Outline of Topics

3

<ロ> (日) (日) (日) (日) (日)

Structures

3

・ロト ・聞ト ・ヨト ・ヨト

$\Lambda\text{-}algebras$

- 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

▲ロト ▲圖ト ▲国ト ▲国ト

A **A-algebra over** S **based on** X is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

A Λ -algebra over S based on X is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S such that for $s_0, \ldots, s_k \in S$ and $\lambda_0, \ldots, \lambda_k \in \Lambda$ there exists $x \in X$ with $s_0\lambda_0(x), \ldots, s_k\lambda_k(x)$ defined.

• • • • • • • • • • • •

A Λ -algebra over S based on X is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S such that for $s_0, \ldots, s_k \in S$ and $\lambda_0, \ldots, \lambda_k \in \Lambda$ there exists $x \in X$ with $s_0\lambda_0(x), \ldots, s_k\lambda_k(x)$ defined.

A Λ -algebra over A based on X is **total** if A a semigroup and the domain each $\lambda \in \Lambda$ is equal to X.

A D F A A F F A F F A

A Λ -algebra over S based on X is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S such that for $s_0, \ldots, s_k \in S$ and $\lambda_0, \ldots, \lambda_k \in \Lambda$ there exists $x \in X$ with $s_0\lambda_0(x), \ldots, s_k\lambda_k(x)$ defined.

A Λ -algebra over A based on X is **total** if A a semigroup and the domain each $\lambda \in \Lambda$ is equal to X.

A Λ -algebra is **point based** if it is total and X consist of one point, usually denoted by \bullet .

3

A homomorphism from ${\mathcal A}$ to ${\mathcal B}$

A homomorphism from A to B is a pair of functions f, g

A homomorphism from A to B is a pair of functions f, g such that $f: X \to Y, g: A \to B, g$ is a homomorphism of semigroups, and, for each $x \in X$ and $\lambda \in \Lambda$, we have

 $\lambda(f(x)) = g(\lambda(x)).$

A total Λ -algebra from a Λ -algebra—following Bergelson, Blass, Hindman

${\mathcal S}$ a $\Lambda\text{-algebra}$ over ${\mathcal S}$ based on X

æ

・ロト ・回ト ・ヨト

 \mathcal{S} a Λ -algebra over S based on X

 γX is the set of all ultrafilters \mathcal{V} on X such that for $s \in S$ and $\lambda \in \Lambda$

 $\{x \in X : s\lambda(x) \text{ is defined}\} \in \mathcal{V}.$

γS is the set of all ultrafilters $\mathcal U$ on S such that for $s\in S$

```
\{t \in S : st \text{ is defined}\} \in \mathcal{U}.
```

< ロ > < 同 > < 三 > < 三

 γS is the set of all ultrafilters ${\mathcal U}$ on S such that for $s\in S$

 $\{t \in S : st \text{ is defined}\} \in \mathcal{U}.$

 γS is a semigroup with convolution: $(\mathcal{U}, \mathcal{V}) \rightarrow \mathcal{U} * \mathcal{V}$, where

$$C \in \mathcal{U} * \mathcal{V} \iff \{s \in S \colon \{t \in S \colon st \in C\} \in \mathcal{V}\} \in \mathcal{U}.$$

In other words,

$$C \in \mathcal{U} * \mathcal{V} \iff \forall^{\mathcal{U}} s \, \forall^{\mathcal{V}} t \ (st \in C).$$

3

Each λ induces a function from γX to γS by the formula $C \in \lambda(\mathcal{V})$ iff $\lambda^{-1}(C) \in \mathcal{V}$.

- 2

<ロ> (日) (日) (日) (日) (日)

Each λ induces a function from γX to γS by the formula $C \in \lambda(\mathcal{V})$ iff $\lambda^{-1}(C) \in \mathcal{V}$.

This procedure gives a total Λ -algebra γS over γS based on γX .

E nar

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem

October 21, 2016 10 / 22

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

A sequence (x_n) of elements of X is **basic** if for all $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}) \tag{1}$$

is defined in S.

3

A sequence (x_n) of elements of X is **basic** if for all $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}) \tag{1}$$

is defined in S.

Assume we additionally have a point based Λ -algebra \mathcal{A} over \mathcal{A} .

A sequence (x_n) of elements of X is **basic** if for all $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}) \tag{1}$$

is defined in S.

Assume we additionally have a point based Λ -algebra \mathcal{A} over A.

A coloring of S is A-tame on (x_n) if the color of elements in (1) depends only on

$$\lambda_0(\bullet)\lambda_1(\bullet)\cdots\lambda_l(\bullet)\in A$$

A sequence (x_n) of elements of X is **basic** if for all $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}) \tag{1}$$

is defined in S.

Assume we additionally have a point based Λ -algebra \mathcal{A} over \mathcal{A} .

A coloring of S is A-tame on (x_n) if the color of elements in (1) depends only on

$$\lambda_0(ullet)\lambda_1(ullet)\cdots\lambda_l(ullet)\in A$$

provided $\lambda_k(\bullet) \cdots \lambda_l(\bullet) \in \Lambda(\bullet)$ for all $k \leq l$.

= ~~~

Theorem (S.)

Fix a finite set Λ . Let S be a Λ -algebra over S, and let A be a point based Λ -algebra. Let $(f,g): A \to \gamma S$ be a homomorphism.

3

Theorem (S.)

Fix a finite set Λ . Let S be a Λ -algebra over S, and let A be a point based Λ -algebra. Let $(f,g): A \to \gamma S$ be a homomorphism. Then for each $D \in f(\bullet)$ and each finite coloring of S,

Theorem (S.)

Fix a finite set Λ . Let S be a Λ -algebra over S, and let A be a point based Λ -algebra. Let $(f,g): A \to \gamma S$ be a homomorphism.

Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequence (x_n) of elements of D on which the coloring is A-tame.

The goal: produce homomorphisms from point based algebras ${\cal A}$ to $\gamma {\cal S}$

- 4 回 ト 4 三 ト 4 三

Tensor products

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Fix a partial semigroup S.

 Λ_0 , Λ_1 finite sets

 S_i , for i = 0, 1, Λ_i -algebras over S with S_i is based on X_i

3

Put

$$\Lambda_0 \star \Lambda_1 = \Lambda_0 \cup \Lambda_1 \cup (\Lambda_0 \times \Lambda_1).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

Put

$$\Lambda_0 \star \Lambda_1 = \Lambda_0 \cup \Lambda_1 \cup (\Lambda_0 \times \Lambda_1).$$

Define

 $\mathcal{S}_0\otimes \mathcal{S}_1$

to be a $\Lambda_0 \star \Lambda_1$ -algebra over *S* based on $X_0 \times X_1$ as follows:

3

イロト イ団ト イヨト イヨト

Put

$$\Lambda_0 \star \Lambda_1 = \Lambda_0 \cup \Lambda_1 \cup (\Lambda_0 \times \Lambda_1).$$

Define

 $\mathcal{S}_0\otimes \mathcal{S}_1$

to be a $\Lambda_0 \star \Lambda_1$ -algebra over S based on $X_0 \times X_1$ as follows: with

$$\lambda_0, \, \lambda_1, \, (\lambda_0, \lambda_1) \in \Lambda_0 \star \Lambda_1$$

associate partial functions $X_0 \times X_1 \to S$ by letting

$$egin{aligned} \lambda_0(x_0,x_1) &= \lambda_0(x_0), \ \lambda_1(x_0,x_1) &= \lambda_1(x_1), \ (\lambda_0,\lambda_1)(x_0,x_1) &= \lambda_0(x_0)\lambda_1(x_1). \end{aligned}$$

イロト イヨト イヨト イヨト

October 21, 2016

3

16 / 22

Proposition (S.)

Fix semigroups A and B. For i = 0, 1, let A_i and B_i be Λ_i -algebras over A and B, respectively. Let

 $(f_0,g)\colon \mathcal{A}_0 o \mathcal{B}_0$ and $(f_1,g)\colon \mathcal{A}_1 o \mathcal{B}_1$

be homomorphisms.

3

Proposition (S.)

Fix semigroups A and B. For i = 0, 1, let A_i and B_i be Λ_i -algebras over A and B, respectively. Let

$$(f_0,g)\colon \mathcal{A}_0 o \mathcal{B}_0$$
 and $(f_1,g)\colon \mathcal{A}_1 o \mathcal{B}_1$

be homomorphisms. Then

$$(f_0 \times f_1, g) \colon \mathcal{A}_0 \otimes \mathcal{A}_1 \to \mathcal{B}_0 \otimes \mathcal{B}_1$$

(日) (周) (三) (三)

October 21, 2016

3

17 / 22

is a homomorphism.

Let S_i , i = 0, 1, be Λ_i -algebras over S based on X_i .

October 21, 2016 18 / 22

3

<ロ> (日) (日) (日) (日) (日)

Let S_i , i = 0, 1, be Λ_i -algebras over S based on X_i . Consider

 $\gamma S_0 \otimes \gamma S_1$ and $\gamma (S_0 \otimes S_1)$.

Both are $\Lambda_0 \star \Lambda_1$ -algebras over γS .

The first one is based on $\gamma X_0 \times \gamma X_1$, the second one on $\gamma (X_0 \times X_1)$.

< ロ > < 同 > < 三 > < 三

Let S_i , i = 0, 1, be Λ_i -algebras over S based on X_i . Consider

 $\gamma S_0 \otimes \gamma S_1$ and $\gamma (S_0 \otimes S_1)$.

Both are $\Lambda_0 \star \Lambda_1$ -algebras over γS .

The first one is based on $\gamma X_0 \times \gamma X_1$, the second one on $\gamma(X_0 \times X_1)$. There is a natural map $\gamma X_0 \times \gamma X_1 \rightarrow \gamma(X_0 \times X_1)$ given by

$$(\mathcal{U},\mathcal{V}) o \mathcal{U} imes \mathcal{V},$$

where, for $C \subseteq X_0 \times X_1$,

 $C \in \mathcal{U} \times \mathcal{V} \Longleftrightarrow \{x_0 \in X_0 \colon \{x_1 \in X_1 \colon (x_0, x_1) \in C\} \in \mathcal{V}\} \in \mathcal{U}.$

イロト イポト イヨト イヨト

October 21, 2016

E Sac

18 / 22

Proposition (S.)

Let S be a partial semigroup. Let S_i , i = 0, 1, be Λ_i -algebras over S. Then

$$(f, \mathrm{id}_{\gamma S}) \colon \gamma S_0 \otimes \gamma S_1 \to \gamma (S_0 \otimes S_1),$$

where $f(\mathcal{U}, \mathcal{V}) = \mathcal{U} \times \mathcal{V}$, is a homomorphism.

- 3

イロト イヨト イヨト

${\mathcal A}$ a point based Λ -algebra over a semigroup ${\mathcal A}$

æ

• • • • • • • •

 ${\cal A}$ a point based Λ -algebra over a semigroup ${\cal A}$ Fix a natural number r>0.

Let

Note

$$\Lambda_{< r}(\bullet) = \{\lambda_0(\bullet) \cdots \lambda_m(\bullet) \colon m < r, \ \lambda_i \in \Lambda \text{ for } i \leq m\}.$$

$$\Lambda(\bullet) \subseteq \Lambda_{< r}(\bullet) \subseteq A.$$

October 21, 2016 20 / 22

3

Image: A match a ma

S a Λ -algebra over a partial semigroup S (x_n) a basic sequence in S

3

Image: A math a math

S a Λ -algebra over a partial semigroup S(x_n) a basic sequence in S

A coloring of S is r-A-tame on (x_n) if the color of elements of the form

 $\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}),$

for $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$ depends only on

 $\lambda_0(\bullet)\lambda_1(\bullet)\cdots\lambda_l(\bullet)\in A$

S a Λ -algebra over a partial semigroup S(x_n) a basic sequence in S

A coloring of S is r-A-tame on (x_n) if the color of elements of the form

 $\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}),$

for $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$ depends only on

$$\lambda_0(\bullet)\lambda_1(\bullet)\cdots\lambda_l(\bullet)\in A$$

provided

$$\lambda_k(\bullet) \cdots \lambda_l(\bullet) \in \Lambda_{< r}(\bullet)$$
 for all $k \leq l$.

The following corollary of the theorem is its generalization.

æ

(日) (同) (日) (日) (日)

The following corollary of the theorem is its generalization.

Corollary

Fix a finite set Λ and a natural number r. Let S be a Λ -algebra, A a point based Λ -algebra, and $(f,g): A \to \gamma S$ a homomorphism.

The following corollary of the theorem is its generalization.

Corollary

Fix a finite set Λ and a natural number r. Let S be a Λ -algebra, A a point based Λ -algebra, and $(f,g): A \to \gamma S$ a homomorphism. Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequences (x_n) of elements of D on which the coloring is r-A-tame.