

From Structure to Algorithms

Jaroslav NEŠETŘIL

Patrice OSSONA DE MENDEZ

Charles University Praha, Czech Republic CAMS, CNRS/EHESS Paris, France

October 13-16 2011, Beroun

Classification	araas (density vs depin)	nees	Sections	Problems
	Class	ification		
	Pitrate Barrier			_

01----

What is a sparse graph?

What is a sparse class?

A "sparse" class is a class such that ...

one cannot find in the graphs of the class arbitrarily large parts which are dense.

What is a sparse class?

A "sparse" class is a class such that ...

one cannot find in the graphs of the class arbitrarily large parts which are dense.

"in" means:

• subgraphs, minors, homomorphic images?

"dense" means:

- K_t ? $\Omega(n^2)$ edges? $\Omega(n^{10})$ copies of \bigotimes ?
- high chromatic number? large minimum degree?

What is a sparse class?

A "sparse" class is a class such that ...

one cannot find in the graphs of the class arbitrarily large parts which are dense.

"in" means:

• subgraphs, minors, homomorphic images?

"dense" means:

•
$$K_t$$
? $\Omega(n^2)$ edges? $\Omega(n^{10})$ copies of X ?

• high chromatic number? large minimum degree?

What is a sparse class?

A "sparse" class is a class such that ...

one cannot find in the graphs of the class arbitrarily large parts which are dense.

"in" means:

• subgraphs, minors, homomorphic images?

"dense" means:

•
$$K_t$$
? $\Omega(n^2)$ edges? $\Omega(n^{10})$ copies of X ?

• high chromatic number? large minimum degree?

Every kind of minors ...

Every kind of shallow minors ...

Topological resolution of a class ${\mathscr C}$

Shallow topological minors at depth t:

 $\mathscr{C} \ \widetilde{\nabla} \ t = \{ H : \text{ some } \leq 2t \text{-subdivision} \$ of H is present in some $G \in \mathscr{C} \}.$

Example: $\mathscr{C} \ \widetilde{\nabla} \ \mathbf{0}$ is the monotone closure of \mathscr{C} .

Topological resolution in time:

 $\mathscr{C} \subseteq \mathscr{C} \widetilde{\nabla} \mathbf{0} \subseteq \mathscr{C} \widetilde{\nabla} \mathbf{1} \subseteq \ldots \subseteq \mathscr{C} \widetilde{\nabla} t \subseteq \ldots \subseteq \mathscr{C} \widetilde{\nabla} \infty$

time

Topological resolution of a class ${\mathscr C}$

Shallow topological minors at depth t:

 $\mathscr{C} \ \widetilde{\nabla} \ t = \{ H : \text{ some } \leq 2t \text{-subdivision} \$ of H is present in some $G \in \mathscr{C} \}.$

Example: $\mathscr{C} \widetilde{\nabla} \mathbf{0}$ is the monotone closure of \mathscr{C} .

Topological resolution in time:

$$\mathscr{C} \subseteq \mathscr{C} \widetilde{\nabla} \mathbf{0} \subseteq \mathscr{C} \widetilde{\nabla} \mathbf{1} \subseteq \ldots \subseteq \mathscr{C} \widetilde{\nabla} t \subseteq \ldots \subseteq \mathscr{C} \widetilde{\nabla} \infty$$

time

Problems

Taxonomy of Classes

A class ${\mathscr C}$ is *somewhere dense* if

$$\exists au \in \mathbb{N}: \quad \omega(\mathscr{C} \, \widetilde{arphi} \, au) = \infty$$

Taxonomy of Classes

A class ${\mathscr C}$ is *somewhere dense* if

$$\exists au \in \mathbb{N}: \quad \omega(\mathscr{C} \, \widetilde{\triangledown} \, au) = \infty$$

 ${\mathscr C}$ is nowhere dense if

$$\forall t \in \mathbb{N}: \quad \omega(\mathscr{C} \widetilde{\nabla} t) < \infty$$

Problems

Taxonomy of Classes

A class \mathscr{C} is *somewhere dense* if

$$\exists au \in \mathbb{N}: \quad \omega(\mathscr{C} \,\widetilde{\triangledown} \, au) = \infty$$

 ${\mathscr C}$ is nowhere dense if

$$\forall t \in \mathbb{N}: \quad \omega(\mathscr{C} \widetilde{\nabla} t) < \infty$$

 ${\mathscr C}$ has bounded expansion if

$$\forall t \in \mathbb{N}: \quad \overline{\mathrm{d}}(\mathscr{C} \widetilde{\nabla} t) < \infty$$

Problems

Taxonomy of Classes

A class \mathscr{C} is *somewhere dense* if

$$\exists au \in \mathbb{N}: \quad \omega(\mathscr{C} \,\widetilde{\triangledown} \, au) = \infty$$

 ${\mathscr C}$ is nowhere dense if

$$\forall t \in \mathbb{N}: \quad \omega(\mathscr{C} \widetilde{\nabla} t) < \infty$$

𝒞 has bounded expansion if

$$\begin{aligned} \forall t \in \mathbb{N} : \quad \overline{\mathrm{d}}(\mathscr{C} \,\widetilde{\nabla} \, t) < \infty \\ \iff \forall t \in \mathbb{N} : \quad \chi(\mathscr{C} \,\widetilde{\nabla} \, t) < \infty \qquad (\text{using Dvořák, 2006}) \end{aligned}$$

Problems

Taxonomy of Classes

A class ${\mathscr C}$ is somewhere dense if

$$\exists au \in \mathbb{N}: \quad \omega(\mathscr{C} \,\widetilde{\triangledown} \, au) = \infty$$

 ${\mathscr C}$ is nowhere dense if

$$\forall t \in \mathbb{N}: \quad \omega(\mathscr{C} \widetilde{\nabla} t) < \infty$$

𝒞 has *bounded expansion* if

$$\forall t \in \mathbb{N} : \quad \overline{d}(\mathscr{C} \widetilde{\nabla} t) < \infty$$

$$\iff \forall t \in \mathbb{N} : \quad \chi(\mathscr{C} \widetilde{\nabla} t) < \infty$$
(using Dvořák, 2006)

Theorem (Nešetřil, POM, 2010)

Same classification if ∇ or $\tilde{\nabla}$ instead of $\widetilde{\nabla}$.

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Exa	mples		

• Class of G without cycles of length $\leq 10^{10^{10}}$

• Class of *G* such that $\Delta(G) \leq f(\operatorname{girth}(G))$

• Random graphs G(n, d/n)

Classification	Grads (density vs depth)	Trees	Sections	Problems			
Examples							

- Class of *G* without cycles of length $\leq 10^{10^{10}}$ Somewhere dense: $10^{10^{10}}$ -subdivisions of K_n
- Class of *G* such that $\Delta(G) \leq f(\operatorname{girth}(G))$

• Random graphs G(n, d/n)

Classif	cation	Grads (density vs depth)	Trees	Sections	s Problems
			Examples		

- Class of *G* without cycles of length $\leq 10^{10^{10}}$ Somewhere dense: $10^{10^{10}}$ -subdivisions of K_n
- Class of G such that Δ(G) ≤ f(girth(G)) Nowhere dense: ω(G ♥ t) ≤ f(6t)
- Random graphs G(n, d/n)

Classification	Grads (density vs depth)	Trees	Sections	Problems				
Examples								

- Class of *G* without cycles of length $\leq 10^{10^{10}}$ Somewhere dense: $10^{10^{10}}$ -subdivisions of K_n
- Class of G such that Δ(G) ≤ f(girth(G)) Nowhere dense: ω(G ♥ t) ≤ f(6t)
- Random graphs G(n, d/n)
 ∃ bounded expansion class R_d s.t. G(n, d/n) ∈ R_d a.a.s.

ω -expansion and vertex separators

Theorem (Plotkin, Rao, Smith; 1994 — Wulff-Nilsen; 2011)

For integers I, h and a graph G of order n:

- either $\omega(G \bigtriangledown (l \log n)) \ge h$,
- or G has a vertex separator of size at most $O(n/I + Ih^2 \log n)$

Theorem (Nešetřil, POM)

If $\mathscr C$ is a monotone class such that

$$\lim_{\to\infty}\frac{\log \omega(\mathscr{C} \nabla r)}{r} = 0$$

then graphs in $\mathcal C$ have sublinear vertex separators

ω -expansion and vertex separators

Theorem (Plotkin, Rao, Smith; 1994 — Wulff-Nilsen; 2011)

For integers I, h and a graph G of order n:

- either $\omega(G \triangledown (l \log n)) \ge h$,
- or G has a vertex separator of size at most $O(n/I + Ih^2 \log n)$

Theorem (Nešetřil, POM)

If $\mathscr C$ is a monotone class such that

$$\lim_{r\to\infty}\frac{\log \omega(\mathscr{C} \nabla r)}{r} = 0$$

then graphs in C have sublinear vertex separators

Sections

Problems

Extremal logarithmic density of edges

Theorem (Jiang, 2010)

$$\operatorname{ex}(n, K_t^{(\leq p)}) = O(n^{1+\frac{10}{p}}).$$

||G|| = number of edges |G| = number of vertices

Hence:

$$\limsup_{G \in \mathscr{C} \ \widetilde{\forall} \ t} \frac{\log \|G\|}{\log |G|} > 1 + \varepsilon \implies \limsup_{G \in \mathscr{C} \ \widetilde{\forall} \ \frac{10t}{\varepsilon}} \frac{\log \|G\|}{\log |G|} = 2.$$

Extremal logarithmic density of edges

Theorem (Jiang, 2010)

$$\operatorname{ex}(n, K_t^{(\leq p)}) = O(n^{1+\frac{10}{p}}).$$

2.2.1

||G|| = number of edges |G| = number of vertices

Hence:

$$\limsup_{G \in \mathscr{C} \ \widetilde{\nabla} \ t} \frac{\log \|G\|}{\log |G|} > 1 + \varepsilon \implies \limsup_{G \in \mathscr{C} \ \widetilde{\nabla} \ \frac{10t}{\varepsilon}} \frac{\log \|G\|}{\log |G|} = 2.$$

Extremal logarithmic density of edges

Theorem (Jiang, 2010)

$$\operatorname{ex}(n, K_t^{(\leq p)}) = O(n^{1+\frac{10}{p}}).$$

2.2.1

||G|| = number of edges |G| = number of vertices

Hence:

$$\limsup_{G \in \mathscr{C} \ \widetilde{\nabla} \ t} \frac{\log \|G\|}{\log |G|} > 1 + \varepsilon \implies \limsup_{G \in \mathscr{C} \ \widetilde{\nabla} \ \frac{10t}{\varepsilon}} \frac{\log \|G\|}{\log |G|} = 2.$$

Classification by logarithmic density of edges

Theorem (Class trichotomy — Nešetřil, POM, 2010)

Let \mathscr{C} be an infinite class of graphs. Then

$$\sup_t \limsup_{G \in \mathscr{C} \ \widetilde{\nabla} \ t} \frac{\log \|G\|}{\log |G|} \in \{-\infty, 0, 1, 2\}.$$

- bounded size class $\iff -\infty$ or 0;
- nowhere dense class $\iff -\infty, 0 \text{ or } 1;$
- somewhere dense class \iff 2.

Classification by logarithmic density of edges

Theorem (Class trichotomy — Nešetřil, POM, 2010)

Let \mathscr{C} be an infinite class of graphs. Then

$$\sup_{t} \limsup_{G \in \mathscr{C} \ \widetilde{\nabla} \ t} \frac{\log \|G\|}{\log |G|} \in \{-\infty, 0, 1, 2\}.$$

- bounded size class $\iff -\infty$ or 0;
- nowhere dense class $\iff -\infty, 0 \text{ or } 1;$
- somewhere dense class \iff 2.

and all the resolutions define the same trichotomy.

▲ロト ▲帰 ト ▲目 ト ▲目 や ののの

Classification by logarithmic density of anything

Theorem (Counting dichotomy; Nešetřil, POM, 2011)

Let $\mathscr C$ be an infinite class of graphs and let F be a graph with at least one edge. Then

$$\sup_t \limsup_{G \in \mathscr{C} \ \widetilde{\vee} \ t} \frac{\log(\#F \subseteq G)}{\log |G|} \in \{-\infty, 0, \dots, \alpha(F), |F|\}.$$

- nowhere dense class $\iff \leq \alpha(F)$;
- somewhere dense class $\iff = |F|$.

Classification by logarithmic density of anything

Theorem (Counting dichotomy; Nešetřil, POM, 2011)

Let $\mathscr C$ be an infinite class of graphs and let F be a graph with at least one edge. Then

$$\sup_t \limsup_{G \in \mathscr{C} \ \widetilde{\vee} \ t} \frac{\log(\#F \subseteq G)}{\log |G|} \in \{-\infty, 0, \dots, \alpha(F), |F|\}.$$

- nowhere dense class $\iff \leq \alpha(F)$;
- somewhere dense class $\iff = |F|$.

and all the resolutions define the same dichotomy.

General diagram

Section

Problems

Grads (density vs depth)

Classification	Grads (density vs depth)	Trees	Sections	Problems
	grad an	id top-grad		

The greatest reduced average density (grad) with rank r of a graph G is

$$abla_r(G) = \max\left\{rac{\|H\|}{|H|} : H \in G \, \triangledown \, r
ight\}$$

The top-grad with rank r of G is

$$\widetilde{
abla}_r(G) = \max\left\{ rac{\|H\|}{|H|} : H \in G \,\widetilde{
abla} \, r
ight\}$$

The *imm-grad* of rank (r, s) of G is

$$\overset{\sim}{
abla}_{r,s}(G) = \max\left\{ \frac{\|H\|}{|H|} : H \in G\overset{\sim}{
abla}(r,s)
ight\}.$$

grad and top-grad

Theorem (Dvořák, 2007)

Let $r, d \ge 1$ be integers and let $p = 4(4d)^{(r+1)^2}$. If $\nabla_r(G) \ge p$, then G contains a subgraph F' that is a $\le 2r$ -subdivision of a graph F with minimum degree d.

Hence:

$$\widetilde{\nabla}_r(G) \leq \nabla_r(G) \leq 4(4\widetilde{\nabla}_r(G))^{(r+1)^2}$$

Theorem (Nešetřil, POM)

 $\widetilde{\nabla}_{s}(G\widetilde{\triangledown} r) \leq \widetilde{\nabla}_{s}(G \triangledown r) \leq 2^{r+2} 3^{(r+1)(r+2)} \widetilde{\nabla}_{s}(G\widetilde{\triangledown} r)^{(r+1)^{2}}$

Notice that $\widetilde{\nabla}_0(G \widetilde{\nabla} r) = \widetilde{\nabla}_r(G)$ and $\widetilde{\nabla}_0(G \nabla r) = \nabla_r(G)$.

grad and top-grad

Theorem (Dvořák, 2007)

Let $r, d \ge 1$ be integers and let $p = 4(4d)^{(r+1)^2}$. If $\nabla_r(G) \ge p$, then G contains a subgraph F' that is a $\le 2r$ -subdivision of a graph F with minimum degree d.

Hence:

$$\widetilde{\nabla}_r(G) \leq \nabla_r(G) \leq 4(4\widetilde{\nabla}_r(G))^{(r+1)^2}$$

Theorem (Nešetřil, POM)

$$\widetilde{\nabla}_{s}(G\,\widetilde{\triangledown}\,r) \leq \widetilde{\nabla}_{s}(G\,\triangledown\,r) \leq 2^{r+2} \, 3^{(r+1)(r+2)} \, \widetilde{\nabla}_{s}(G\,\widetilde{\triangledown}\,r)^{(r+1)^{2}}$$

Notice that $\widetilde{\nabla}_0(G \widetilde{\nabla} r) = \widetilde{\nabla}_r(G)$ and $\widetilde{\nabla}_0(G \nabla r) = \nabla_r(G)$.

Sections

Problems

Lexicographic product and imm-grad

Theorem (Nešetřil, POM)

$$\widetilde{
abla}_r(G \bullet K_p) \leq \max(2r(p-1)+1,p^2)\widetilde{
abla}_r(G)+p-1$$

Corollary

As

$$G \widetilde{\triangledown} r \subseteq G \widetilde{\triangledown} (r, s) \subseteq (G \bullet \overline{K}_s) \widetilde{\triangledown} r$$

all of $\nabla_r, \widetilde{\nabla}_r$ and $\widetilde{\nabla}_{r,r+1}$ are polynomially equivalent.

Lexicographic product and imm-grad

Theorem (Nešetřil, POM)

$$\widetilde{\nabla}_r(G \bullet K_p) \leq \max(2r(p-1)+1,p^2)\widetilde{\nabla}_r(G)+p-1$$

Corollary

As

$$G \widetilde{\triangledown} r \subseteq G \widetilde{\triangledown} (r,s) \subseteq (G \bullet \overline{K}_s) \widetilde{\triangledown} r$$

all of $\nabla_r, \widetilde{\nabla}_r$ and $\widetilde{\nabla}_{r,r+1}$ are polynomially equivalent.

Lexicographic product and imm-grad

Theorem (Nešetřil, POM)

$$\widetilde{
abla}_r(G ullet K_p) \leq \max(2r(p-1)+1,p^2)\widetilde{
abla}_r(G)+p-1$$

Corollary

As

$$G \,\widetilde{\triangledown}\, r \subseteq G \,\widetilde{\heartsuit}\, (r,s) \subseteq (G ullet \overline{K}_s) \,\widetilde{\triangledown}\, r$$

all of $\nabla_r, \widetilde{\nabla}_r$ and $\widetilde{\nabla}_{r,r+1}$ are polynomially equivalent.

Classifica	tion	Grads (density vs dep	pth)	Trees	Sec	tions	Problems
			Tree	S			
					< • • • • 7	▶ < 콜 ▶ < 콜 ▶ .	र्वि होच

 $td(P_n) = \log_2(n+1)$

Classification	Grads (density vs depth)	Trees	Sections	Problems			
Properties							
		•					

• the tree-depth is minor-monotone:

H minor of $G \implies \operatorname{td}(H) \leq \operatorname{td}(G)$.

• for every graph G it holds

$\operatorname{tw}(G) \le \operatorname{pw}(G) \le \operatorname{td}(G) \le (\operatorname{tw}(G) + 1) \log_2 |G|.$

 there exists F : N → N such that every graph G of order greater than F (td(G)) has a non-trivial involutive automorphism.

Classification	Grads (density vs depth)	Trees	Sections	Problems			
Properties							

• the tree-depth is minor-monotone:

$$H$$
 minor of $G \implies \operatorname{td}(H) \leq \operatorname{td}(G)$.

• for every graph G it holds

$\operatorname{tw}(G) \le \operatorname{pw}(G) \le \operatorname{td}(G) \le (\operatorname{tw}(G) + 1) \log_2 |G|.$

 there exists F : N → N such that every graph G of order greater than F(td(G)) has a non-trivial involutive automorphism.

Classification	Grads (density vs depth)	Trees	Sections	Problems			
D ecoded the set							
Properties							

• the tree-depth is minor-monotone:

$$H$$
 minor of $G \implies \operatorname{td}(H) \leq \operatorname{td}(G)$.

• for every graph G it holds

$$\operatorname{tw}(G) \le \operatorname{pw}(G) \le \operatorname{td}(G) \le (\operatorname{tw}(G) + 1) \log_2 |G|.$$

 there exists F : N → N such that every graph G of order greater than F(td(G)) has a non-trivial involutive automorphism.

Problems

Further properties

Theorem (Nešetřil, POM)

For a monotone class of graphs, the following conditions are equivalent:

- graphs in *C* have sublinear vertex separator,
- graphs in C have sublinear tree-width,
- graphs in C have sublinear path-width,
- graphs in C have sublinear tree-depth.

Tree-depth of random graphs

Theorem (Perarnau, Serra, 2011)

Let $G \in \mathscr{G}(n,p)$.

• If $p = \omega(n^{-1})$ then a.a.s. td(G) = n - o(n)

• If
$$p = c/n$$
 with $c > 0$:

- if c < 1, then a.a.s. $td(G) = \Theta(\log \log n)$;
- if c = 1, then a.a.s. $td(G) = \Theta(\log n)$;
- if c > 1, then a.a.s. $td(G) = \Theta(n)$.

Problems

First-order definition

Theorem (Ding, 1992 — Nešetřil, POM)

The poset of the graphs with tree depth at most t ordered by induced subgraph inclusion \subseteq_i is a well quasi-order.

Corollary (First-order definition)

For every integer t, there exists a first-order formula τ_t such that for every graph G it holds

$$\operatorname{td}(G) \leq t \qquad \Longleftrightarrow \qquad G \vDash \tau_t.$$

Tree-depth of countable graphs

At most countable graphs *G* and *H* are elementarily equivalent if they satisfy the same first-order properties. This is denoted by $G \equiv H$. For \mathfrak{G} and \mathfrak{H} equivalence classes of graphs for \equiv , define the ultrametric

 $dist(\mathfrak{G},\mathfrak{H}) = 2^{-sup\{n, G \equiv^{n} H, G \in \mathfrak{G}, H \in \mathfrak{H}\}}$

Theorem

Let $t \in \mathbb{N}$. Define

 $\mathcal{T}_{t} = \{ G \text{ finite} : td(G) \le t \},\$ $\mathcal{T}_{t}^{\star} = \{ G \text{ at most countable} : td(G) \le t \}$

Then $(\mathscr{T}_t^* = \operatorname{dist})$ is a compact metric space, in which \mathscr{T}_t is dense.

Tree-depth of countable graphs

At most countable graphs *G* and *H* are elementarily equivalent if they satisfy the same first-order properties. This is denoted by $G \equiv H$. For \mathfrak{G} and \mathfrak{H} equivalence classes of graphs for \equiv , define the ultrametric

dist(
$$\mathfrak{G},\mathfrak{H}$$
) = 2^{-sup{n, G \equiv ^{n}H, G \in \mathfrak{G}, H \in \mathfrak{H}}}

Theorem

Let $t \in \mathbb{N}$. Define

$$\mathcal{T}_{t} = \{ G \text{ finite} : td(G) \le t \},\$$
$$\mathcal{T}_{t}^{\star} = \{ G \text{ at most countable} : td(G) \le t \}$$

Then $(\mathscr{T}_t^* = \operatorname{dist})$ is a compact metric space, in which \mathscr{T}_t is dense.

Tree-depth of countable graphs

At most countable graphs *G* and *H* are elementarily equivalent if they satisfy the same first-order properties. This is denoted by $G \equiv H$. For \mathfrak{G} and \mathfrak{H} equivalence classes of graphs for \equiv , define the ultrametric

$$dist(\mathfrak{G},\mathfrak{H}) = 2^{-sup\{n, G \equiv^{n} H, G \in \mathfrak{G}, H \in \mathfrak{H}\}}$$

Theorem

Let $t \in \mathbb{N}$. Define

$$\mathcal{T}_{t} = \{ G \text{ finite} : td(G) \le t \},\$$
$$\mathcal{T}_{t}^{\star} = \{ G \text{ at most countable} : td(G) \le t \}$$

Then $(\mathscr{T}_t^* | \equiv, \text{dist})$ is a compact metric space, in which \mathscr{T}_t is dense.

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ののの

	a file tit a la	

Recursive definition

The tree-depth can be computed inductively by:

$$td(G) = \begin{cases} max_H td(H), & (H \text{ connected component of } G) \\ 1 + min_v td(G - v), & (G \text{ connected, } v \text{ vertex of } G) \\ 0, & \text{if } G \text{ is empty} \end{cases}$$

Classification	Grads (density vs depth)	Trees	Sections	Problems

Recursive definition

The tree-depth can be computed inductively by:

$$td(G) = \begin{cases} max_H td(H), & (H \text{ connected component of } G) \\ 1 + min_v td(G - v), & (G \text{ connected, } v \text{ vertex of } G) \\ 0, & \text{if } G \text{ is empty} \end{cases}$$

・ロト・(日)・(日)・(日)・(日)・

lassification	Grads (density vs depth)	Trees	Sections	Problems

- Alice selects a connected subgraph;
- Buddy deletes a vertex in the subgraph;
- Alice wins if G is not empty after k steps. Otherwise, Buddy wins.

Classification	Grads (density vs d	epth)	Trees	Sections	Problems

- Alice selects a connected subgraph;
- Buddy deletes a vertex in the subgraph;
- Alice wins if *G* is not empty after *k* steps. Otherwise, Buddy wins.

Alice has a winning strategy

Classification	Grads (density vs d	epth)	1	rees	Sections	Problems

- Alice selects a connected subgraph;
- Buddy deletes a vertex in the subgraph;
- Alice wins if *G* is not empty after *k* steps. Otherwise, Buddy wins.

Alice has a winning strategy

Classification	Grads (density vs depth)	Trees	Sections	Problems
	T I I I / / /	1.11		

- Alice selects a connected subgraph;
- Buddy deletes a vertex in the subgraph;
- Alice wins if *G* is not empty after *k* steps. Otherwise, Buddy wins.

Classification	Grads (density vs depth)	Trees	Sections	Problems	
Shelter					
Definiti	on (Giannopoulou, Hun	ter and Thilik	os; 2011)		
A shelter of a graph <i>G</i> is a collection \mathscr{S} of non-empty subsets of vertices of <i>G</i> , ordered by \subseteq , such that $\forall A \in \mathscr{S}$:					

- *G*[*A*] is connected;
- either A is minimal, or

 $\forall x \in A \quad \exists B \in \mathscr{S} \text{ covered by } A \text{ such that } x \notin B.$

ightarrow A rooted forest defines a strategy for Buddy;

A shelter defines a strategy for Alice.

Classifica	on Grads (density vs depth)	Trees	Sections	Problems	
Shelter					
	Pefinition (Giannopoulou, Hunt	er and Thili	kos; 2011)		
ł	shelter of a graph G is a collecti ertices of G, ordered by \subseteq , such	on \mathscr{S} of non that $\forall A \in \mathscr{S}$	-empty subsets of		

- G[A] is connected;
- either A is minimal, or

 $\forall x \in A \quad \exists B \in \mathscr{S} \text{ covered by } A \text{ such that } x \notin B.$

→ A rooted forest defines a strategy for Buddy; A shelter defines a strategy for Alice.

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Dethe e			
	Fains a	ind cycles		

Lemma

Let G be a connected graph, and let L be the length of a longest path of G. Then

$$\lceil \log_2(L+2) \rceil \leq \operatorname{td}(G) \leq L.$$

_emma

Let G be a biconnected graph, and let L be the length of a longest cycle of G. Then

 $1 + \lceil \log_2 L \rceil \le \operatorname{td}(G) \le 1 + (L-2)^2.$

Lemma

Let G be a connected graph, and let L be the length of a longest path of G. Then

$$\lceil \log_2(L+2) \rceil \leq \operatorname{td}(G) \leq L.$$

Lemma

Let G be a biconnected graph, and let L be the length of a longest cycle of G. Then

$$1+\lceil \log_2 L\rceil \leq \operatorname{td}(G) \leq 1+(L-2)^2.$$

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Algorithn	nic aspects	5	

- No P approximation for td(G) with error < |G|^ε (Bodlaender et al., 1995)
- Depth-First Search \rightsquigarrow Y such that $G \subseteq$ Closure(Y) and

• Counting homomorphims from F to G in time

 $O(2^{|F|\operatorname{td}(G)}|F|\operatorname{td}(G)|G|).$

- Homomorphism core in time F(td(G))|G
- Isomorphism in time O(|G|^{td(G)} log|G|) (based on a standard vertex elimination order)

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Algorithm	nic aspects	3	

- No P approximation for td(G) with error < |G|^ε (Bodlaender et al., 1995)
- Depth-First Search \rightsquigarrow Y such that $G \subseteq \text{Closure}(Y)$ and

• Counting homomorphims from F to G in time

 $O(2^{|F|\operatorname{td}(G)}|F|\operatorname{td}(G)|G|).$

- Homomorphism core in time F(td(G))|G
- Isomorphism in time O(|G|^{td(G)} log|G|) (based on a standard vertex elimination order)

Classification	Grads (density vs depth)	Trees	Sections	Problems	
	Algorithmic aspects				

- No P approximation for td(G) with error < |G|^ε (Bodlaender et al., 1995)
- Depth-First Search \rightsquigarrow Y such that $G \subseteq \text{Closure}(Y)$ and

• Counting homomorphims from *F* to *G* in time

 $O(2^{|F|\operatorname{td}(G)}|F|\operatorname{td}(G)|G|).$

- Homomorphism core in time F(td(G))|G
- Isomorphism in time O(|G|^{td(G)} log|G|) (based on a standard vertex elimination order)

Classification	Grads (density vs depth)	Trees	Sections	Problems
Algorithmic aspects				

- No P approximation for td(G) with error < |G|^ε (Bodlaender et al., 1995)
- Depth-First Search \rightsquigarrow Y such that $G \subseteq \text{Closure}(Y)$ and

• Counting homomorphims from F to G in time

 $O(2^{|F|\operatorname{td}(G)}|F|\operatorname{td}(G)|G|).$

- Homomorphism core in time F(td(G))|G|
- Isomorphism in time O(|G|^{td(G)} log|G|) (based on a standard vertex elimination order)

Classification	Grads (density vs depth)	Trees	Sections	Problems	
Algorithmic aspects					

- No P approximation for td(G) with error < |G|^ε (Bodlaender et al., 1995)
- Depth-First Search \rightsquigarrow Y such that $G \subseteq \text{Closure}(Y)$ and

• Counting homomorphims from F to G in time

 $O(2^{|F|\operatorname{td}(G)}|F|\operatorname{td}(G)|G|).$

- Homomorphism core in time F(td(G))|G|
- Isomorphism in time O(|G|^{td(G)} log |G|) (based on a standard vertex elimination order)

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Se	ctions		
		S A		
	D	H		
	B			
	/ .			

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Pri	nciple		

- Color the vertices of G by N colors,
- consider the subgraphs G_l induced by subsets l of $\leq p$ colors.

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Pri	nciple		

- Color the vertices of G by N colors,
- consider the subgraphs G_l induced by subsets l of $\leq p$ colors.

Low tree-width decompositions

Theorem (Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004)

For every proper minor closed class \mathscr{C} and integer $p \ge 1$, there is an integer N, such that every graph $G \in \mathscr{C}$ has a vertex partition into N graphs such that any $j \le p$ parts form a graph with tree-width at most p-1.

Remark

This theorem relies on Robertson-Seymour structure theorem.

Low tree-width decompositions

Theorem (Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004)

For every proper minor closed class \mathscr{C} and integer $p \ge 1$, there is an integer N, such that every graph $G \in \mathscr{C}$ has a vertex partition into N graphs such that any $j \le p$ parts form a graph with tree-width at most p-1.

Remark

This theorem relies on Robertson-Seymour structure theorem.

Low tree-depth decompositions

Chromatic numbers $\chi_{\rho}(G)$

 $\chi_p(G)$ is the minimum of colors such that any subset I of $\leq p$ colors induce a subgraph G_l so that $td(G_l) \leq |I|$.

$\chi(G) = \chi_1(G) \leq \chi_2(G) \leq \cdots \leq \chi_p(G) \leq \cdots \leq \chi_{|G|}(G) = \operatorname{td}(G).$

Countable graphs

A countable graph G has $\chi_p(G) \le N$ if and only if $\chi_p(H) \le N$ holds for every finite induced subgraph H of G.

Low tree-depth decompositions

Chromatic numbers $\chi_{\rho}(G)$

 $\chi_p(G)$ is the minimum of colors such that any subset I of $\leq p$ colors induce a subgraph G_l so that $td(G_l) \leq |I|$.

$$\chi(G) = \chi_1(G) \leq \chi_2(G) \leq \cdots \leq \chi_p(G) \leq \cdots \leq \chi_{|G|}(G) = \operatorname{td}(G).$$

Countable graphs

A countable graph G has $\chi_p(G) \le N$ if and only if $\chi_p(H) \le N$ holds for every finite induced subgraph H of G.

Low tree-depth decompositions

Chromatic numbers $\chi_{\rho}(G)$

 $\chi_p(G)$ is the minimum of colors such that any subset I of $\leq p$ colors induce a subgraph G_l so that $td(G_l) \leq |I|$.

$$\chi(G) = \chi_1(G) \leq \chi_2(G) \leq \cdots \leq \chi_p(G) \leq \cdots \leq \chi_{|G|}(G) = \operatorname{td}(G).$$

Countable graphs

A countable graph *G* has $\chi_p(G) \le N$ if and only if $\chi_p(H) \le N$ holds for every finite induced subgraph *H* of *G*.

Low tree-depth decompositions

Let $\ensuremath{\mathscr{C}}$ be an infinite class of graphs.

Theorem (Nešetřil and POM, 2006)

 $\sup_{G\in\mathscr{C}}\chi_p(G)<\infty$

$$\iff$$

 ${\mathscr C}$ has bounded expansion.

Theorem (Nešetřil and POM, 2010)

$$\forall p, \limsup_{G \in \mathscr{C}} \frac{\log \chi_p(G)}{\log |G|} = 0 \qquad \Longleftrightarrow \qquad \mathscr{C} \text{ is nowhere dense}$$

Low tree-depth decompositions

Let $\ensuremath{\mathscr{C}}$ be an infinite class of graphs.

Theorem (Nešetřil and POM, 2006)

 $\sup_{G\in\mathscr{C}}\chi_p(G)<\infty$

$$\iff$$

 ${\mathscr C}$ has bounded expansion.

Theorem (Nešetřil and POM, 2010)

$$\forall p, \limsup_{G \in \mathscr{C}} \frac{\log \chi_p(G)}{\log |G|} = 0 \qquad \Longleftrightarrow$$

 ${\mathscr C}$ is nowhere dense.

Bounds on χ_{ρ}

Theorem (Nešetřil, POM)

Let G be a graph and let p be an integer. Then

$$egin{aligned}
abla_{
ho}(G) &\leq (2
ho+1) inom{\chi_{2
ho+2}(G)}{2
ho+2} \ \chi_{
ho}(G) &\leq P_r(\widetilde{
abla}_{2^{p-2}+1/2}(G)) \end{aligned}$$

Theorem (Nešetřil, POM; 2011)

For every graph F of order p with at least one edge, and every $0 < \varepsilon < 1$, there exists c > 0 such that for every graph G it holds

 $(\#F\subseteq G)>|G|^{lpha(F)+arepsilon}\implies \chi_{
ho}(G)>c\,|G|^{arepsilon/
ho}.$

Bounds on χ_p

Theorem (Nešetřil, POM)

Let G be a graph and let p be an integer. Then

$$egin{aligned}
abla_{
ho}(G) &\leq (2
ho+1) inom{\chi_{2
ho+2}(G)}{2
ho+2} \ \chi_{
ho}(G) &\leq P_r(\widetilde{
abla}_{2^{p-2}+1/2}(G)) \end{aligned}$$

Theorem (Nešetřil, POM; 2011)

For every graph F of order p with at least one edge, and every $0 < \varepsilon < 1$, there exists c > 0 such that for every graph G it holds

$$(\#F\subseteq G)>|G|^{lpha(F)+arepsilon} \implies \chi_
ho(G)>c|G|^{arepsilon/
ho}.$$

Sections

Problems

(k, F)-sunflowers

Definition

A (k, F)-sunflower $(C, \mathscr{F}_1, \ldots, \mathscr{F}_k)$:

 $\forall X_1 \in \mathscr{F}_1, \ldots \forall X_k \in \mathscr{F}_k$

 $G[C\cup X_1\cup\cdots\cup X_k]\approx F$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

(k, F)-sunflowers

Definition

A (k, F)-sunflower $(C, \mathscr{F}_1, \ldots, \mathscr{F}_k)$:

 $\forall X_1 \in \mathscr{F}_1, \ldots \forall X_k \in \mathscr{F}_k$

 $G[C\cup X_1\cup\cdots\cup X_k]\approx F$

$$r \Rightarrow k \leq \alpha(F)$$
 and $(\#F \subseteq G) \geq \prod_{i=1}^{k} |\mathscr{F}_i|$

Clearing & Stepping Up

Lemma (Nešetřil, POM; 2011)

Let F be a graph of order p, let $k \in \mathbb{N}$ and let $0 < \varepsilon < 1$. For every graph G such that $(\#F \subseteq G) > |G|^{k+\varepsilon}$ there exists in G a (k+1,F)-sunflower $(C,\mathscr{F}_1,\ldots,\mathscr{F}_{k+1})$ with

$$\min_{i} |\mathscr{F}_{i}| \geq \left(\frac{|G|}{\binom{\chi_{\rho}(G)}{p}^{1/\varepsilon}}\right)^{\tau(\varepsilon,p)}$$

Clearing & Stepping Up

Lemma (Nešetřil, POM; 2011)

Let F be a graph of order p, let $k \in \mathbb{N}$ and let $0 < \varepsilon < 1$. For every graph G such that $(\#F \subseteq G) > |G|^{k+\varepsilon}$ there exists in G a (k+1,F)-sunflower $(C,\mathscr{F}_1,\ldots,\mathscr{F}_{k+1})$ with

$$\min_{i} |\mathscr{F}_{i}| \geq \left(\frac{|G|}{\left(\frac{\chi_{\rho}(G)}{\rho}\right)^{1/\varepsilon}}\right)^{\tau(\varepsilon,\rho)}$$

Proof.

- Consider a χ_p-coloring. Some section G_l contains (^{χ_p(G)}_p)⁻¹ proportion of the copies of F and has tree-depth ≤ p;
- Encode F and G_l on colored forests of height p;
- Prove the lemma for colored forests by induction on the height.

Clearing & Stepping Up

Lemma (Nešetřil, POM; 2011)

Let F be a graph of order p, let $k \in \mathbb{N}$ and let $0 < \varepsilon < 1$. For every graph G such that $(\#F \subseteq G) > |G|^{k+\varepsilon}$ there exists in G a (k+1,F)-sunflower $(C,\mathscr{F}_1,\ldots,\mathscr{F}_{k+1})$ with

$$\min_{i} |\mathscr{F}_{i}| \geq \left(\frac{|G|}{\left(\frac{\chi_{\rho}(G)}{\rho}\right)^{1/\varepsilon}}\right)^{\tau(\varepsilon,\rho)}$$

Hence $\exists G' \subseteq G$ such that

$$|G'| \ge (k+1) \left(\frac{|G|}{\binom{\chi_p(G)}{p}^{1/\varepsilon}}\right)^{\tau(\varepsilon,p)}$$

and $(\#F \subseteq G') \ge \left(\frac{|G'| - |F|}{k+1}\right)^{k+1}$.

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Mook	coloring		
	vear	Coloring		

$${
m col}_k(G) \le {
m wcol}_k(G) \le {
m col}_k(G)^k$$
 (Kierstead, 2003)
 ${
m wcol}_{\infty}(G) = {
m td}(G)$ (Nešetřil, POM)

Classification	Grads (density vs depth)	Trees	Sections	Problems

Weak coloring

Theorem (Zhu, 2008)

Let G be a graph, let $k \in \mathbb{N}$ and let p = (k-1)/2.

- $\nabla_{\rho}(G) + 1 \leq \operatorname{wcol}_{k}(G)$,
- If $\nabla_p(G) \le m$ then $\operatorname{col}_k(G) \le 1 + q_k$, where q_k is defined as $q_1 = 2m$ and for $i \ge 1$, $q_{i+1} = q_1 q_i^{2i^2}$.

Theorem (Zhu, 2008)

For every graph G, $\chi_p(G) \leq \operatorname{wcol}_{2^{p-1}}(G)$.

Classification	Grads (density vs depth)	Trees	Sections	Problems

Weak coloring

Theorem (Zhu, 2008)

Let G be a graph, let $k \in \mathbb{N}$ and let p = (k-1)/2.

•
$$\nabla_{\rho}(G) + 1 \leq \operatorname{wcol}_{k}(G)$$
,

• If $\nabla_p(G) \le m$ then $\operatorname{col}_k(G) \le 1 + q_k$, where q_k is defined as $q_1 = 2m$ and for $i \ge 1$, $q_{i+1} = q_1 q_i^{2i^2}$.

Theorem (Zhu, 2008)

For every graph G, $\chi_p(G) \leq \operatorname{wcol}_{2^{p-1}}(G)$.

Algorithmic version of LTDD theorem

Procedure A

for k = 1 to $2^{p-1} + 1$ do

Compute a fraternal augmentation.

end for

Compute depth p transitivity

Greedily color vertices according to the augmented graph

Theorem (Nešetřil, POM; 2008)

Procedure A computes a χ_p -coloring of G with $N_p(G) \le P_p(\widetilde{\nabla}_{2^{p-2}+\frac{1}{2}}(G))$ colors in time $O(N_p(G)|G|)$.

Remark

Also in time $O(2^p |G|^2)$.

Algorithmic version of LTDD theorem

Procedure A

for k = 1 to $2^{p-1} + 1$ do

Compute a fraternal augmentation.

end for

Compute depth p transitivity

Greedily color vertices according to the augmented graph

Theorem (Nešetřil, POM; 2008)

Procedure A computes a χ_p -coloring of G with $N_p(G) \leq P_p(\widetilde{\nabla}_{2^{p-2}+\frac{1}{2}}(G))$ colors in time $O(N_p(G)|G|)$.

Remark

Also in time $O(2^p |G|^2)$

Algorithmic version of LTDD theorem

Procedure A

for k = 1 to $2^{p-1} + 1$ do

Compute a fraternal augmentation.

end for

Compute depth p transitivity

Greedily color vertices according to the augmented graph

Theorem (Nešetřil, POM; 2008)

Procedure A computes a χ_p -coloring of G with $N_p(G) \leq P_p(\widetilde{\nabla}_{2^{p-2}+\frac{1}{2}}(G))$ colors in time $O(N_p(G)|G|)$.

Remark

Also in time $O(2^p |G|^2)$.

Classification	Grads (density vs depth)	Trees	Sections	Problems
	Pro	blems		

Checking first-order properties

Theorem (Nešetřil, POM)

Existential first-order properties may be checked in

- O(n) time for G in a class with bounded expansion,
- $n^{1+o(1)}$ time for G in a nowhere dense class.

Theorem (Dvořák, Kráľ, Thomas; 2010)

First-order properties may be checked in

- O(n) time for G in a class with bounded expansion,
- $n^{1+o(1)}$ time for G in a class with locally bounded expansion.

Problem

Can first-order properties be checked in $n^{1+o(1)}$ time for G in a nowhere dense class?

▲ロト ▲得ト ▲ヨト ▲ヨト ヨヨ のの()

Checking first-order properties

Theorem (Nešetřil, POM)

Existential first-order properties may be checked in

- O(n) time for G in a class with bounded expansion,
- $n^{1+o(1)}$ time for G in a nowhere dense class.

Theorem (Dvořák, Kráľ, Thomas; 2010)

First-order properties may be checked in

- O(n) time for G in a class with bounded expansion,
- $n^{1+o(1)}$ time for G in a class with locally bounded expansion.

Problem

Can first-order properties be checked in $n^{1+o(1)}$ time for G in a nowhere dense class?

▲ロト ▲得ト ▲ヨト ▲ヨト ヨヨ のの()

正則 ((四))(日)((四))((日))

Checking first-order properties

Theorem (Nešetřil, POM)

Existential first-order properties may be checked in

- O(n) time for G in a class with bounded expansion,
- $n^{1+o(1)}$ time for G in a nowhere dense class.

Theorem (Dvořák, Kráľ, Thomas; 2010)

First-order properties may be checked in

- O(n) time for G in a class with bounded expansion,
- $n^{1+o(1)}$ time for G in a class with locally bounded expansion.

Problem

Can first-order properties be checked in $n^{1+o(1)}$ time for *G* in a nowhere dense class?

First-order definable *H*-colorings

Definition

H-coloring is first-order definable in \mathscr{C} if \exists formula $\Phi(H)$ such that

$$\forall G \in \mathscr{C} : (G \rightarrow H) \iff (G \vDash \Phi(H)).$$

Theorem (Neštřil, POM; 2008)

If \mathscr{C} has bounded expansion then for every connected F there exists H such that H-coloring is first-order definable on \mathscr{C} and equivalent to non-existence of a homomorphism from F.

Problem

Let \mathscr{C} be hereditary, addable, closed by subdivisions. Assume that $\forall g \in \mathbb{N}$, $\exists H$ non bipartite with odd-girth > g such that *H*-coloring is first-order definable in \mathscr{C} . Is it true that \mathscr{C} has bounded expansion?

First-order definable *H*-colorings

Definition

H-coloring is first-order definable in \mathscr{C} if \exists formula $\Phi(H)$ such that

$$\forall G \in \mathscr{C} : (G
ightarrow H) \iff (G \vDash \Phi(H)).$$

Theorem (Neštřil, POM; 2008)

If \mathscr{C} has bounded expansion then for every connected F there exists H such that H-coloring is first-order definable on \mathscr{C} and equivalent to non-existence of a homomorphism from F.

Problem

Let \mathscr{C} be hereditary, addable, closed by subdivisions. Assume that $\forall g \in \mathbb{N}, \exists H$ non bipartite with odd-girth > g such that *H*-coloring is first-order definable in \mathscr{C} . Is it true that \mathscr{C} has bounded expansion?

First-order definable *H*-colorings

Definition

H-coloring is first-order definable in \mathscr{C} if \exists formula $\Phi(H)$ such that

$$\forall G \in \mathscr{C} : (G
ightarrow H) \iff (G \vDash \Phi(H)).$$

Theorem (Neštřil, POM; 2008)

If \mathscr{C} has bounded expansion then for every connected F there exists H such that H-coloring is first-order definable on \mathscr{C} and equivalent to non-existence of a homomorphism from F.

Problem

Let \mathscr{C} be hereditary, addable, closed by subdivisions. Assume that $\forall g \in \mathbb{N}, \exists H \text{ non bipartite with odd-girth} > g$ such that *H*-coloring is first-order definable in \mathscr{C} . Is it true that \mathscr{C} has bounded expansion?

Graphs ε -close from being very simple

Hyperfinite graphs

Assume \mathscr{C} has bounded Δ and sublinear separators and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of order > N.

Corollary of Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004

Assume \mathscr{C} excludes some minor and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of tree-width > N.

Problem

Assume \mathscr{C} has sublinear separators and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of tree-depth > N?

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④ ○○

Graphs ε -close from being very simple

Hyperfinite graphs

Assume \mathscr{C} has bounded Δ and sublinear separators and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of order > N.

Corollary of Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004

Assume \mathscr{C} excludes some minor and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of tree-width > N.

Problem

Assume \mathscr{C} has sublinear separators and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of tree-depth > N?

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④ ○○

Graphs ε -close from being very simple

Hyperfinite graphs

Assume \mathscr{C} has bounded Δ and sublinear separators and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of order > N.

Corollary of Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004

Assume \mathscr{C} excludes some minor and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of tree-width > N.

Problem

Assume \mathscr{C} has sublinear separators and let $\varepsilon > 0$. $\exists N \forall G \in \mathscr{C} \exists F \subset E(G): |F| < \varepsilon |G|$ and G - F has no connected component of tree-depth > N?

Appendix

Infinite trees

Definition (Tree)

- A tree is a poset (*T*, <) such that for each *t* ∈ *T*, the set {*s* ∈ *T* : *s* < *t*} is well-ordered by the relation <.
- For each $t \in T$, the order type of $\{s \in T : s < t\}$ is the height of t.
- The height of *T* is the least ordinal greater than the height of each element of *T*.
- *T* is rooted (single-rooted) if it contains a single *t* (the root of *T*) with height 0.

tree-depth of infinite graphs

Assuming the axiom of choice, td(G) exists and

$$|V(G)| = \aleph_{\alpha} \implies \operatorname{td}(G) \leq \omega_{\alpha}.$$

▲ロト ▲得ト ▲ヨト ▲ヨト 三国 ののの

Infinite trees

Definition (Tree)

- A tree is a poset (*T*, <) such that for each *t* ∈ *T*, the set {*s* ∈ *T* : *s* < *t*} is well-ordered by the relation <.
- For each $t \in T$, the order type of $\{s \in T : s < t\}$ is the height of t.
- The height of *T* is the least ordinal greater than the height of each element of *T*.
- *T* is rooted (single-rooted) if it contains a single *t* (the root of *T*) with height 0.

tree-depth of infinite graphs

Assuming the axiom of choice, td(G) exists and

$$|V(G)| = \aleph_{\alpha} \implies \operatorname{td}(G) \leq \omega_{\alpha}.$$

