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Sections Problems

Trees

Grads (density vs depth)

Classification

What is a sparse graph?
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What is a sparse class?

A “sparse” class is a class such that . ..

one cannot find in the graphs of the class arbitrarily large parts which
are dense.
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What is a sparse class?

A “sparse” class is a class such that . ..

one cannot find in the graphs of the class arbitrarily large parts which
are dense.

in” means:
@ subgraphs, minors, homomorphic images?

“dense” means:

e Ki? Q(n?) edges? Q(n'°) copies of @ ?
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What is a sparse class?

A “sparse” class is a class such that . ..

one cannot find in the graphs of the class arbitrarily large parts which
are dense.

in” means:
@ subgraphs, minors, homomorphic images?

“dense” means:

e Ki? Q(n?) edges? Q(n'°) copies of @ ?

@ high chromatic number? large minimum degree?
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Every kind of minors ...

Minor Topological minor Immersion
5 > cty/logt = K; > ct? = K; d > ct = K;
Kostochka, Thomason Komlés and Szemerédi, DeVos et al.

Bollobas and Thomason
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Every kind of shallow minors ...

Shallow Topological

. Shallow Immersion
minor

Shallow Minor

<s+1

GVt

I

GVt C GV (t,s+1)
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Topological resolution of a class ¢

Shallow topological minors at depth t:

€ Vt={H: some < 2t-subdivision
of H is present in some G € ¢}

Example: €'V 0 is the monotone closure of .
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Topological resolution of a class ¢

Shallow topological minors at depth t:

€ Vt={H: some < 2t-subdivision
of H is present in some G € ¢}

Example: €'V 0 is the monotone closure of .

Topological resolution in time:

€ C €V0 C ¥V1 C ... C €Vt C ... CEVoo

time
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Every kind of resolutions ...

Minor resolution Topological resolution Immersion resolution
<2t
<s+1
EVt ) €t C €V (t,s+1)
EV0CCEVIC... €V0C-CEVIC... €V (0,1)C-CEV (t,t4+1)C...

@
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Grads (density vs depth) Trees

Taxonomy of Classes

A class € is somewhere dense if

JteEN: ®(€Vt)=o

Sections

Problems
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A class % is somewhere dense if
JreN: @(¢Vt)=c
% is nowhere dense if

VtEN: @(€Vt)<eo
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Taxonomy of Classes
A class % is somewhere dense if
JreN: @(¢Vt)=c
% is nowhere dense if
VtEN: @(€Vt)<eo
€ has bounded expansion if

VteN: d(€Vi) <o

Problems
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Taxonomy of Classes
A class % is somewhere dense if
JreN: @(¢Vt)=c
% is nowhere dense if
VtEN: @(F€VH) <o
€ has bounded expansion if

VtEN: d(€Vt) <o

= VteN: x(€Vt) <o (using Dvorak, 2006)

Problems
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Taxonomy of Classes
A class % is somewhere dense if
JreN: @(¢Vt)=c
% is nowhere dense if
VtEN: @(F€VH) <o
€ has bounded expansion if

VtEN: d(€Vt) <o
= VteN: x(€Vt) <o (using Dvorak, 2006)

Theorem (NeSetfil, POM, 2010)

Same classification if V or V instead of V .
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Examples

e Class of G without cycles of length < 1010"

@ Class of G such that A(G) < f(girth(G))

@ Random graphs G(n,d/n)
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Examples

@ Class of G without cycles of length < 1010"

Somewhere dense: 10" -subdivisions of K,,

@ Class of G such that A(G) < f(girth(G))

@ Random graphs G(n,d/n)

Problems
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Examples

@ Class of G without cycles of length < 1010"
Somewhere dense: 10" -subdivisions of K,,

@ Class of G such that A(G) < f(girth(G))
Nowhere dense: (G V1) < f(61)

@ Random graphs G(n,d/n)

Problems
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Examples

@ Class of G without cycles of length < 1010"
1
Somewhere dense: 10" -subdivisions of K,,

@ Class of G such that A(G) < f(girth(G))
Nowhere dense: (G V1) < f(61)

@ Random graphs G(n,d/n)
3 bounded expansion class %4 s.t. G(n,d/n) € Zq a.a.s.
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w-expansion and vertex separators

Theorem (Plotkin, Rao, Smith; 1994 — Wulff-Nilsen; 2011)

For integers I, h and a graph G of order n:
@ either o(GV (/logn)) > h,
@ or G has a vertex separator of size at most O(n/I+ Ih?log n)
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w-expansion and vertex separators

Theorem (Plotkin, Rao, Smith; 1994 — Wulff-Nilsen; 2011)

For integers I, h and a graph G of order n:
@ either o(GV (/logn)) > h,
@ or G has a vertex separator of size at most O(n/I+ Ih?log n)

Theorem (NeSettil, POM)
If € is a monotone class such that

- log @(€ Vr)

r—roo r

=0

then graphs in € have sublinear vertex separators
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Extremal logarithmic density of edges

Theorem (Jiang, 2010)

ex(n, K'=P)) = o(n' ).
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Extremal logarithmic density of edges

Theorem (Jiang, 2010)

€ C €0 C ...CEVtC ... C €V C .. C €V

C V=
1G]l > Cn|G['** Kn
||G||= number of edges |G|= number of vertices
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Extremal logarithmic density of edges

Theorem (Jiang, 2010)

ex(n, K'=P)) = o(n' ).

¢ CEV0C ... CEVtC ... CEVREC ... C EVeo
1G]l > CalG['** Kn
||G||= number of edges |G|= number of vertices
Hence:
log |G log ||G
limsup ol H>1+8 —  limsup allGll _

GEE Tt |Og]G| Ge? V1Y |09|G‘ - @
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Classification by logarithmic density of edges

Theorem (Class trichotomy — Nesetfil, POM, 2010)

Let % be an infinite class of graphs. Then

log ||G
sup limsup M

€ {—00,0,1,2}.
¢ Gezvt 09/Gl

@ bounded size class <= —o 0r0;
@ nowhere dense class <= —o,00r1;
@ somewhere dense class <— 2.
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Classification by logarithmic density of edges

Theorem (Class trichotomy — Nesetfil, POM, 2010)

Let % be an infinite class of graphs. Then

sup limsup log|| G
t cewwt 109Gl

€ {—,0,1,2}.

@ bounded size class <= —o 0r0;
@ nowhere dense class <= —o,00r1;
@ somewhere dense class <— 2.

and all the resolutions define the same trichotomy.
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Classification by logarithmic density of anything

Theorem (Counting dichotomy; NeS$etfil, POM, 2011)

Let € be an infinite class of graphs and let F be a graph with at least
one edge. Then

[ FCG
sup lim supM

S {_00707"'aa(F)7 |F|}
¢ cewwt 109|Gl

@ nowhere dense class <= < o(F);
@ somewhere dense class <= = |F|.
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Classification by logarithmic density of anything

Theorem (Counting dichotomy; NeS$etfil, POM, 2011)

Let € be an infinite class of graphs and let F be a graph with at least
one edge. Then

[ FCG
sup lim supM

S {_00707"'aa(F)7 |F|}
¢ cewwt 109|Gl

@ nowhere dense class < < a(F);
@ somewhere dense class < = |F

and all the resolutions define the same dichotomy.




General diagram

Bounded
expansion

vr, d(GV T) < 00
V7, X(GVT) < 00

Nowhere dense Somewhere dense
V7, w(G@VT) <00 Ir, w(GVT)=00

[m] =l =
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Grads (density vs depth)

Standardl Candle
(1 Candle Porer),

“Areais | Sq. Ft
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grad and top-grad

The greatest reduced average density (grad) with rank r of a graph G

is
[H]]
\% = —r
(G) max{ A

The top-grad with rank r of G is

:HEGVr}

7.(6) =max ] 1L . he g7
V.(G) = max |H‘.H€GVr

The imm-grad of rank (r, s) of G is

vV —
r.s(G) = max { H

He GV (r, s)}
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grad and top-grad

Theorem (Dvorak, 2007)

Letr,d > 1 be integers and let p = 4(4d)"tV*_ IfV,(G) > p, then G
contains a subgraph F' that is a < 2r-subdivision of a graph F with
minimum degree d.

Hence:

V(G) < V/(G) < 4(4V,(G))"+’




Classification Grads (density vs depth) Trees Sections Problems

grad and top-grad

Theorem (Dvorak, 2007)

Letr,d > 1 be integers and let p = 4(4d)"tV*_ IfV,(G) > p, then G
contains a subgraph F' that is a < 2r-subdivision of a graph F with
minimum degree d.

Hence:

V(G) < V/(G) < 4(4V,(G))"+’

Theorem (NeSetfil, POM)

Vs(GT r) < V5(GV r) < 242342y (G r) (1),

Notice that Vo(GV r) = V,(G) and Vo(GV r) = V,(G).



Classification Grads (density vs depth) Trees Sections Problems

Lexicographic product and imm-grad

Definition (lexicographic product)
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Lexicographic product and imm-grad

Definition (lexicographic product)

Theorem (NeSetfil, POM)

V(GeKp) < max(2r(p—1)+1,0%)V,(G) +p—1
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Lexicographic product and imm-grad

Definition (lexicographic product)

Problems

Theorem (NeSetfil, POM)

V(GeKp) < max(2r(p—1)+1,0%)V,(G) +p—1

A

Corollary

As
GVrC GV(r,s)C(GeKs)Vr

all of V,, 6, and %,JH are polynomially equivalent.
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Tree-depth

The tree-depth td(G) of a graph G is the
minimum height of a rooted forest Y s.t.

G C Closure(Y).

(extends to infinite graphs €9)
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Tree-depth

The tree-depth td(G) of a graph G is the
minimum height of a rooted forest Y s.t.

G C Closure(Y).

(extends to infinite graphs €9)

td(Pp) =log,(n+1)
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Properties

@ the tree-depth is minor-monotone:

Hminorof G = td(H) <td(G).
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Properties

@ the tree-depth is minor-monotone:
Hminorof G = td(H) <td(G).
@ for every graph G it holds

tw(G) < pw(G) < td(G) < (tw(G) + 1) log, |G-



Classification Grads (density vs depth) Trees Sections

Properties

@ the tree-depth is minor-monotone:
Hminorof G = td(H) <td(G).
@ for every graph G it holds
tw(G) < pw(G) <td(G) < (tw(G) +1) log, |G|.

@ there exists F : N — N such that every graph G of order greater
than £ (td(G)) has a non-trivial involutive automorphism.

Problems
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Further properties

Theorem (NeSettil, POM)

For a monotone class of graphs, the following conditions are
equivalent:

@ graphs in € have sublinear vertex separator,
@ graphs in € have sublinear tree-width,
@ graphs in € have sublinear path-width,
@ graphs in ¢ have sublinear tree-depth.
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Tree-depth of random graphs

Theorem (Perarnau, Serra, 2011)
LetGe ¥9(n,p).
o Ifp=w(n") then a.a.s. td(G) = n— o(n)
@ Ifp=c/nwithc > 0:
e ifc< 1, thena.a.s. td(G) = ©(loglogn);

e ifc=1, then a.a.s. td(G) = ©(log n);
e ifc>1, thena.a.s. td(G) = ©(n).
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First-order definition

Theorem (Ding, 1992 — Nesetfil, POM)
The poset of the graphs with tree depth at most t ordered by induced
subgraph inclusion C; is a well quasi-order.

A

Corollary (First-order definition)
For every integer t, there exists a first-order formula t; such that for
every graph G it holds

td(G) <t = GE 1.

A\
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Tree-depth of countable graphs

At most countable graphs G and H are elementarily equivalent if they
satisfy the same first-order properties. This is denoted by G = H.
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Tree-depth of countable graphs

At most countable graphs G and H are elementarily equivalent if they
satisfy the same first-order properties. This is denoted by G = H.
For & and $) equivalence classes of graphs for =, define the
ultrametric

diSt(@,fJ) _ 2—sup{n7 G="H, Ge@,HeSﬁ}'
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Tree-depth of countable graphs

At most countable graphs G and H are elementarily equivalent if they
satisfy the same first-order properties. This is denoted by G = H.
For & and $) equivalence classes of graphs for =, define the

ultrametric
dist(8,9) = o—sup{n, G="H, GE® HeH}

Theorem
Lett € N. Define

F; = {G finite: td(G) < t},
I = {G at most countable : td(G) < t}.

Then () =,dist) is a compact metric space, in which J; is dense.

4
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Recursive definition
The tree-depth can be computed inductively by:
maxy td(H), (H connected component of G)

td(G) = < 1+min, td(G—v), (G connected, v vertex of G)
0, if Gis empty



Trees

Recursive definition

The tree-depth can be computed inductively by:

maxy td(H), (H connected component of G)
td(G) = < 1+min, td(G—v), (G connected, v vertex of G)
0, if Gis empty

— can be considered as a game

o selection/deletion;
e cops/robber (Giannopoulou, Hunter and Thilikos, 2011).
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The selection/deletion game

@ Alice selects a connected subgraph;
@ Buddy deletes a vertex in the subgraph;
@ Alice wins if G is not empty after k steps. Otherwise, Buddy wins.
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The selection/deletion game

@ Alice selects a connected subgraph;
@ Buddy deletes a vertex in the subgraph;
@ Alice wins if G is not empty after k steps. Otherwise, Buddy wins.

Alice has a winning strategy

177
/'/////////

'7///’ ‘4

Buddy has a winning strategy
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The selection/deletion game

@ Alice selects a connected subgraph;
@ Buddy deletes a vertex in the subgraph;
@ Alice wins if G is not empty after k steps. Otherwise, Buddy wins.

Alice has a winning strategy

Buddy has a winning strategy
(rooted forest) @
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The selection/deletion game

@ Alice selects a connected subgraph;
@ Buddy deletes a vertex in the subgraph;
@ Alice wins if G is not empty after k steps. Otherwise, Buddy wins.

Alice has a winning strategy
(shelter)

Buddy has a winning strategy
(rooted forest) @
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Shelter

Definition (Giannopoulou, Hunter and Thilikos; 2011)

A shelter of a graph G is a collection . of non-empty subsets of
vertices of G, ordered by C, such that VA € .7:

@ G[A] is connected;

@ either Ais minimal, or

Vx €A 3dBe€.¥ covered by Asuch that x ¢ B.
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Shelter

Definition (Giannopoulou, Hunter and Thilikos; 2011)

A shelter of a graph G is a collection . of non-empty subsets of
vertices of G, ordered by C, such that VA € .7:

@ G[A] is connected;

@ either Ais minimal, or

Vx €A 3dBe€.¥ covered by Asuch that x ¢ B.

— A rooted forest defines a strategy for ;
A shelter defines a strategy for Alice.
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Paths and cycles

Let G be a connected graph, and let L be the length of a longest path
of G. Then

[logo(L+2)] <td(G) < L.
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Paths and cycles

Lemma
Let G be a connected graph, and let L be the length of a longest path
of G. Then

[logo(L+2)] <td(G) < L.

| A

Lemma

Let G be a biconnected graph, and let L be the length of a longest
cycle of G. Then

1+ [log, L] < td(G) < 14 (L—2)2.

N N YY)
ACACAL o

y
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Algorithmic aspects

@ No P approximation for td(G) with error < |G|®
(Bodlaender et al., 1995)
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Algorithmic aspects

@ No P approximation for td(G) with error < |G|®
(Bodlaender et al., 1995)

@ Depth-First Search ~» Y such that G C Closure(Y) and

log, (height(Y) +2) < td(G) < height(Y).

Problems



Trees

Algorithmic aspects

@ No P approximation for td(G) with error < |G|®
(Bodlaender et al., 1995)

@ Depth-First Search ~» Y such that G C Closure(Y) and
log, (height(Y) +2) < td(G) < height(Y).
@ Counting homomorphims from F to G in time

o219 |Flw(aG)|al).



Trees

Algorithmic aspects

@ No P approximation for td(G) with error < |G|®
(Bodlaender et al., 1995)

@ Depth-First Search ~» Y such that G C Closure(Y) and
log, (height(Y) +2) < td(G) < height(Y).
@ Counting homomorphims from F to G in time
0(2IF1(@) |Fld(G)|G]).

@ Homomorphism core in time £ (td(G)) |G



Trees

Algorithmic aspects

@ No P approximation for td(G) with error < |G|®
(Bodlaender et al., 1995)

@ Depth-First Search ~» Y such that G C Closure(Y) and
log, (height(Y) +2) < td(G) < height(Y).
@ Counting homomorphims from F to G in time
0(2IF1(@) |Fld(G)|G]).

@ Homomorphism core in time £ (td(G)) |G
e Isomorphism in time O(|G|"(%) log|G|)
(based on a standard vertex elimination order)
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Sections

u]
o)
I
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Principle

@ Color the vertices of G by N colors,

Problems
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Principle

@ Color the vertices of G by N colors,
@ consider the subgraphs G, induced by subsets / of < p colors.

>
>
s

= =
sUe IS S S ol

I < =l G
g Bl Bl B ol
T < = T
— == o o
< =8 .= 2 3
=1 E= S Sa 8
= S0 = = 5
== I =5 S =8 08
= = el = a8
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Low tree-width decompositions

Theorem (Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004)

For every proper minor closed class ¢ and integer p > 1, there is an
integer N, such that every graph G € € has a vertex partition into N
graphs such that any j < p parts form a graph with tree-width at most

p—1.
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Low tree-width decompositions

Theorem (Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004)

For every proper minor closed class ¢ and integer p > 1, there is an
integer N, such that every graph G € € has a vertex partition into N
graphs such that any j < p parts form a graph with tree-width at most

p—1.

This theorem relies on Robertson-Seymour structure theorem. l

@
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Low tree-depth decompositions

Chromatic numbers x,(G)

Xp(G) is the minimum of colors such that any subset / of < p colors
induce a subgraph G so that td(G;) < |/|.
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Low tree-depth decompositions

Chromatic numbers x,(G)

Xp(G) is the minimum of colors such that any subset / of < p colors
induce a subgraph G so that td(G;) < |/|.
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Low tree-depth decompositions

Chromatic numbers x,(G)

Xp(G) is the minimum of colors such that any subset / of < p colors
induce a subgraph G so that td(G;) < |/|.

X(G) = x1(G) < 22(G) < -+ < %p(G) < -+~ < 216/(G) = td(G).

Countable graphs

A countable graph G has x,(G) < N if and only if x,(H) < N holds for
every finite induced subgraph H of G.
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Low tree-depth decompositions

Let ¥ be an infinite class of graphs.

Theorem (NeSetfil and POM, 2006)

sup Xp(G) < oo — % has bounded expansion.
Ge¥
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Low tree-depth decompositions

Let ¥ be an infinite class of graphs.

Theorem (NeSetfil and POM, 2006)

sup Xp(G) < oo — % has bounded expansion.
Ge¥

Theorem (NeSettil and POM, 2010)

I
Vp, limsup w

=0 — % is nowhere dense.
Ger log|Gl
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Bounds on x,

Theorem (NeSetfil, POM)
Let G be a graph and let p be an integer. Then

v4(6) < ao-+1) (12720

%p(G) < Pr(Vap 241 /2(G))
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Bounds on x,

Theorem (NeSetfil, POM)
Let G be a graph and let p be an integer. Then

v4(6) < ao-+1) (12720

%p(G) < Pr(Vap 241 /2(G))

A

Theorem (NeSetfil, POM; 2011)

For every graph F of order p with at least one edge, and every
0 < € < 1, there exists ¢ > 0 such that for every graph G it holds

(#F C G) > |G|*)*e  —  x,(G) > c|G|¥/P.




Classification Grads (density vs depth)

Trees

Sections

(k, F)-sunflowers

Definition

A (k, F)-sunflower (C, %,..., %):

VX Eﬁ1,...VXk€ﬁk

GlCUX;U---UX ]~ F

Problems
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(k, F)-sunflowers

Definition

A (k, F)-sunflower (C, %,..., %):

L 2 VX1€§1,...VXk€yk
7=\

GlCUX;U---UX ]~ F

=k < a(F)and (#F C G) >

||:x
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Clearing & Stepping Up

Lemma (Nesetfil, POM; 2011)
Let F be a graph of orderp, letk € N and let0 < € < 1.

For every graph G such that (#F C G) > |G|*"¢ there exists in G a
(k+1,F)-sunflower (C, %1, ..., Fk+1) with

7(e,p)
|G|

Gn1/€
(Xp,(g ))

min |.Z;| >
1
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Clearing & Stepping Up

Lemma (NeSetfil, POM; 2011)

Let F be a graph of orderp, letk € N and let0 < € < 1.
For every graph G such that (#F C G) > |G|**¢ there exists in G a
(k+1,F)-sunflower (C, %1, ..., Fk+1) with

7(e,p)
|G|

Gn1/€
(Xp,(g ))

min |.Z;| >
1

Proof.
- - - e (16(G)) "
@ Consider a y,-coloring. Some section G; contains ( ° )

proportion of the copies of F and has tree-depth < p;
@ Encode F and G; on colored forests of height p;
@ Prove the lemma for colored forests by induction on the height.

@
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Clearing & Stepping Up

Lemma (Nesetfil, POM; 2011)

Let F be a graph of orderp, letk € N and let0 < € < 1.
For every graph G such that (#F C G) > |G|*"¢ there exists in G a
(k+1,F)-sunflower (C, %1, ..., Fk+1) with

7(e,p)
|G|

Gn1/€
(Xp,(g ))

min |.Z;| >
1

Hence 3G’ C G such that

|G,|Z(k+1)(’6’>1(8,p)
(xp(G))”s

p
G- !F\)k“

and (#FQG’)Z( P
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Weak coloring

G
=,

colx(G) < weolk(G) < colk(G)* (Kierstead, 2003)

weol(G) = td(G) (Nesetfil, POM)

Problems
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Weak coloring

Theorem (Zhu, 2008)

Let G be a graph, letk € N and letp = (k—1)/2.
® V,(G)+1 < weolk(G),
@ IfV,(G) < m then colx(G) < 1+ qx, where qgx is defined as
3 2/
g1 =2mandfori>1, g1 = q1q7" .
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Weak coloring

Theorem (Zhu, 2008)

Let G be a graph, letk € N and letp = (k—1)/2.
® V,(G)+1 < weolk(G),
@ IfV,(G) < m then colx(G) < 1+ qx, where qgx is defined as
3 2/
g1 =2mandfori>1, g1 = q1q7" .

Theorem (Zhu, 2008)
For every graph G, xp(G) < wcolg-1(G).
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Algorithmic version of LTDD theorem

fork=1t02° '+ 1do
Compute a fraternal augmentation.
end for
Compute depth p transitivity
Greedily color vertices according to the augmented graph
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Algorithmic version of LTDD theorem

fork=1t02° '+ 1do
Compute a fraternal augmentation.
end for
Compute depth p transitivity
Greedily color vertices according to the augmented graph

Theorem (NeSetfil, POM; 2008)

Procedure A computes a x,-coloring of G with

Np(G) < Pp(Vzp,er%(G)) colors in time O(N,(G) |Gl).
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Algorithmic version of LTDD theorem

fork=1t02° '+ 1do
Compute a fraternal augmentation.
end for
Compute depth p transitivity
Greedily color vertices according to the augmented graph

Theorem (NeSetfil, POM; 2008)

Procedure A computes a x,-coloring of G with

Np(G) < Pp(Vzp,er%(G)) colors in time O(N,(G) |Gl).

Also in time O(2° |G[?).
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Problems
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Checking first-order properties

Theorem (NeSetfil, POM)

Existential first-order properties may be checked in

@ O(n) time for G in a class with bounded expansion,
e n'*t°() time for G in a nowhere dense class.
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Checking first-order properties

Theorem (NeSetfil, POM)

Existential first-order properties may be checked in

@ O(n) time for G in a class with bounded expansion,
e n'+°(") time for G in a nowhere dense class.

Theorem (Dvorak, Kral, Thomas; 2010)

First-order properties may be checked in
@ O(n) time for G in a class with bounded expansion,
e n't°(") time for G in a class with locally bounded expansion.
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Checking first-order properties

Theorem (NeSetfil, POM)

Existential first-order properties may be checked in

@ O(n) time for G in a class with bounded expansion,
e n'+°(") time for G in a nowhere dense class.

Theorem (Dvorak, Kral, Thomas; 2010)

First-order properties may be checked in
@ O(n) time for G in a class with bounded expansion,
e n't°(") time for G in a class with locally bounded expansion.

| A

Problem

Can first-order properties be checked in n'to() time for Gin a
nowhere dense class? @
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First-order definable H-colorings

Definition

H-coloring is first-order definable in € if 3 formula ®(H) such that

VGe T : (G—=H) <<= (GE®(H)).
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First-order definable H-colorings

H-coloring is first-order definable in € if 3 formula ®(H) such that

VGe T : (G—=H) <<= (GE®(H)).

A\

Theorem (Nestfil, POM; 2008)

If € has bounded expansion then for every connected F there exists H
such that H-coloring is first-order definable on & and equivalent to
non-existence of a homomorphism from F.

A
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First-order definable H-colorings

H-coloring is first-order definable in € if 3 formula ®(H) such that

VGe T : (G—=H) <<= (GE®(H)).

A\

Theorem (Nestfil, POM; 2008)

If € has bounded expansion then for every connected F there exists H
such that H-coloring is first-order definable on & and equivalent to
non-existence of a homomorphism from F.

| A\

Problem

Let ¥ be hereditary, addable, closed by subdivisions.

Assume that Vg € N, 9H non bipartite with odd-girth > g such that
H-coloring is first-order definable in €. Is it true that 4" has bounded
expansion? @

A
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Graphs €-close from being very simple

Hyperfinite graphs

Assume % has bounded A and sublinear separators and let € > 0.
ANVYG € ¢ 3F C E(G): |F| < €|G| and G— F has no connected
component of order > N.
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Graphs €-close from being very simple

Hyperfinite graphs

Assume % has bounded A and sublinear separators and let € > 0.
ANVYG € ¢ 3F C E(G): |F| < €|G| and G— F has no connected
component of order > N.

Corollary of Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004

Assume % excludes some minor and let € > 0.
AN VG € € IF C E(G): |F| < €|G| and G— F has no connected
component of tree-width > N.
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Graphs €-close from being very simple

Hyperfinite graphs

Assume % has bounded A and sublinear separators and let € > 0.
ANVYG € ¢ 3F C E(G): |F| < €|G| and G— F has no connected
component of order > N.

Corollary of Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004

Assume % excludes some minor and let € > 0.
AN VG € € IF C E(G): |F| < €|G| and G— F has no connected
component of tree-width > N.

Problem

Assume % has sublinear separators and let € > 0.
INVYG € ¢ 3F C E(G): |F| < €|G| and G — F has no connected
component of tree-depth > N? @




Appendix




Infinite trees

Definition (Tree)

@ Atreeis a poset (T, <) such that for each t € T, the set
{s € T:s <t} is well-ordered by the relation <.

@ Foreach t € T, the order type of {s € T : s < t} is the height of .

@ The height of T is the least ordinal greater than the height of each
element of T.

@ T is rooted (single-rooted) if it contains a single t (the root of T)
with height 0.




Infinite trees

Definition (Tree)

@ Atreeis a poset (T, <) such that for each t € T, the set
{s € T:s <t} is well-ordered by the relation <.

@ Foreach t € T, the order type of {s € T : s < t} is the height of .

@ The height of T is the least ordinal greater than the height of each
element of T.

@ T is rooted (single-rooted) if it contains a single t (the root of T)
with height 0.

| \

tree-depth of infinite graphs

Assuming the axiom of choice, td(G) exists and

V(G)| = Rqg = d(G) < wg.
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