Outline of Topics

Structures

2 Theorem

3 Tensor products

Structures

∧-algebras

 Λ a set, S a partial semigroup, and X a set

A Λ -algebra over S based on X is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S such that for $s_0, \ldots, s_k \in S$ and $\lambda_0, \ldots, \lambda_k \in \Lambda$ there exists $x \in X$ with $s_0\lambda_0(x), \ldots, s_k\lambda_k(x)$ defined.

A Λ -algebra over A based on X is **total** if A a semigroup and the domain each $\lambda \in \Lambda$ is equal to X.

A Λ -algebra is **point based** if it is total and X consist of one point, usually denoted by \bullet .

 $\mathcal A$ and $\mathcal B$ are total Λ -algebras with $\mathcal A$ being over A and based on X and $\mathcal B$ being over B and based on Y.

A homomorphism from \mathcal{A} to \mathcal{B} is a pair of functions f, g such that $f: X \to Y, g: A \to B, g$ is a homomorphism of semigroups, and, for each $x \in X$ and $\lambda \in \Lambda$, we have

$$\lambda(f(x)) = g(\lambda(x)).$$

A total ∧-algebra from a ∧-algebra—following Bergelson, Blass, Hindman

 ${\mathcal S}$ a Λ -algebra over ${\mathcal S}$ based on X

 γX is the set of all ultrafilters ${\mathcal V}$ on X such that for $s\in {\mathcal S}$ and $\lambda\in \Lambda$

 $\{x \in X \colon s\lambda(x) \text{ is defined}\} \in \mathcal{V}.$

 γS is the set of all ultrafilters $\mathcal U$ on S such that for $s \in S$

$$\{t \in S : st \text{ is defined}\} \in \mathcal{U}.$$

 γS is a semigroup with convolution: $(\mathcal{U}, \mathcal{V}) \to \mathcal{U} * \mathcal{V}$, where

$$C \in \mathcal{U} * \mathcal{V} \iff \{s \in S : \{t \in S : st \in C\} \in \mathcal{V}\} \in \mathcal{U}.$$

In other words,

$$C \in \mathcal{U} * \mathcal{V} \iff \forall^{\mathcal{U}} s \forall^{\mathcal{V}} t \ (st \in C).$$

Each λ induces a function from γX to γS by the formula

$$C \in \lambda(\mathcal{V})$$
 iff $\lambda^{-1}(C) \in \mathcal{V}$.

This procedure gives a **total** Λ -algebra γS over γS based on γX .

9 / 22

Theorem

Assume we have a Λ -algebra over S and based on X.

A sequence (x_n) of elements of X is **basic** if for all $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}) \tag{1}$$

is defined in S.

Assume we additionally have a point based Λ -algebra \mathcal{A} over A.

A coloring of S is A-tame on (x_n) if the color of elements in (1) depends only on

$$\lambda_0(\bullet)\lambda_1(\bullet)\cdots\lambda_l(\bullet)\in A$$

provided $\lambda_k(\bullet) \cdots \lambda_l(\bullet) \in \Lambda(\bullet)$ for all $k \leq l$.

Theorem (S.)

Fix a finite set Λ . Let S be a Λ -algebra over S, and let A be a point based Λ -algebra. Let $(f,g): A \to \gamma S$ be a homomorphism.

Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequence (x_n) of elements of D on which the coloring is A-tame.

The goal: produce homomorphisms from point based algebras $\mathcal A$ to $\gamma\mathcal S$

Tensor products

Fix a partial semigroup S.

 $\Lambda_0,\,\Lambda_1$ finite sets

 S_i , for i = 0, 1, Λ_i -algebras over S with S_i is based on X_i

Put

$$\Lambda_0 \star \Lambda_1 = \Lambda_0 \cup \Lambda_1 \cup (\Lambda_0 \times \Lambda_1).$$

Define

$$\mathcal{S}_0 \otimes \mathcal{S}_1$$

to be a $\Lambda_0 \star \Lambda_1$ -algebra over S based on $X_0 \times X_1$ as follows: with

$$\lambda_0, \, \lambda_1, \, (\lambda_0, \lambda_1) \in \Lambda_0 \star \Lambda_1$$

associate partial functions $X_0 \times X_1 \to S$ by letting

$$\lambda_0(x_0, x_1) = \lambda_0(x_0),$$

 $\lambda_1(x_0, x_1) = \lambda_1(x_1),$
 $(\lambda_0, \lambda_1)(x_0, x_1) = \lambda_0(x_0)\lambda_1(x_1).$

Proposition (S.)

Fix semigroups A and B. For i=0,1, let \mathcal{A}_i and \mathcal{B}_i be Λ_i -algebras over A and B, respectively. Let

$$(f_0,g)\colon \mathcal{A}_0 o \mathcal{B}_0$$
 and $(f_1,g)\colon \mathcal{A}_1 o \mathcal{B}_1$

be homomorphisms. Then

$$(f_0 \times f_1, g) \colon \mathcal{A}_0 \otimes \mathcal{A}_1 \to \mathcal{B}_0 \otimes \mathcal{B}_1$$

is a homomorphism.

Let S_i , i = 0, 1, be Λ_i -algebras over S based on X_i . Consider

$$\gamma S_0 \otimes \gamma S_1$$
 and $\gamma (S_0 \otimes S_1)$.

Both are $\Lambda_0 \star \Lambda_1$ -algebras over γS .

The first one is based on $\gamma X_0 \times \gamma X_1$, the second one on $\gamma (X_0 \times X_1)$.

There is a natural map $\gamma X_0 \times \gamma X_1 \to \gamma (X_0 \times X_1)$ given by

$$(\mathcal{U}, \mathcal{V}) \to \mathcal{U} \times \mathcal{V},$$

where, for $C \subseteq X_0 \times X_1$,

$$C \in \mathcal{U} \times \mathcal{V} \Longleftrightarrow \{x_0 \in X_0 \colon \{x_1 \in X_1 \colon (x_0, x_1) \in C\} \in \mathcal{V}\} \in \mathcal{U}.$$

Proposition (S.)

Let S be a partial semigroup. Let S_i , i=0,1, be Λ_i -algebras over S. Then

$$(f, \mathrm{id}_{\gamma S}) \colon \gamma S_0 \otimes \gamma S_1 \to \gamma (S_0 \otimes S_1),$$

where $f(\mathcal{U}, \mathcal{V}) = \mathcal{U} \times \mathcal{V}$, is a homomorphism.

 ${\mathcal A}$ a point based Λ -algebra over a semigroup A

Fix a natural number r > 0.

Let

$$\Lambda_{< r}(\bullet) = \{\lambda_0(\bullet) \cdots \lambda_m(\bullet) \colon m < r, \, \lambda_i \in \Lambda \text{ for } i \leq m\}.$$

Note

$$\Lambda(\bullet) \subseteq \Lambda_{< r}(\bullet) \subseteq A.$$

 ${\mathcal S}$ a Λ -algebra over a partial semigroup ${\mathcal S}$ (x_n) a basic sequence in ${\mathcal S}$

A coloring of S is r- \mathcal{A} -tame on (x_n) if the color of elements of the form

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}),$$

for $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$ depends only on

$$\lambda_0(\bullet)\lambda_1(\bullet)\cdots\lambda_l(\bullet)\in A$$

provided

$$\lambda_k(\bullet) \cdots \lambda_l(\bullet) \in \Lambda_{< r}(\bullet) \text{ for all } k \leq l.$$

The following corollary of the theorem is its generalization.

Corollary

Fix a finite set Λ and a natural number r. Let $\mathcal S$ be a Λ -algebra, $\mathcal A$ a point based Λ -algebra, and $(f,g)\colon \mathcal A\to\gamma\mathcal S$ a homomorphism.

Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequences (x_n) of elements of D on which the coloring is r-A-tame.