Outline of Topics

(1) Structures
(2) Theorem
(3) Tensor products

Structures

Λ-algebras

Λ a set, S a partial semigroup, and X a set
A Λ-algebra over S based on X is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S such that for $s_{0}, \ldots, s_{k} \in S$ and $\lambda_{0}, \ldots, \lambda_{k} \in \Lambda$ there exists $x \in X$ with $s_{0} \lambda_{0}(x), \ldots, s_{k} \lambda_{k}(x)$ defined.

A Λ-algebra over A based on X is total if A a semigroup and the domain each $\lambda \in \Lambda$ is equal to X.

A Λ-algebra is point based if it is total and X consist of one point, usually denoted by \bullet.
\mathcal{A} and \mathcal{B} are total Λ-algebras with \mathcal{A} being over A and based on X and \mathcal{B} being over B and based on Y.

A homomorphism from \mathcal{A} to \mathcal{B} is a pair of functions f, g such that $f: X \rightarrow Y, g: A \rightarrow B, g$ is a homomorphism of semigroups, and, for each $x \in X$ and $\lambda \in \Lambda$, we have

$$
\lambda(f(x))=g(\lambda(x))
$$

A total Λ-algebra from a Λ-algebrafollowing Bergelson, Blass, Hindman

\mathcal{S} a Λ-algebra over S based on X
γX is the set of all ultrafilters \mathcal{V} on X such that for $s \in S$ and $\lambda \in \Lambda$

$$
\{x \in X: s \lambda(x) \text { is defined }\} \in \mathcal{V}
$$

γS is the set of all ultrafilters \mathcal{U} on S such that for $s \in S$

$$
\{t \in S: s t \text { is defined }\} \in \mathcal{U}
$$

γS is a semigroup with convolution: $(\mathcal{U}, \mathcal{V}) \rightarrow \mathcal{U} * \mathcal{V}$, where

$$
C \in \mathcal{U} * \mathcal{V} \Longleftrightarrow\{s \in S:\{t \in S: s t \in C\} \in \mathcal{V}\} \in \mathcal{U}
$$

In other words,

$$
C \in \mathcal{U} * \mathcal{V} \Longleftrightarrow \forall^{\mathcal{U}} s \forall^{\mathcal{V}} t(s t \in C)
$$

Each λ induces a function from γX to γS by the formula

$$
C \in \lambda(\mathcal{V}) \text { iff } \lambda^{-1}(C) \in \mathcal{V}
$$

This procedure gives a total Λ-algebra $\gamma \mathcal{S}$ over γS based on γX.

Theorem

Assume we have a Λ-algebra over S and based on X.
A sequence $\left(x_{n}\right)$ of elements of X is basic if for all $n_{0}<\cdots<n_{l}$ and $\lambda_{0}, \ldots, \lambda_{I} \in \Lambda$

$$
\begin{equation*}
\lambda_{0}\left(x_{n_{0}}\right) \lambda_{1}\left(x_{n_{1}}\right) \cdots \lambda_{l}\left(x_{n_{l}}\right) \tag{1}
\end{equation*}
$$

is defined in S.

Assume we additionally have a point based Λ-algebra \mathcal{A} over A.
A coloring of S is \mathcal{A}-tame on $\left(x_{n}\right)$ if the color of elements in (1) depends only on

$$
\lambda_{0}(\bullet) \lambda_{1}(\bullet) \cdots \lambda_{l}(\bullet) \in A
$$

provided $\lambda_{k}(\bullet) \cdots \lambda_{l}(\bullet) \in \Lambda(\bullet)$ for all $k \leq I$.

Theorem (S.)

Fix a finite set Λ. Let \mathcal{S} be a Λ-algebra over S, and let \mathcal{A} be a point based Λ-algebra. Let $(f, g): \mathcal{A} \rightarrow \gamma \mathcal{S}$ be a homomorphism.
Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequence $\left(x_{n}\right)$ of elements of D on which the coloring is \mathcal{A}-tame.

The goal: produce homomorphisms from point based algebras \mathcal{A} to $\gamma \mathcal{S}$

Tensor products

Fix a partial semigroup S.
Λ_{0}, Λ_{1} finite sets
\mathcal{S}_{i}, for $i=0,1, \Lambda_{i}$-algebras over S with \mathcal{S}_{i} is based on X_{i}

Put

$$
\Lambda_{0} \star \Lambda_{1}=\Lambda_{0} \cup \Lambda_{1} \cup\left(\Lambda_{0} \times \Lambda_{1}\right)
$$

Define

$$
\mathcal{S}_{0} \otimes \mathcal{S}_{1}
$$

to be a $\Lambda_{0} \star \Lambda_{1}$-algebra over S based on $X_{0} \times X_{1}$ as follows: with

$$
\lambda_{0}, \lambda_{1},\left(\lambda_{0}, \lambda_{1}\right) \in \Lambda_{0} \star \Lambda_{1}
$$

associate partial functions $X_{0} \times X_{1} \rightarrow S$ by letting

$$
\begin{aligned}
\lambda_{0}\left(x_{0}, x_{1}\right) & =\lambda_{0}\left(x_{0}\right) \\
\lambda_{1}\left(x_{0}, x_{1}\right) & =\lambda_{1}\left(x_{1}\right) \\
\left(\lambda_{0}, \lambda_{1}\right)\left(x_{0}, x_{1}\right) & =\lambda_{0}\left(x_{0}\right) \lambda_{1}\left(x_{1}\right)
\end{aligned}
$$

Proposition (S.)

Fix semigroups A and B. For $i=0,1$, let \mathcal{A}_{i} and \mathcal{B}_{i} be Λ_{i}-algebras over A and B, respectively. Let

$$
\left(f_{0}, g\right): \mathcal{A}_{0} \rightarrow \mathcal{B}_{0} \text { and }\left(f_{1}, g\right): \mathcal{A}_{1} \rightarrow \mathcal{B}_{1}
$$

be homomorphisms. Then

$$
\left(f_{0} \times f_{1}, g\right): \mathcal{A}_{0} \otimes \mathcal{A}_{1} \rightarrow \mathcal{B}_{0} \otimes \mathcal{B}_{1}
$$

is a homomorphism.

Let $\mathcal{S}_{i}, i=0,1$, be Λ_{i}-algebras over S based on X_{i}. Consider

$$
\gamma \mathcal{S}_{0} \otimes \gamma \mathcal{S}_{1} \text { and } \gamma\left(\mathcal{S}_{0} \otimes \mathcal{S}_{1}\right)
$$

Both are $\Lambda_{0} \star \Lambda_{1}$-algebras over γS.
The first one is based on $\gamma X_{0} \times \gamma X_{1}$, the second one on $\gamma\left(X_{0} \times X_{1}\right)$.
There is a natural map $\gamma X_{0} \times \gamma X_{1} \rightarrow \gamma\left(X_{0} \times X_{1}\right)$ given by

$$
(\mathcal{U}, \mathcal{V}) \rightarrow \mathcal{U} \times \mathcal{V}
$$

where, for $C \subseteq X_{0} \times X_{1}$,

$$
\mathcal{C} \in \mathcal{U} \times \mathcal{V} \Longleftrightarrow\left\{x_{0} \in X_{0}:\left\{x_{1} \in X_{1}:\left(x_{0}, x_{1}\right) \in C\right\} \in \mathcal{V}\right\} \in \mathcal{U}
$$

Proposition (S.)

Let S be a partial semigroup. Let $\mathcal{S}_{i}, i=0,1$, be Λ_{i}-algebras over S. Then

$$
\left(f, \mathrm{id}_{\gamma S}\right): \gamma \mathcal{S}_{0} \otimes \gamma \mathcal{S}_{1} \rightarrow \gamma\left(\mathcal{S}_{0} \otimes \mathcal{S}_{1}\right)
$$

where $f(\mathcal{U}, \mathcal{V})=\mathcal{U} \times \mathcal{V}$, is a homomorphism.
\mathcal{A} a point based Λ-algebra over a semigroup A
Fix a natural number $r>0$.
Let

$$
\Lambda_{<r}(\bullet)=\left\{\lambda_{0}(\bullet) \cdots \lambda_{m}(\bullet): m<r, \lambda_{i} \in \Lambda \text { for } i \leq m\right\}
$$

Note

$$
\Lambda(\bullet) \subseteq \Lambda_{<r}(\bullet) \subseteq A .
$$

\mathcal{S} a Λ-algebra over a partial semigroup S
$\left(x_{n}\right)$ a basic sequence in \mathcal{S}
A coloring of S is r - \mathcal{A}-tame on $\left(x_{n}\right)$ if the color of elements of the form

$$
\lambda_{0}\left(x_{n_{0}}\right) \lambda_{1}\left(x_{n_{1}}\right) \cdots \lambda_{l}\left(x_{n_{l}}\right),
$$

for $n_{0}<\cdots<n_{l}$ and $\lambda_{0}, \ldots, \lambda_{\text {I }} \in \Lambda$ depends only on

$$
\lambda_{0}(\bullet) \lambda_{1}(\bullet) \cdots \lambda_{l}(\bullet) \in A
$$

provided

$$
\lambda_{k}(\bullet) \cdots \lambda_{l}(\bullet) \in \Lambda_{<r}(\bullet) \text { for all } k \leq I
$$

The following corollary of the theorem is its generalization.

Corollary

Fix a finite set Λ and a natural number r. Let \mathcal{S} be a Λ-algebra, \mathcal{A} a point based Λ-algebra, and $(f, g): \mathcal{A} \rightarrow \gamma \mathcal{S}$ a homomorphism. Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequences $\left(x_{n}\right)$ of elements of D on which the coloring is r - \mathcal{A}-tame.

