Homogeneous structures

(lecture notes)

Jan Hubička

July 10, 2019

1 Relational structures

This follows (a simplified form) of model-theoretic structures [4]. They will be useful for us to say some results more generally and to discuss the structural Ramsey theory.

A language L is a set of relational symbols $R \in L$, each associated with natural number a(R) called arity. A (relational) L-structure **A** is a pair $(A, (R_{\mathbf{A}}; R \in L))$ where $R_{\mathbf{A}} \subseteq A^{a(R)}$ (i.e. $R_{\mathbf{A}}$ is a a(R)-ary relation on A). The set A is called the vertex set or the domain of **A** and elements of A are vertices. The language is usually fixed and understood from the context (and it is in most cases denoted by L). If set A is finite we call **A** finite structure. We consider only structures with countably many vertices. The class of all (countable) relational L-structures will be denoted by Rel(L).

A homomorphism $f : \mathbf{A} \to \mathbf{B} = (B, (R_{\mathbf{B}}; R \in L))$ is a mapping $f : A \to B$ satisfying for every $R \in L$ the implication

$$(x_1, x_2, \dots, x_{a(R)}) \in R_{\mathbf{A}} \implies (f(x_1), f(x_2), \dots, f(x_{a(R)})) \in R_{\mathbf{B}}.$$

(For a subset $A' \subseteq A$ we denote by f(A') the set $\{f(x); x \in A'\}$ and by $f(\mathbf{A})$ the homomorphic image of a structure.)

If f is injective, then f is called a *monomorphism*. A monomorphism is called *embedding* if the above implication is equivalence, i.e. if for every $R \in L$ we have

$$(x_1, x_2, \dots, x_{a(R)}) \in R_\mathbf{A} \iff (f(x_1), f(x_2), \dots, f(x_{a(R)})) \in R_\mathbf{B}$$

If f is an embedding which is an inclusion then **A** is a substructure (or subobject) of **B**. For an embedding $f : \mathbf{A} \to \mathbf{B}$ we say that **A** is *isomorphic* to $f(\mathbf{A})$ and $f(\mathbf{A})$ is also called a *copy* of **A** in **B**. Isomorphism $f : \mathbf{A} \to \mathbf{A}$ is also called an *automorphism* of **A**.

Example. The following special cases of relational structures will be interesting for us:

- 1. Graphs: the language L_G of graphs consist of single relational symbol E of arity 2 representing edges. L_G -structure **A** is graph if $E_{\mathbf{A}}$ is symmetric and antireflexive (no loops allowed).
- 2. Digraphs use the same language as graphs but every L_G -structure is also a digraph (we allow directed edges, bidirectional edges and loops)
- 3. Orders: the language L_O if orders consist of single relational symbol \leq of arity 2. L_G -structure **A** is an *partial order* if $\leq_{\mathbf{A}}$ is reflexive, antisymetric and transitive. It is *linear* order if in addition it holds that for every $a, b \in A$ either $(a, b) \in \leq_{\mathbf{A}}$ or $(b, a) \in \leq_s trA$.
- 4. *n*-uniform hyperraphs: Language L_n of hypergraphs has single relational symbol E of arity *n*. L_n -structure **A** is hypergraph if for every $(a_1, a_2, \ldots, a_n) \in E_{\mathbf{A}}$ and every permutation π of $\{1, 2, \ldots, n\}$ it holds that $(a_{\pi(1)}, a_{\pi(2)}, \ldots, s_{\pi(n)}) \in E_{\mathbf{A}}$.

2 Homogeneity

The following definition was introduced by Fraïssé [1, 2], see also [6].

Definition 2.1 (Homogeneous structure). An *L*-structure \mathbf{A} is *homogeneous* if every isomorphism of its finite substructures extends to an automorphism of \mathbf{A} .

Example. All homogeneous graphs are known: finite graphs was classified by Gardiner [3] and infinite by Lachlan and Woodrow [5]. The proof is long, but the result is easy to state. Graph G is homogeneous if it is one of the following:

- 1. the Random graph R,
- 2. universal and homogeneous K_k -free graph for some $k \geq 3$,
- 3. a disjoint union of complete graphs, all of the same size,
- 4. complements of the above.
- 5. Two special finite cases: A 5-cycle and the "window" graph.

We also discussed that the order of rationals (\mathbb{Q}, \leq) is a homogeneous and universal linear order.

Next time I will show a general method of constructing homogeneous structure and we will learn that thre are many of them.

Excercises.

- 1. Show that the Petersen graph is not homogeneous.
- 2. Consider random digraph R'. Can you formulate an extension property for digraphs? Show that R' is univeral, homogeneous and up to isomorphism unique.
- 3. Does the random digraph R' have the property that if its vertices are partitioned to two parts one of them is isomorphic to R'?
- 4. What is extension property of linear orders?
- 5. Modify the construction of Rado and build the homogeneous and universal triangle-free graph.

3 Fraïssé theorem

Definition 3.1. The *age*, denoted by $Age(\mathbf{A})$, of a relational structure \mathbf{A} is the class of all finite structures which embedds to \mathbf{A} . We say that \mathbf{A} is *younger* then \mathbf{B} if $Age(\mathbf{A}) \subseteq Age(\mathbf{B})$.

Definition 3.2. Let \mathbf{A} , \mathbf{B}_1 and \mathbf{B}_2 be *L*-structures and $\alpha_1 : \mathbf{A} \to \mathbf{B}_1$ and $\alpha_2 : \mathbf{A} \to \mathbf{B}_2$ embeddings. Then every *L*-structure \mathbf{C} with embeddings $\beta_1 : \mathbf{B}_1 \to \mathbf{C}$ and $\beta_2 : \mathbf{B}_2 \to \mathbf{C}$ such that $\beta_1 \circ \alpha_1 = \beta_2 \circ \alpha_2$ is called an *amalgamation* of \mathbf{B}_1 and \mathbf{B}_2 over \mathbf{A} with respect to α_1 and α_2 (see Figure 1). We will call \mathbf{C} simply an *amalgamation* of \mathbf{B}_1 and \mathbf{B}_2 over \mathbf{A} (as in the most cases α_1 and α_2 can be chosen to be inclusion embeddings).

Example. The following can be easily checked to be amalgamation classes:

- 1. The class of all finite graphs.
- 2. The class of all finite graphs omitting clique of size k for given $k \geq 3$
- 3. The class of all finite linear orders.

Figure 1: An amalgamation of \mathbf{B}_1 and \mathbf{B}_2 over \mathbf{A} .

- 4. The class of all finite partial orders.
- 5. The class of all finite metric spaces

Definition 3.3. An *amalgamation class* is an isomorphism-closed class \mathcal{K} of finite *L*-structures satisfying the following three conditions:

- 1. Hereditary property: For every $\mathbf{A} \in \mathcal{K}$ and a substructure \mathbf{B} of \mathbf{A} we have $\mathbf{B} \in \mathcal{K}$;
- 2. Amalgamation property: For $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$ and α_1 embedding of \mathbf{A} into \mathbf{B}_1, α_2 embedding of \mathbf{A} into \mathbf{B}_2 , there is $\mathbf{C} \in \mathcal{K}$ which is an amalgamation of \mathbf{B}_1 and \mathbf{B}_2 over \mathbf{A} with respect to α_1 and α_2 .
- 3. There are only countably many mutually non-isomorphic structures.

Note that in the class I used the fact that Joint embedding is a special case of amalgamation property.

Now we are able to state the beautiful Fraïssé theorem:

Theorem 3.1 (Fraïssé [1]).

- (a) A class \mathcal{K} of finite L-structures is the age of a countable homogeneous structure **M** if and only if \mathcal{K} is the amalgamation class.
- (b) If the conditions of (a) are satisfied, then the structure \mathbf{M} is unique up to isomorphism

It is easy to check that the age of a countable homogeneous structure is an amalgamation class. The way to construct \mathbf{M} given its age is the following concept:

Definition 3.4. Suppose \mathcal{K} is a class of finite *L*-structures. An increasing chain

$$A_0 \subseteq A_1 \subseteq A_2 \le A_3 \subseteq \cdots$$

of structures in \mathcal{K} is called a *rich sequence* if:

- 1. for all $A \in \mathcal{K}$ there is some $i < \omega$ and a embedding $e : A \to A_i$;
- 2. for all $B \in \mathcal{K}$, $f : A_j \to B$ there is $k \ge j$ and a $g : B \to A_k$ such that g(f(a)) = a for all $a \in A_j$.

A Fraissé limit of \mathcal{K} is an L-structure which is the union of a rich sequence of substructures.

It is not hard to show that for amalgamation class rich sequence exists (both conditions are special cases of amalgamation property).

The Fraïssé limit has the *extension property*: for every $\mathbf{A} \subseteq \mathbf{B} \in \mathcal{K}$ and embedding $e : \mathbf{A} \to \mathbf{M}$ there exists embedding $f : \mathbf{B} \to \mathbf{M}$ extending e. With this it is possible to use back-and-forth the same way as for the Random graph to obtain homogeneity and uniqueness of \mathbf{N} .

Excercises. Show that for every homogeneous structure it holds that every countable structure \mathbf{M}' such that $\operatorname{Age}(\mathbf{M}') \subseteq \operatorname{Age} \mathbf{M}$ has embedding to \mathbf{M} . In other words \mathbf{M} is *universal* for all structures of the same age as \mathbf{M} or younger.

References

- Roland Fraïssé. Sur certaines relations qui généralisent l'ordre des nombres rationnels. Comptes Rendus de l'Academie des Sciences, 237:540–542, 1953.
- [2] Roland Fraïssé. Theory of relations. Studies in logic and the foundations of mathematics. North-Holland, 1986.
- [3] Anthony Gardiner. Homogeneous graphs. Journal of Combinatorial Theory, Series B, 20(1):94–102, 1976.
- [4] Wilfrid Hodges. Model theory, volume 42. Cambridge University Press, 1993.
- [5] Alistair H. Lachlan and Robert E. Woodrow. Countable ultrahomogeneous undirected graphs. Transactions of the American Mathematical Society, pages 51–94, 1980.
- [6] Dugald Macpherson. A survey of homogeneous structures. Discrete Mathematics, 311(15):1599 1634, 2011. Infinite Graphs: Introductions, Connections, Surveys.