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Every kind of minors . . .

Minor Topological minor Immersion

δ > ct
√

log t ⇒ Kt δ > ct2⇒ Kt δ > ct ⇒ Kt

Kostochka, Thomason Komlós and Szemerédi, DeVos et al.

Bollobás and Thomason
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Every kind of shallow minors . . .

Shallow Minor
Shallow Topological

minor
Shallow Immersion

≤ t




≤ 2t





≤ 2t

≤ s + 1

GO t ⊇ G Õ t ⊆ G
∝O(t,s + 1)
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Topological resolution of a class C

Shallow topological minors at depth t :

C Õ t ={H : some ≤ 2t-subdivision

of H is present in some G ∈ C }.

Example: C Õ0 is the monotone closure of C .





≤ 2t

Topological resolution in time:

C ⊆ C Õ0 ⊆ C Õ1 ⊆ . . . ⊆ C Õ t ⊆ . . . ⊆ C Õ∞

time
//
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Every kind of resolutions . . .

Minor resolution Topological resolution Immersion resolution

≤ t




≤ 2t





≤ 2t

≤ s + 1

C O t ⊇ C Õ t ⊆ C
∝O(t,s + 1)

C O0⊆···⊆C O t⊆... C Õ0⊆···⊆C Õ t⊆... C
∝O(0,1)⊆···⊆C

∝O(t,t+1)⊆...



Classification Grads (density vs depth) Trees Sections Problems

Taxonomy of Classes

A class C is somewhere dense if

∃τ ∈ N : ω(C Õτ) = ∞

C is nowhere dense if

∀t ∈ N : ω(C Õ t) < ∞

C has bounded expansion if

∀t ∈ N : d(C Õ t) < ∞

⇐⇒∀t ∈ N : χ(C Õ t) < ∞ (using Dvořák, 2006)

Theorem (Nešetřil, POM, 2010)

Same classification if O or
∝O instead of Õ .
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C has bounded expansion if

∀t ∈ N : d(C Õ t) < ∞
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Examples

Class of G without cycles of length ≤ 101010

Somewhere dense: 101010
-subdivisions of Kn

Class of G such that ∆(G)≤ f (girth(G))

Nowhere dense: ω(G Õ t)≤ f (6t)

Random graphs G(n,d/n)

∃ bounded expansion class Rd s.t. G(n,d/n) ∈Rd a.a.s.



Classification Grads (density vs depth) Trees Sections Problems

Examples

Class of G without cycles of length ≤ 101010

Somewhere dense: 101010
-subdivisions of Kn

Class of G such that ∆(G)≤ f (girth(G))

Nowhere dense: ω(G Õ t)≤ f (6t)
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Random graphs G(n,d/n)
∃ bounded expansion class Rd s.t. G(n,d/n) ∈Rd a.a.s.



Classification Grads (density vs depth) Trees Sections Problems

ω-expansion and vertex separators

Theorem (Plotkin, Rao, Smith; 1994 — Wulff-Nilsen; 2011)
For integers l,h and a graph G of order n:

either ω(GO(l logn))≥ h,

or G has a vertex separator of size at most O(n/l + lh2 logn)

Theorem (Nešetřil, POM)
If C is a monotone class such that

lim
r→∞

log ω(C O r)

r
= 0

then graphs in C have sublinear vertex separators
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Extremal logarithmic density of edges

Theorem (Jiang, 2010)

ex(n,K (≤p)
t ) = O(n1+ 10

p ).

C ⊆ C Õ0 ⊆ . . . ⊆ C Õ t ⊆ . . . ⊆ C Õ 10t
ε
⊆ . . . ⊆ C Õ∞

‖G‖> Cn |G|1+ε

OO

Kn

OO

‖G‖= number of edges |G|= number of vertices

Hence:

limsup
G∈C Õ t

log‖G‖
log |G| > 1 + ε =⇒ limsup

G∈C Õ 10t
ε

log‖G‖
log |G| = 2.
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ε
⊆ . . . ⊆ C Õ∞
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Classification by logarithmic density of edges

Theorem (Class trichotomy — Nešetřil, POM, 2010)
Let C be an infinite class of graphs. Then

sup
t

limsup
G∈C Õ t

log‖G‖
log |G| ∈ {−∞,0,1,2}.

bounded size class ⇐⇒ −∞ or 0;

nowhere dense class ⇐⇒ −∞,0 or 1;

somewhere dense class ⇐⇒ 2.

and all the resolutions define the same trichotomy.
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Classification by logarithmic density of anything

Theorem (Counting dichotomy; Nešetřil, POM, 2011)
Let C be an infinite class of graphs and let F be a graph with at least
one edge. Then

sup
t

limsup
G∈C Õ t

log(#F ⊆ G)

log |G| ∈ {−∞,0, . . . ,α(F), |F |}.

nowhere dense class ⇐⇒ ≤ α(F);

somewhere dense class ⇐⇒ = |F |.

and all the resolutions define the same dichotomy.
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General diagram

Bounded

expansion

bounded

degree

minor

closed

ultra sparse

∀τ, d(G Õ τ ) <∞
∀τ, χ(G Õ τ ) <∞

Nowhere dense

∀τ, ω(G Õ τ ) <∞
Somewhere dense

∃τ, ω(G Õ τ ) = ∞

Ω(n1+ε)

edges

Ω(n2)

edges
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Grads (density vs depth)
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grad and top-grad

The greatest reduced average density (grad) with rank r of a graph G
is

∇r (G) = max

{‖H‖
|H| : H ∈ GO r

}

The top-grad with rank r of G is

∇̃r (G) = max

{‖H‖
|H| : H ∈ G Õ r

}

The imm-grad of rank (r ,s) of G is

∝

∇r ,s(G) = max

{‖H‖
|H| : H ∈ G

∝O(r ,s)

}
.
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grad and top-grad

Theorem (Dvořák, 2007)

Let r ,d ≥ 1 be integers and let p = 4(4d)(r+1)2
. If ∇r (G)≥ p, then G

contains a subgraph F ′ that is a ≤ 2r -subdivision of a graph F with
minimum degree d.
Hence:

∇̃r (G)≤ ∇r (G)≤ 4(4∇̃r (G))(r+1)2

Theorem (Nešetřil, POM)

∇̃s(G Õ r)≤ ∇̃s(GO r)≤ 2r+2 3(r+1)(r+2)
∇̃s(G Õ r)(r+1)2

.

Notice that ∇̃0(G Õ r) = ∇̃r (G) and ∇̃0(GO r) = ∇r (G).
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Lexicographic product and imm-grad

Definition (lexicographic product)

=•

Theorem (Nešetřil, POM)

∇̃r (G •Kp)≤max(2r(p−1) + 1,p2)∇̃r (G) + p−1

Corollary
As

G Õ r ⊆ G
∝O(r ,s)⊆ (G •K s) Õ r

all of ∇r , ∇̃r and
∝

∇r ,r+1 are polynomially equivalent.
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Trees
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Tree-depth

Definition

The tree-depth td(G) of a graph G is the
minimum height of a rooted forest Y s.t.

G ⊆ Closure(Y ).

(extends to infinite graphs )

td(Pn) = log2(n + 1)
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Properties

the tree-depth is minor-monotone:

H minor of G =⇒ td(H)≤ td(G).

for every graph G it holds

tw(G)≤ pw(G)≤ td(G)≤ (tw(G) + 1) log2 |G|.

there exists z : N→ N such that every graph G of order greater
than z(td(G)) has a non-trivial involutive automorphism.
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Properties

the tree-depth is minor-monotone:

H minor of G =⇒ td(H)≤ td(G).

for every graph G it holds
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Further properties

Theorem (Nešetřil, POM)
For a monotone class of graphs, the following conditions are
equivalent:

graphs in C have sublinear vertex separator,

graphs in C have sublinear tree-width,

graphs in C have sublinear path-width,

graphs in C have sublinear tree-depth.
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Tree-depth of random graphs

Theorem (Perarnau, Serra, 2011)

Let G ∈ G (n,p).

If p = ω(n−1) then a.a.s. td(G) = n−o(n)

If p = c/n with c > 0:
if c < 1, then a.a.s. td(G) = Θ(log logn);
if c = 1, then a.a.s. td(G) = Θ(logn);
if c > 1, then a.a.s. td(G) = Θ(n).
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First-order definition

Theorem (Ding, 1992 — Nešetřil, POM)
The poset of the graphs with tree depth at most t ordered by induced
subgraph inclusion ⊆i is a well quasi-order.

Corollary (First-order definition)
For every integer t, there exists a first-order formula τt such that for
every graph G it holds

td(G)≤ t ⇐⇒ G � τt .
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Tree-depth of countable graphs

At most countable graphs G and H are elementarily equivalent if they
satisfy the same first-order properties. This is denoted by G ≡ H.
For G and H equivalence classes of graphs for ≡, define the
ultrametric

dist(G,H) = 2−sup{n, G≡nH, G∈G,H∈H}.

Theorem
Let t ∈ N. Define

Tt = {G finite : td(G)≤ t},
T ?

t = {G at most countable : td(G)≤ t}.

Then (T ?
t /≡,dist) is a compact metric space, in which Tt is dense.
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Recursive definition

The tree-depth can be computed inductively by:

td(G) =





maxH td(H), (H connected component of G)

1 + minv td(G− v), (G connected, v vertex of G)

0, if G is empty

=⇒ can be considered as a game
selection/deletion;
cops/robber (Giannopoulou, Hunter and Thilikos, 2011).
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The selection/deletion game

Alice selects a connected subgraph;
Buddy deletes a vertex in the subgraph;
Alice wins if G is not empty after k steps. Otherwise, Buddy wins.

Alice has a winning strategy

(shelter)

SD-game

k<td(G)

55

k≥td(G)

))
Buddy has a winning strategy

(rooted forest)
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(rooted forest)
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Shelter

Definition (Giannopoulou, Hunter and Thilikos; 2011)
A shelter of a graph G is a collection S of non-empty subsets of
vertices of G, ordered by ⊆, such that ∀A ∈S :

G[A] is connected;

either A is minimal, or

∀x ∈ A ∃B ∈S covered by A such that x /∈ B.

→ A rooted forest defines a strategy for Buddy;

A shelter defines a strategy for Alice.
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Paths and cycles

Lemma
Let G be a connected graph, and let L be the length of a longest path
of G. Then

dlog2(L + 2)e ≤ td(G)≤ L.

Lemma
Let G be a biconnected graph, and let L be the length of a longest
cycle of G. Then

1 + dlog2 Le ≤ td(G)≤ 1 + (L−2)2.
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Algorithmic aspects

No P approximation for td(G) with error < |G|ε
(Bodlaender et al., 1995)

Depth-First Search Y such that G ⊆ Closure(Y ) and

log2(height(Y ) + 2)≤ td(G)≤ height(Y ).

Counting homomorphims from F to G in time

O(2|F | td(G) |F | td(G) |G|).

Homomorphism core in time z(td(G)) |G|
Isomorphism in time O(|G|td(G) log |G|)
(based on a standard vertex elimination order)
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Principle

Color the vertices of G by N colors,

consider the subgraphs GI induced by subsets I of ≤ p colors.
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Classification Grads (density vs depth) Trees Sections Problems

Low tree-width decompositions

Theorem (Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004)

For every proper minor closed class C and integer p ≥ 1, there is an
integer N, such that every graph G ∈ C has a vertex partition into N
graphs such that any j ≤ p parts form a graph with tree-width at most
p−1.

Remark
This theorem relies on Robertson-Seymour structure theorem.
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Low tree-depth decompositions

Chromatic numbers χp(G)

χp(G) is the minimum of colors such that any subset I of ≤ p colors
induce a subgraph GI so that td(GI)≤ |I|.

χ(G) = χ1(G)≤ χ2(G)≤ ·· · ≤ χp(G)≤ ·· · ≤ χ|G|(G) = td(G).

Countable graphs

A countable graph G has χp(G)≤ N if and only if χp(H)≤ N holds for
every finite induced subgraph H of G.
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Low tree-depth decompositions

Let C be an infinite class of graphs.

Theorem (Nešetřil and POM, 2006)

sup
G∈C

χp(G) < ∞ ⇐⇒ C has bounded expansion.

Theorem (Nešetřil and POM, 2010)

∀p, limsup
G∈C

log χp(G)

log |G| = 0 ⇐⇒ C is nowhere dense.
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Bounds on χp

Theorem (Nešetřil, POM)
Let G be a graph and let p be an integer. Then

∇p(G)≤ (2p + 1)

(
χ2p+2(G)

2p + 2

)

χp(G)≤ Pr (∇̃2p−2+1/2(G))

Theorem (Nešetřil, POM; 2011)
For every graph F of order p with at least one edge, and every
0 < ε < 1, there exists c > 0 such that for every graph G it holds

(#F ⊆ G) > |G|α(F)+ε =⇒ χp(G) > c |G|ε/p.
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Theorem (Nešetřil, POM; 2011)
For every graph F of order p with at least one edge, and every
0 < ε < 1, there exists c > 0 such that for every graph G it holds

(#F ⊆ G) > |G|α(F)+ε =⇒ χp(G) > c |G|ε/p.



Classification Grads (density vs depth) Trees Sections Problems

(k ,F)-sunflowers

Definition

A (k ,F)-sunflower (C,F1, . . . ,Fk ):

G F

Y1

Yk

Y2

KC

ℱ1

ℱ2

ℱk

Xk

X2

X1

∀X1 ∈F1, . . .∀Xk ∈Fk

G[C∪X1∪·· ·∪Xk ]≈ F

⇒ k ≤ α(F) and (#F ⊆ G) ≥
k

∏
i=1
|Fi |.
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Clearing & Stepping Up

Lemma (Nešetřil, POM; 2011)
Let F be a graph of order p, let k ∈ N and let 0 < ε < 1.
For every graph G such that (#F ⊆ G) > |G|k+ε there exists in G a
(k + 1,F)-sunflower (C,F1, . . . ,Fk+1) with

min
i
|Fi | ≥


 |G|
(

χp(G)
p

)1/ε




τ(ε,p)
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Clearing & Stepping Up

Lemma (Nešetřil, POM; 2011)
Let F be a graph of order p, let k ∈ N and let 0 < ε < 1.
For every graph G such that (#F ⊆ G) > |G|k+ε there exists in G a
(k + 1,F)-sunflower (C,F1, . . . ,Fk+1) with

min
i
|Fi | ≥


 |G|
(

χp(G)
p

)1/ε



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Proof.

Consider a χp-coloring. Some section GI contains
(

χp(G)
p

)−1

proportion of the copies of F and has tree-depth ≤ p;

Encode F and GI on colored forests of height p;

Prove the lemma for colored forests by induction on the height.
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Clearing & Stepping Up

Lemma (Nešetřil, POM; 2011)
Let F be a graph of order p, let k ∈ N and let 0 < ε < 1.
For every graph G such that (#F ⊆ G) > |G|k+ε there exists in G a
(k + 1,F)-sunflower (C,F1, . . . ,Fk+1) with

min
i
|Fi | ≥


 |G|
(

χp(G)
p

)1/ε




τ(ε,p)

Hence ∃G′ ⊆ G such that

|G′| ≥ (k + 1)

( |G|
(

χp(G)
p

)1/ε

)τ(ε,p)

and (#F ⊆ G′)≥
( |G′|− |F |

k + 1

)k+1

.
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Weak coloring

<
xy

G

P

colk (G)≤ wcolk (G)≤ colk (G)k (Kierstead, 2003)

wcol∞(G) = td(G) (Nešetřil, POM)
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Weak coloring

Theorem (Zhu, 2008)

Let G be a graph, let k ∈ N and let p = (k−1)/2.

∇p(G) + 1≤ wcolk (G),

If ∇p(G)≤m then colk (G)≤ 1 + qk , where qk is defined as
q1 = 2m and for i ≥ 1, qi+1 = q1q2i2

i .

Theorem (Zhu, 2008)

For every graph G, χp(G)≤ wcol2p−1(G).



Classification Grads (density vs depth) Trees Sections Problems

Weak coloring

Theorem (Zhu, 2008)

Let G be a graph, let k ∈ N and let p = (k−1)/2.

∇p(G) + 1≤ wcolk (G),

If ∇p(G)≤m then colk (G)≤ 1 + qk , where qk is defined as
q1 = 2m and for i ≥ 1, qi+1 = q1q2i2

i .

Theorem (Zhu, 2008)

For every graph G, χp(G)≤ wcol2p−1(G).



Classification Grads (density vs depth) Trees Sections Problems

Algorithmic version of LTDD theorem

Procedure A

for k = 1 to 2p−1 + 1 do
Compute a fraternal augmentation.

end for
Compute depth p transitivity
Greedily color vertices according to the augmented graph

Theorem (Nešetřil, POM; 2008)
Procedure A computes a χp-coloring of G with
Np(G)≤ Pp(∇̃2p−2+ 1

2
(G)) colors in time O(Np(G) |G|).

Remark

Also in time O(2p |G|2).
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Problems
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Checking first-order properties

Theorem (Nešetřil, POM)
Existential first-order properties may be checked in

O(n) time for G in a class with bounded expansion,

n1+o(1) time for G in a nowhere dense class.

Theorem (Dvořák, Král’, Thomas; 2010)
First-order properties may be checked in

O(n) time for G in a class with bounded expansion,

n1+o(1) time for G in a class with locally bounded expansion.

Problem

Can first-order properties be checked in n1+o(1) time for G in a
nowhere dense class?
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First-order definable H-colorings

Definition
H-coloring is first-order definable in C if ∃ formula Φ(H) such that

∀G ∈ C : (G→ H) ⇐⇒ (G � Φ(H)).

Theorem (Neštřil, POM; 2008)
If C has bounded expansion then for every connected F there exists H
such that H-coloring is first-order definable on C and equivalent to
non-existence of a homomorphism from F.

Problem
Let C be hereditary, addable, closed by subdivisions.
Assume that ∀g ∈ N, ∃H non bipartite with odd-girth > g such that
H-coloring is first-order definable in C . Is it true that C has bounded
expansion?
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Graphs ε-close from being very simple

Hyperfinite graphs
Assume C has bounded ∆ and sublinear separators and let ε > 0.
∃N ∀G ∈ C ∃F ⊂ E(G): |F |< ε|G| and G−F has no connected
component of order > N.

Corollary of Devos, Oporowski, Sanders, Reed, Seymour, Vertigan; 2004

Assume C excludes some minor and let ε > 0.
∃N ∀G ∈ C ∃F ⊂ E(G): |F |< ε|G| and G−F has no connected
component of tree-width > N.

Problem
Assume C has sublinear separators and let ε > 0.
∃N ∀G ∈ C ∃F ⊂ E(G): |F |< ε|G| and G−F has no connected
component of tree-depth > N?
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Infinite trees

Definition (Tree)

A tree is a poset (T ,<) such that for each t ∈ T , the set
{s ∈ T : s < t} is well-ordered by the relation <.

For each t ∈ T , the order type of {s ∈ T : s < t} is the height of t .

The height of T is the least ordinal greater than the height of each
element of T .

T is rooted (single-rooted) if it contains a single t (the root of T )
with height 0.

tree-depth of infinite graphs

Assuming the axiom of choice, td(G) exists and

|V (G)|= ℵα =⇒ td(G)≤ ωα .
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