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The plan

Today:

I Part I: Introduction and motivation

I Part II: More about interpretations

I Part III: Interpretations and sparsity – overview

Main goal of today’s lecture: to provide you with a working

knowledge of interpretations

Next lecture (Friday 30.11.): applications and recent results



Part I: Introduction and motivation



What do we really study and why?

Why do we study sparse graphs?

We do not study them because they have few edges, but because

they are simple – they have good structural and algorithmic

properties.

From this perspective, if we compare a tree or a planar graph to its

complement, there is little to no di↵erence – these graphs contain

exactly the same information

Di↵erent perspective/motivation: We understand sparse graphs

quite well now and want to extend these results to dense graphs.
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its complements.

(Much) more general construction – interpretations.
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Interpretations

 (x , y) ⌘ x 6= y ^ 9z : (z 6= x) ^ (z 6= y) ^ edge(x , z) ^ edge(z , y)

a

b

c

d

e

f

Pairs of vertices satisfying  (x , y) :
{a, c}, {b, d}, {c , d}, {c , e}, {d , e}, {d , f }, {a, e}, {b, e}, {c , f }
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Interpretations

Consider a formula  (x , y) which is irreflexive and symmetric.

From a graph G , this formula “creates” graph H = I (G ) as

follows:

V (H) = V (G )

E (H) = {{u, v} | G |=  (u, v)}

We then say that H is interpreted in G using  .

This is easily extended to graph classes:

I (C) = {H | H = I (G ) for some G 2 C}

We say that class D of graphs is interpretable in C if there exists

 (x , y) such that D ✓ I (C)

q
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Notes

I This definition of interpretation is:

I tailored to graphs

I simplified (normally V (H) ✓ V (G ))

I Whenever we speak about graphs G and H, graph H is the

result of an interpretation.

I All graphs/structures in this talk are finite



Example

The class of all complete bipartite graphs is interpretable in the

class of all stars forests

What we need to do: Write down a formula  (x , y) such that for

every complete bipartite graph H there exists a star forest G such

that H = I (G )
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Example

The class of all cycles is interpretable in the class of all paths.
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Interpretations – examples

 (x , y) can be:

I x 6= y – creates a clique out of any graph

I x = y ^ x 6= y – creates an empty graph out of any graph

I x 6= y ^¬E (x , y) – creates the edge-complement of any graph

I There is a path of length at most 3 between x and y .

I There is a path of length at most 5 between x and y such

that there are two vertices of degree 8 on it.

I Vertex x has degree 3 and vertex y has a neighbor with

degree at least 5.

I both x and y have degree at least 7

I . . .
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Why are interpertations good?

Let ' := “there exists a dominating set of size 3” and let H be a

(dense) graph.

We want to know whether

H |= '

Let  (x , y) be an interpretation formula saying “the distance

between x and y is at most 2” and let G be a (sparse) graph such

that

H = I (G )

The key observation:

Instead of asking

“Does H have a dominating set of size 3?”

we may as well ask

“Does G have 3 vertices such that all vertices are at at distance at

most two from them?”
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Why are interpertations good?

An interpretation...

I ...assigns to every graph G a new graph H...

I ... but also allows us to translate (reduce) every formula '
about H to a formula '0

about G such that

H |= '() G |= '0

Consequence:

Let D be a class of (dense) graphs and assume that D = I (C) for
some (sparse) graph class C.
The study of FO logic on D can be reduced to the study of FO

logic on C.
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Interpretations – algorithmic perspective

Let D be a class of (dense) graphs and assume that D = I (C) for
some (sparse) graph class C.

We know that to every H 2 D there exists G 2 C such that

H = I (G )

Algorithmic problem: Given H, find G .



Part II: More about interpretations



Interpretations – examples

Can we interpret the class of all complete bipartite graphs in the

class of graphs of degree at most d? A -5
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Interpretations – removing vertices

 (x , y) ⌘ x 6= y ^ 9z : (z 6= x) ^ (z 6= y) ^ edge(x , z) ^ edge(z , y)

⌫(x) = x has degree at most 2
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Vertices satisfying ⌫(x): a, b, e, f

Pairs of vertices satisfying  (x , y) : {a, c}, {b, d}, {c , d}, {c , e},
{d , e}, {d , f }, {a, e}, {b, e}, {c , f }
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Interpretations – extension

 (x , y) ⌘ x 6= y ^ 9z : (z 6= x) ^ (z 6= y) ^ edge(x , z) ^ edge(z , y)

⌫(x) = x has degree at most 2

a

b

c

d

e

f

a

b

e

f

Vertices satisfying ⌫(x): a, b, e, f
Pairs of vertices satisfying  (x , y) :
{a, c}, {b, d}, {c , d}, {c , e}, {d , e}, {d , f }, {a, e}, {b, e}, {c , f }



Interpretations – extension
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Interpretations – examples

The class of all complete bipartite graphs is interpretable in the

class of graphs of degree at most d?



Interpretations – examples

The class of all matchings is interpretable in trees of height 2.
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Interpretations with colors

If we start with a class of clored/labled graphs, we can use

colors/lables in interpretations:

 (x , y) ⌘ x 6= y ^ 9z : (z 6= x) ^ (z 6= y) ^ edge(x , z) ^ edge(z , y)

^ [(green(x) ^ red(y)) _ (red(x) ^ green(y))]

a

b

c

d

e

f

Pairs of vertices satisfying  (x , y) : {a, c}, {b, d}, {c , d}, {d , e}
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Example

The class of all complete bipartite graphs is interpretable in the

class of all colored paths.
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Example

The class of all wheels is interpretable in the class of all colored

cycles.
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Example

The class of all paths is interpretable in the class of all colored

cycles.
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Example

The class of all graphs is interpretable in the class of all

2-degenerate graphs.
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An important example

Show that for every d there the class of graphs of treedepth at

most d is interpretable in colored forests of height d .
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Interpretations in general

Definition

Let � and ⌧ be relational signatures, where ⌧ = {Q1, . . . ,Ql} . An

interpretation from � to ⌧ (or interpretation of ⌧ in �) is a tuple

I = (⌫, 1, . . . , l) of FO �-formulas, where

I ⌫ has one free variable and

I the number of free variables of  i is the same as the arity of

Qi .

An interpretation I from � to ⌧ defines for every �-structure A, a

⌧ -structure B = (B ,QB
i , . . . ,Q

B
i ) as follows:

I B = {a 2 A | A |= ⌫(a)}
I Q

B
i = {(a1, . . . , ak)) 2 A

k | A |=  i (a1, . . . , ak)}
We denote this by B = I (A) and extend this to classes:

I (C) = {I (A) | A 2 C}.

F Structure I - struct .



Example

The class of all trees of height 3 is interpretable in words over

alphabet ⌃ = {a, b, c}.
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Showing non-interpretability

The class of all paths graphs is not interpretable in the class of

stars.
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Showing non-interpretability

The class of all grids is not interpretable in any class of bounded

clique-width.

1. If C is a class of bounded clique-width, then it does not

contain all grids

2. If C is a class of bounded clique-width and I is an

interpretation, then I (C) is a class of graphs of bounded

clique-width



Part III: Interpretations and sparsity



Some older results

Interpretations in trees have been studied, but for MSO logic.

MSO logic = FO logic + quantification over sets of elements

Can express: connectedness, 3-colorability ,...

In rooted trees it can express that vertex w is a least common

ancestor of vertices u and v – important for interpretations

Results:

I For every k the class of graphs of treewidth at most k is

interpretable in colored trees (incidence model)

I For every k the class of graphs of clique-width at most k is

interpretable in colored trees (adjacency model)
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Sparse graphs

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a 
topological minor

Bounded expansion

Outerplanar

Planar

Bounded 
genus

Linear forests

Bounded degree

Locally bounded 
treewidth

Locally excluding 
a minor

Forests

r

rr

∇∇ Locally bounded 
expansion

Nowhere dense
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Research program

For any sparse graph class C:
I Characterize graph classes interpretable in C
I Find an algorithm to ‘reverse’ interpretations

I Find a model checking algorithm

Done for bounded degree and partially for bounded expansion.
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Research program

For any sparse graph class C:
I Characterize graph classes interpretable in C
I Find an algorithm to ‘reverse’ interpretations

I Find a model checking algorithm

Done for bounded degree and partially for bounded expansion.



Interpretations of bounded expansion graph classes

Bounded expansion graph classes – can be characterized low

treedepth colorings/covers

Interpretations of bounded expansion graph classes – can be

characterized low shrub-depth colorings/covers

Shrub-depth – dense counterpart of treedepth



Shrub-depth

Fix d (depth) and set C of colors of size m

Fix a relation R ✓ C ⇥ C ⇥ {2, 4, . . . , 2d}

Consider a tree T of depth d such that every leaf has one of m

colors

Such a tree is called a tree-model and it defines graph G as

follows:

I Vertices of G are leaves of T

I There is an edge between u and v if

(color(u), color(v), dist(u, v)) 2 R



Shrub-depth

I Vertices of G are leaves of T

I There is an edge between u and v if

(color(u), color(v), dist(u, v)) 2 Rin
←

Tree - model
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Shrub depth

Notice that every graph G has a tree model of depth 1 and at

most |V (G )| colors

Consequence – it does not make sense to speak about depth of a

single graph; depth has to be defined for classes of graphs

Definition

Shrub depth of a class C of graphs is the least d such that there

exists m such that every graph in C has a tree model of depth d

with at most m colors.

Theorem

Class C of graphs has bounded shrubdepth if and only if it is

interpretable in the class of trees of bounded height

¥97 H.R. .



Interpretations and sparsity – open problems

What we don’t know:

1. Characterization of classes of graphs interpretable in sparse

graph classes besides bounded degree and bounded expansion

2. Most importantly – characterization of graph classes

interpretable in nowhere dense graph classes

3. Computing reverses of interpretations: Let C be a class of

sparse graphs, I an interpretation and D = I (C). Given H 2 D
as input, compute G 2 C such that H = I (G ).

I Even an algorithm with runtime H
|I |

would be interesting

I Also using a di↵erent interpretation I
0
would be enough, it is

only important that I
0
is the same for all graphs H

I The computed graph G also does not really have to come from

C, it only has to come from a fixed sparse class C0
of graphs
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Interpretations and sparsity – open problems

The simplest variant of the algorithmic problem from the previous

slides:

Let D be class of graphs interpretable in trees using interpretation

I . Find an an interpretation I
0
and a nowhere class C0

and an

algorithm which does the following: Given H 2 C as input, the

algorithm finds G 2 C0
such that H = I

0
(G ) in time H

f (I )
.

I
,


