Interpretations - how to speak about sparsity in dense graphs

Jakub Gajarský

TU Berlin

November 21, 2018
Prague

The plan

Today:

- Part I: Introduction and motivation
- Part II: More about interpretations
- Part III: Interpretations and sparsity - overview

Main goal of today's lecture: to provide you with a working knowledge of interpretations

Next lecture (Friday 30.11.): applications and recent results

Part I: Introduction and motivation

What do we really study and why?

Why do we study sparse graphs?

What do we really study and why?

Why do we study sparse graphs?

We do not study them because they have few edges, but because they are simple - they have good structural and algorithmic properties.

What do we really study and why?

Why do we study sparse graphs?

We do not study them because they have few edges, but because they are simple - they have good structural and algorithmic properties.

From this perspective, if we compare a tree or a planar graph to its complement, there is little to no difference - these graphs contain exactly the same information

What do we really study and why?

Why do we study sparse graphs?

We do not study them because they have few edges, but because they are simple - they have good structural and algorithmic properties.

From this perspective, if we compare a tree or a planar graph to its complement, there is little to no difference - these graphs contain exactly the same information

Different perspective/motivation: We understand sparse graphs quite well now and want to extend these results to dense graphs.

Interpretations

Example of structurally simple graph class which is not sparse take graphs from any sparse graph class and consider the class of its complements.

Interpretations

Example of structurally simple graph class which is not sparse take graphs from any sparse graph class and consider the class of its complements.
(Much) more general construction - interpretations.

Interpretations

$$
\psi(x, y) \equiv x \neq y \wedge \exists z ;(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y)
$$

Interpretations

$\psi(x, y) \equiv x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y)$

Pairs of vertices satisfying $\psi(x, y)$:
$\{a, c\},\{b, d\},\{c, d\},\{c, e\},\{d, e\},\{d, f\},\{a, e\},\{b, e\},\{c, f\}$

Interpretations

$\psi(x, y) \equiv x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge$ edge $(x, z) \wedge$ edge (z, y)

(d)
(a)
(b)
(e)
(f)
(c)

Pairs of vertices satisfying $\psi(x, y)$:
$\{a, c\},\{b, d\},\{c, d\},\{c, e\},\{d, e\},\{d, f\},\{a, e\},\{b, e\},\{c, f\}$

Interpretations

$\psi(x, y) \equiv x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge$ edge $(x, z) \wedge$ edge (z, y)

Pairs of vertices satisfying $\psi(x, y)$:
$\{a, c\},\{b, d\},\{c, d\},\{c, e\},\{d, e\},\{d, f\},\{a, e\},\{b, e\},\{c, f\}$

Interpretations

Consider a formula $\psi(x, y)$ which is irreflexive and symmetric.
From a graph G, this formula "creates" graph $H=I_{\psi}(G)$ as follows:

$$
\begin{gathered}
V(H)=V(G) \\
E(H)=\{\{u, v\} \mid G \models \psi(u, v)\}
\end{gathered}
$$

We then say that H is interpreted in G using ψ.

Interpretations

Consider a formula $\psi(x, y)$ which is irreflexive and symmetric.
From a graph G, this formula "creates" graph $H=I_{\psi}(G)$ as follows:

$$
\begin{gathered}
V(H)=V(G) \\
E(H)=\{\{u, v\} \mid G \models \psi(u, v)\}
\end{gathered}
$$

We then say that H is interpreted in G using ψ.
This is easily extended to graph classes:

$$
I_{\psi}(\mathcal{C})=\left\{H \mid H=I_{\psi}(G) \text { for some } G \in \mathcal{C}\right\}
$$

We say that class \mathcal{D} of graphs is interpretable in \mathcal{C} if there exists $\psi(x, y)$ such that $\mathcal{D} \subseteq I_{\psi}(\mathcal{C})$

Notes

- This definition of interpretation is:
- tailored to graphs
- simplified (normally $V(H) \subseteq V(G)$)
- Whenever we speak about graphs G and H, graph H is the result of an interpretation.
- All graphs/structures in this talk are finite

Example

The class of all complete bipartite graphs is interpretable in the class of all stars forests

Example

The class of all complete bipartite graphs is interpretable in the class of all stars forests

What we need to do: Write down a formula $\psi(x, y)$ such that for every complete bipartite graph H there exists a star forest G such that $H=I_{\psi}(G)$

$$
G \xrightarrow{\psi} H
$$

$\psi(x, y):=y_{\neq y} \wedge \sim\left(E(x, y) \cup \underset{\exists_{z}(f(x, z)}{ }\right) \in(z, r)$

Example

The class of all cycles is interpretable in the class of all paths.

$$
\psi(x, y):=(x \neq r) \wedge(E(x, y) \vee(\operatorname{deg}(x)=1 \wedge \operatorname{deg}(1)=1))
$$

Interpretations - examples

$\psi(x, y)$ can be:

- $x \neq y$ - creates a clique out of any graph
- $x=y \wedge x \neq y$ - creates an empty graph out of any graph
- $x \neq y \wedge \neg E(x, y)$ - creates the edge-complement of any graph

Interpretations - examples

$\psi(x, y)$ can be:

- $x \neq y$ - creates a clique out of any graph
- $x=y \wedge x \neq y$ - creates an empty graph out of any graph
- $x \neq y \wedge \neg E(x, y)$ - creates the edge-complement of any graph
- There is a path of length at most 3 between x and y.
- There is a path of length at most 5 between x and y such that there are two vertices of degree 8 on it.
- Vertex x has degree 3 and vertex y has a neighbor with degree at least 5 .
- both x and y have degree at least 7

Why are interpertations good?

Let $\varphi:=$ "there exists a dominating set of size 3 " and let H be a (dense) graph.

We want to know whether

$$
H \models \varphi
$$

Let $\psi(x, y)$ be an interpretation formula saying "the distance between x and y is at most 2 " and let G be a (sparse) graph such that

$$
H=I_{\psi}(G)
$$

The key observation:

Why are interpertations good?

Let $\varphi:=$ "there exists a dominating set of size 3 " and let H be a (dense) graph.

We want to know whether

$$
H \models \varphi
$$

Let $\psi(x, y)$ be an interpretation formula saying "the distance between x and y is at most 2 " and let G be a (sparse) graph such that

$$
H=I_{\psi}(G)
$$

The key observation:Instead of asking
"Does H have a dominating set of size 3?"

Why are interpertations good?

Let $\varphi:=$ "there exists a dominating set of size 3 " and let H be a (dense) graph.

We want to know whether

$$
H \models \varphi
$$

Let $\psi(x, y)$ be an interpretation formula saying "the distance between x and y is at most 2 " and let G be a (sparse) graph such that

$$
H=I_{\psi}(G)
$$

The key observation:Instead of asking
"Does H have a dominating set of size 3?"
we may as well ask

"Does G have 3 vertices such that all vertices are at distance at most two from them?"

Why are interpertations good?

An interpretation...

- ...assigns to every graph G a new graph H...
- ... but also allows us to translate (reduce) every formula φ about H to a formula φ^{\prime} about G such that

$$
\begin{aligned}
& \left.\begin{array}{c}
H \vDash \varphi \Longleftrightarrow G \vDash \varphi^{\prime} \\
\left.G \frac{\psi}{\psi}\right)
\end{array}\right] \\
& \varphi^{\prime} \varphi^{\prime} \\
& \varphi=\exists x_{1} \forall_{x_{2}} \ldots E\left(x_{1}, x_{2}\right) \ldots E\left(x_{3}, y_{2}\right) \ldots \\
& \varphi^{\prime}=\exists x_{1} \forall_{x_{2}} \ldots \psi\left(x_{1}, x_{2}\right) \ldots \psi\left(x_{1}, x_{2}\right) \ldots
\end{aligned}
$$

Why are interpertations good?

An interpretation...

- ...assigns to every graph G a new graph H...
- ... but also allows us to translate (reduce) every formula φ about H to a formula φ^{\prime} about G such that

$$
H \models \varphi \Longleftrightarrow G \models \varphi^{\prime}
$$

Consequence:
Let \mathcal{D} be a class of (dense) graphs and assume that $\mathcal{D}=I_{\psi}(\mathcal{C})$ for some (sparse) graph class \mathcal{C}.
The study of FO logic on \mathcal{D} can be reduced to the study of FO logic on \mathcal{C}.

Interpretations - algorithmic perspective

Let \mathcal{D} be a class of (dense) graphs and assume that $\mathcal{D}=I_{\psi}(\mathcal{C})$ for some (sparse) graph class \mathcal{C}.

We know that to every $H \in \mathcal{D}$ there exists $G \in \mathcal{C}$ such that

$$
H=I(G)
$$

Algorithmic problem: Given H, find G.

Part II: More about interpretations

Interpretations - examples

Can we interpret the class of all complete bipartite graphs in the class of graphs of degree at most d ?

$$
a=5
$$

$$
\begin{aligned}
& \psi(x, y):=\operatorname{deg}(x)=2 \wedge \operatorname{deg}(y)=3 \\
& y(x):=\operatorname{deg}(x)>1 \quad k_{4,5}
\end{aligned}
$$

Interpretations - removing vertices

$\psi(x, y) \equiv x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge$ edge $(x, z) \wedge$ edge (z, y)
$\nu(x)=x$ has degree at most 2

Interpretations - removing vertices

$\psi(x, y) \equiv x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y)$ $\nu(x)=x$ has degree at most 2

Vertices satisfying $\nu(x): a, b, e, f$
Pairs of vertices satisfying $\psi(x, y):\{a, c\},\{b, d\},\{c, d\},\{c, e\}$, $\{d, e\},\{d, f\},\{a, e\},\{b, e\},\{c, f\}$

Interpretations - extension

$\psi(x, y) \equiv x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y)$ $\nu(x)=x$ has degree at most 2

(a)
(e)
(b)
(f)

Vertices satisfying $\nu(x): a, b, e, f$
Pairs of vertices satisfying $\psi(x, y)$:
$\{a, c\},\{b, d\},\{c, d\},\{c, e\},\{d, e\},\{d, f\},\{a, e\},\{b, e\},\{c, f\}$

Interpretations - extension

$\psi(x, y) \equiv x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y)$ $\nu(x)=x$ has degree at most 2

Vertices satisfying $\nu(x): a, b, e, f$
Pairs of vertices satisfying $\psi(x, y)$:
$\{a, c\},\{b, d\},\{c, d\},\{c, e\},\{d, e\},\{d, f\},\{a, e\},\{b, e\},\{c, f\}$

Interpretations - examples

The class of all complete bipartite graphs is interpretable in the class of graphs of degree at most d ?

Interpretations - examples

The class of all matchings is interpretable in trees of height 2.

$$
\begin{aligned}
& \psi(x, y)=E(x, 3) \\
& v(x)=\operatorname{dog}(x) \leq 2
\end{aligned}
$$

Interpretations with colors

If we start with a class of clored/labled graphs, we can use colors/lables in interpretations:

$$
\begin{aligned}
\psi(x, y) \equiv & x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \text { edge }(x, z) \wedge \text { edge }(z, y) \\
& \wedge[(\operatorname{green}(x) \wedge \operatorname{red}(y)) \vee(\operatorname{red}(x) \wedge \operatorname{green}(y))]
\end{aligned}
$$

Interpretations with colors

If we start with a class of clored/labled graphs, we can use colors/lables in interpretations:

$$
\begin{aligned}
\psi(x, y) \equiv & x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y) \\
& \wedge[(\operatorname{green}(x) \wedge \operatorname{red}(y)) \vee(\operatorname{red}(x) \wedge \operatorname{green}(y))]
\end{aligned}
$$

Pairs of vertices satisfying $\psi(x, y):\{a, c\},\{b, d\},\{c, d\},\{d, e\}$

Interpretations with colors

If we start with a class of clored/labled graphs, we can use colors/lables in interpretations:

$$
\begin{aligned}
\psi(x, y) \equiv & x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y) \\
& \wedge[(\operatorname{green}(x) \wedge \operatorname{red}(y)) \vee(\operatorname{red}(x) \wedge \operatorname{green}(y))]
\end{aligned}
$$

Pairs of vertices satisfying $\psi(x, y):\{a, c\},\{b, d\},\{c, d\},\{d, e\}$

Interpretations with colors

If we start with a class of clored/labled graphs, we can use colors/lables in interpretations:

$$
\begin{aligned}
\psi(x, y) \equiv & x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y) \\
& \wedge[(\operatorname{green}(x) \wedge \operatorname{red}(y)) \vee(\operatorname{red}(x) \wedge \operatorname{green}(y))]
\end{aligned}
$$

(d)
(a)
(e)
(f)
(c)

Pairs of vertices satisfying $\psi(x, y):\{a, c\},\{b, d\},\{c, d\},\{d, e\}$

Interpretations with colors

If we start with a class of clored/labled graphs, we can use colors/lables in interpretations:

$$
\begin{aligned}
\psi(x, y) \equiv & x \neq y \wedge \exists z:(z \neq x) \wedge(z \neq y) \wedge \operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y) \\
& \wedge[(\operatorname{green}(x) \wedge \operatorname{red}(y)) \vee(\operatorname{red}(x) \wedge \operatorname{green}(y))]
\end{aligned}
$$

Pairs of vertices satisfying $\psi(x, y):\{a, c\},\{b, d\},\{c, d\},\{d, e\}$

Example

The class of all complete bipartite graphs is interpretable in the class of all colored paths.

$$
\psi(1, y)=\operatorname{Red}(x) \sim G \text { roe }(y)
$$

$$
0 \rightarrow 0 \rightarrow 0
$$

Example

The class of all wheels is interpretable in the class of all colored cycles.

Example

The class of all paths is interpretable in the class of all colored cycles.

$$
\psi(x, y)=E(x, y) \wedge \neg(\operatorname{Red}(x) \wedge \operatorname{Rod}(y))
$$

Example
The class of all graphs is interpretable in the class of all 2-degenerate graphs.
2-degenerate graph ievely sub graph has a vertex of degree ≤ 2

$V(x)=\neg \operatorname{Red}(x)$
$\mathbb{Y}(x, y):=x$ and y have a common red neighbor

An important example

Show that for every d there the class of graphs of treedepth at most d is interpretable in colored forests of height d.

$$
\begin{aligned}
& \Psi(x, y)=(x \text { below } y) \wedge \operatorname{Red}(x) \wedge(\text { Level }(y)=2 v \\
& \text { Level }(y)=0 \text {) }
\end{aligned}
$$

Interpretations in general

σ structure \xrightarrow{I} J-struct.

Definition

Let σ and τ be relational signatures, where $\tau=\left\{Q_{1}, \ldots, Q_{1}\right\}$. An interpretation from σ to τ (or interpretation of τ in σ) is a tuple $I=\left(\nu, \psi_{1}, \ldots, \psi_{I}\right)$ of FO σ-formulas, where

- ν has one free variable and
- the number of free variables of ψ_{i} is the same as the arity of Q_{i}.

An interpretation / from σ to τ defines for every σ-structure \mathcal{A}, a τ-structure $\mathcal{B}=\left(B, Q_{i}^{\mathcal{B}}, \ldots, Q_{i}^{\mathcal{B}}\right)$ as follows:

- $B=\{a \in A \mid \mathcal{A} \equiv \nu(a)\}$
- $\left.Q_{i}^{\mathcal{B}}=\left\{\left(a_{1}, \ldots, a_{k}\right)\right) \in A^{k} \mid \mathcal{A}=\psi_{i}\left(a_{1}, \ldots, a_{k}\right)\right\}$

We denote this by $\mathcal{B}=I(\mathcal{A})$ and extend this to classes: $I(\mathcal{C})=\{I(\mathcal{A}) \mid \mathcal{A} \in \mathcal{C}\}$.

Example
The class of all trees of height ${ }^{\mathbf{\beta}}$ is interpretable in words over
alphabet $\Sigma=\{a, b, c\}$.
12395
$\sigma=\left\{\leq, P_{a}, P_{b}, P_{c}\right\}$ abbab
binary unary $\quad \forall x P_{a}(x) \rightarrow \exists r\left(x<r 1 P_{b}(y)\right)$

$$
J=\{E\}
$$

abcecbccbcece
 $\psi(x, y):=\left(P_{a}\left(C_{x}\right)_{1} P_{b}(y)\right) \vee\left(P_{b}(x)_{\wedge} P_{c}(y) \wedge^{n} x\right.$ is the closest b to the left of $)^{\prime}$

Showing non-interpretability
The class of all paths graphs is not interpretable in the class of stars.

$a b$
Twin set will form a clique or ind. set after on interpretation

$$
\begin{aligned}
& \psi(a, b) \\
& \psi(a, c)
\end{aligned}
$$

Showing non-interpretability

The class of all grids is not interpretable in any class of bounded clique-width.

1. If \mathcal{C} is a class of bounded clique-width, then it does not contain all grids
2. If \mathcal{C} is a class of bounded clique-width and I is an interpretation, then $I(\mathcal{C})$ is a class of graphs of bounded clique-width

Part III: Interpretations and sparsity

Some older results

Interpretations in trees have been studied, but for MSO logic.
MSO logic = FO logic + quantification over sets of elements
Can express: connectedness, 3-colorability ,...

$\psi(x, y)=$

In rooted trees it can express that vertex w is a least common ancestor of vertices u and v-important for interpretations

Results:

- For every k the class of graphs of treewidth at most k is interpretable in colored trees (incidence model)
- For every k the class of graphs of clique-width at most k is interpretable in colored trees (adjacency model)

Sparse graphs

Research program

For any sparse graph class \mathcal{C} :

- Characterize graph classes interpretable in \mathcal{C}
- Find an algorithm to 'reverse' interpretations
- Find a model checking algorithm

Research program

For any sparse graph class \mathcal{C} :

- Characterize graph classes interpretable in \mathcal{C}
- Find an algorithm to 'reverse' interpretations
- Find a model checking algorithm

Done for bounded degree and partially for bounded expansion.

Interpretations of bounded expansion graph classes

Bounded expansion graph classes - can be characterized low treedepth colorings/covers

Interpretations of bounded expansion graph classes - can be characterized low shrub-depth colorings/covers

Shrub-depth - dense counterpart of treedepth

Shrub-depth

Fix d (depth) and set C of colors of size m
Fix a relation $R \subseteq C \times C \times\{2,4, \ldots, 2 d\}$
Consider a tree T of depth d such that every leaf has one of m colors

Such a tree is called a tree-model and it defines graph G as follows:

- Vertices of G are leaves of T
- There is an edge between u and v if

$$
(\operatorname{color}(u), \operatorname{color}(v), \operatorname{dist}(u, v)) \in R
$$

Shrub-depth

Shrub depth

Notice that every graph G has a tree model of depth 1 and at most $|V(G)|$ colors

Consequence - it does not make sense to speak about depth of a single graph; depth has to be defined for classes of graphs

Definition

Shrub depth of a class \mathcal{C} of graphs is the least d such that there exists m such that every graph in \mathcal{C} has a tree model of depth d with at most m colors.

Theorem

Class \mathcal{C} of graphs has bounded shrubdepth if and only if it is interpretable in the class of trees of bounded height

Interpretations and sparsity - open problems

What we don't know:

1. Characterization of classes of graphs interpretable in sparse graph classes besides bounded degree and bounded expansion

Interpretations and sparsity - open problems

What we don't know:

1. Characterization of classes of graphs interpretable in sparse graph classes besides bounded degree and bounded expansion
2. Most importantly - characterization of graph classes interpretable in nowhere dense graph classes

Interpretations and sparsity - open problems

What we don't know:

1. Characterization of classes of graphs interpretable in sparse graph classes besides bounded degree and bounded expansion
2. Most importantly - characterization of graph classes interpretable in nowhere dense graph classes
3. Computing reverses of interpretations: Let \mathcal{C} be a class of sparse graphs, I an interpretation and $\mathcal{D}=I(\mathcal{C})$. Given $H \in \mathcal{D}$ as input, compute $G \in \mathcal{C}$ such that $H=I(G)$.

Interpretations and sparsity - open problems

What we don't know:

1. Characterization of classes of graphs interpretable in sparse graph classes besides bounded degree and bounded expansion
2. Most importantly - characterization of graph classes interpretable in nowhere dense graph classes
3. Computing reverses of interpretations: Let \mathcal{C} be a class of sparse graphs, I an interpretation and $\mathcal{D}=I(\mathcal{C})$. Given $H \in \mathcal{D}$ as input, compute $G \in \mathcal{C}$ such that $H=I(G)$.

- Even an algorithm with runtime $H^{|I|}$ would be interesting

$$
\begin{aligned}
& f(I) \cdot|H| \\
& |1 H|^{(I I)}
\end{aligned}
$$

Interpretations and sparsity - open problems

What we don't know:

1. Characterization of classes of graphs interpretable in sparse graph classes besides bounded degree and bounded expansion
2. Most importantly - characterization of graph classes interpretable in nowhere dense graph classes
3. Computing reverses of interpretations: Let \mathcal{C} be a class of sparse graphs, I an interpretation and $\mathcal{D}=I(\mathcal{C})$. Given $H \in \mathcal{D}$ as input, compute $G \in \mathcal{C}$ such that $H=I(G)$.

- Even an algorithm with runtime $H^{|/|}$would be interesting
- Also using a different interpretation I^{\prime} would be enough, it is only important that I^{\prime} is the same for all graphs H

Interpretations and sparsity - open problems

What we don't know:

1. Characterization of classes of graphs interpretable in sparse graph classes besides bounded degree and bounded expansion
2. Most importantly - characterization of graph classes interpretable in nowhere dense graph classes
3. Computing reverses of interpretations: Let \mathcal{C} be a class of sparse graphs, I an interpretation and $\mathcal{D}=I(\mathcal{C})$. Given $H \in \mathcal{D}$ as input, compute $G \in \mathcal{C}$ such that $H=I(G)$.

- Even an algorithm with runtime $H^{[/]}$would be interesting
- Also using a different interpretation I^{\prime} would be enough, it is only important that I^{\prime} is the same for all graphs H
- The computed graph G also does not really have to come from \mathcal{C}, it only has to come from a fixed sparse class \mathcal{C}^{\prime} of graphs

Interpretations and sparsity - open problems

The simplest variant of the algorithmic problem from the previous slides:
Let \mathcal{D} be class of graphs pterpretable in trees using interpretation
I. Find an an interpretation I^{\prime} and a nowhere class \mathcal{C}^{\prime} and an algorithm which does the following: Given $H \in \mathcal{C}$ as input, the algorithm finds $G \in \mathcal{C}^{\prime}$ such that $H=I^{\prime}(G)$ in time $H^{f(I)}$.

