
〈f (u), f (v)〉 = t ∀uv ∈ E(G).

t(G) := minimal such t .
χsv (G) := 1− 1

t(G) . . . strict vector chromatic number

χsv (G) = ϑ(Ḡ) =: ϑ̄(G)
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Original motivation – Θ

Definition (Shannon, 1940’s)
Shannon capacity – communication capacity of a channel

Θ(G) = lim
n→∞

n
√
α(G �G � · · ·�G)

Problem: Θ(C5) =?.

Theorem (Lovász, 1979)

There is a graph parameter ϑ(G), such that
ϑ(G) ≥ α(G)

ϑ(G � H) = ϑ(G)ϑ(H) ⇒ ϑ(G) ≥ Θ(G)

ϑ(C5) can be computed easily

. . . in fact ϑ(G) can be computed for any G in a polynomial time
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Approximating chromatic number

Theorem (Karger, Motwani, Sudan, 1998)

χv (G) ≤ k ⇒ χ(G) ≤ ∆1−2/k+o(1)

assuming k constant, ∆ = ∆(G).
Moreover, such coloring can be found in a polynomial time.

Theorem (Feige, Langberg, Schachtman, 2004)
This is basically best possible.
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Approximating chromatic number

Theorem (Coja-Oghlan, 2005)

Existence of a k-coloring of G(n,p) can be tested in average
polynomial time (provided pn ≥ ck2).

Idea: The probability that χv will not provide the desired bound
is exponentially small. Thus in such case we can use some
algorithm with exponential running time.
Required ingredience: understanding of the behaviour of
χv (G(n,p)) and ϑ(Gn,p).
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Approximating cubical chromatic number

Theorem (Š., 2010+)
For every graph G we have

χv (G) ≤ χq(G) ≤ π

2
χv (G) .

Here χq is the cubical chromatic number.
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Vector chromatic number as a worthy graph parameter

Observation

G→ H ⇒ χv (G) ≤ χv (H)

(And the same is true for χsv = ϑ̄.)

Thus χv is a “coloring-type” parameter and we may understand
it as a mean to understand the homomorphism structure of
graphs.
Compared to other such parameters (χ, χc , χf , . . . ) this one is
computationally tractable (there is a polynomial-time algorithm
to approximate it).
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Example 1: values for random graph

Coja-Oghlan – concentrated on an interval of width one
Computational evidence: converges to a normal distribution, if
p = const .
χsv (G(100, .5))

8 9 10 11 12
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However, if p = o(1), it seems that χv (G(n,p)) converges to a
two-point distribution, rather surprising phenomenon.
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Computational evidence: converges to a normal distribution, if
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However, if p = o(1), it seems that χv (G(n,p)) converges to a
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χsv (G(200, .1))

4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5



Intro – SDP, def’s Why My point of view

Example 2: product (Hedetniemi) conjecture

Observation

G × H → G

G × H → H

Thus: χ(G × H) ≤ min{χ(G), χ(H)}.

Conjecture (Hedetniemi, 1966)

χ(G × H) = min{χ(G), χ(H)}.

Note: a simple exercise is to show that
χ(G�H) = max{χ(G), χ(H)}: we have G,H → G�H and it is
not hard to actually provide the coloring.
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Example 2: product conjecture for ϑ̄

Observation

G × H → G

G × H → H

Thus: ϑ̄(G × H) ≤ min{ϑ̄(G), ϑ̄(H)}.

Conjecture (Š., 2011)

ϑ̄(G × H) = min{ϑ̄(G), ϑ̄(H)}.
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Example 2: product conjecture for ϑ̄ – approach

Compared to the normal chromatic number, we can use SDP
duality – so that we have a certificate for χv (G) ≥ c (whereas
for normal coloring one only has certificate for χ(G) ≤ c –
namely a coloring using c colors).

Using this idea and some variants of ϑ̄, one can find that

ϑ̄(G�H)ϑ̄(G × H) ≥ ϑ̄(G)ϑ̄(H) .

As ϑ̄(G�H) ≥ max{ϑ̄(G), ϑ̄(H)}, it’s enough to show also the
reverse inequality for ϑ̄(G�H).
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Example 2: product conjecture for ϑ̄ – matrix
completion

. . . it’s enough to show also the reverse inequality for ϑ̄(G�H)
(this was trivial for χ).
It leads to the following conjecture about matrices:

Conjecture (Š., 2012)
Let A, B be PSD matrices with 1’s on diagonals. Then

I ⊗ B + A⊗ I − I ⊗ I

can be completed to a PSD matrix.
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Example 3 – graphs on surfaces?

Can you show that χv (G) < 5 for every planar graph G?
Can you show version of the Hadwiger conjecture?
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