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3 An extension of Fräıssé’s Theorem

We give a generalization of Fräıssé ’s Theorem. Further generalizations are possible (though
the basic structure of the proof is always the same). The exposition is based on my Bonn
notes and some notes of Martin Ziegler (see his webpage1).

We shall work with a class K of finite L-structures and a distinguished class of substructures
A ≤ B, pronounced ‘A is a strong substructure of B’ (the terminology is not standard). If
B ∈ K, then an embedding f : A→ B is a ≤-embedding if f(A) ≤ B. We shall assume that
≤ satisfies:

(N1) If B ∈ K then B ≤ B (so isomorphisms are ≤-embeddings);

(N2) If A ≤ B ≤ C (and A,B,C ∈ K), then A ≤ C (so if f : A → B and g : B → C are
≤-embeddings, then g ◦ f : A→ C is a ≤-embedding).

In this case, we say that (K;≤) is a strong class of finite structures.

Example 3.1. Let K be the class of finite 2-oriented digraphs. If A ⊆ B ∈ K write A v B
to mean that A is successor-closed in B. Then (K;v) is a strong class.

Definition 3.2. We say that strong class (K;≤) has the amalgamation property (for strong
embeddings) if whenever A0, A1, A2 are in K and f1 : A0 → A1 and f2 : A0 → A2 are strong,
there is B ∈ K and strong gi : Ai → B (for i = 1, 2) with g1 ◦ f1 = g2 ◦ f2. The class has the
joint embedding property if for all A1, A2 ∈ K there is some C ∈ K and strong f1 : A1 → C
and f2 : A2 → C.

If ∅ ∈ K and ∅ ≤ A for all A ∈ K, then the JEP is a special case of the AP. Note that (K;v)
in Example 3.1 has the amalgamation property (and (K;⊆) does not have the AP).

Definition 3.3. Suppose (K;≤) is a strong class of finite L-structures. An increasing chain

A0 ≤ A1 ≤ A2 ≤ A3 ≤ . . .

is called a rich sequence if:

1‘Strong Fraisse limits’ http://home.mathematik.uni-freiburg.de/ziegler/preprints/starker fraisse.pdf
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1. for all A ∈ K there is some i < ω and a strong embedding A→ Ai;

2. for all strong f : Ai → B there is j ≥ i and a strong g : B → Aj such that g(f(a)) = a
for all a ∈ Ai.

A Fräıssé limit of (K;≤) is an L-structure which is the union of a rich sequence of substruc-
tures.

We want to talk about strong substructures of a Fräıssé limit. There are several ways of doing
this, but we follow Ziegler’s method. In the examples which we will be working with, there
will be a more natural way of describing this which extends the notion of strong substructure
from the finite case.

Definition 3.4. Suppose M is a Fräıssé limit of a strong class (K;≤). If A is a finite
substructure of M , say that A ≤ M if M is the union of a rich sequence of substructures
which starts with A.

Note that this property is preserved by automorphisms of M .

Lemma 3.5. Suppose (K;≤) is a strong class with the amalgamation property and M is a
Fräıssé limit. If A ≤ A0 ≤M , then A ≤M .

Proof. Suppose A0 ≤ A1 ≤ · · · is a rich sequence with union M . To show that A ≤ A0 ≤
A1 . . . is a rich sequence, let f : A→ B ∈ K be strong. Use the AP to find strong h : A0 → C
and g : B → C with h(a) = g(f(a)) for a ∈ A. Now apply richness of the Ai-sequence to
h.

Theorem 3.6. Suppose (K;≤) is a strong class of finite structures with AP and JEP. Then

1. rich sequences for the class, and therefore Fräıssé limits, exist.

2. Suppose M , M ′ are Fräıssé limits of the class. If A ≤ M and A′ ≤ M ′ are finite and
f : A→ A′ is an isomorphism, then f extends to an isomorphism g : M →M ′.

Proof. (1) Build the rich sequence A0 ≤ A1 ≤ . . . inductively ensuring that:

• if C ∈ K there is an i and a ≤-embedding f : C → Ai;

• if f : Ai → B ∈ K is strong then there is j ≥ i and a ≤-embedding g : B → Aj with
g(a) = a for all a ∈ A.

To perform tasks of the first type, we use JEP; for the second type we can use AP. There
are only countably many tasks to perform, so we can arrange that all are completed during
the construction of the Ai.

(2) We extend f by a back-and-forth argument in the usual way. The key point is to show
how to extend the domain of f (‘forth’): the ‘back’ step is symmetrical.
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So let A ≤ A1 ≤ A2 ≤ A3 ≤ . . . and A′ ≤ A1 ≤ A′2 ≤ A′3 ≤ . . . be rich sequences with
Fräıssé limits M and M ′ respectively. It will suffice to find an embedding h : A1 →M ′ which
extends f and has h(A1) ≤M ′. By the second condition in the definition of richness, there is
a strong embedding h : A1 → A′j extending f , for some j. By the Lemma, h(A1) ≤M ′.

Note: In the above, if M is a Fräıssé limit of the strong class (K;≤) (with AP and JEP),
then any isomorphism between finite ≤-substructures of M extends to an automorphism of
M . We refer to this property as ≤-homogeneity of M .

In Example 3.1, if M is a Fräıssé limit, then A v M just means that A is successor-closed
in M . More generally, we have:

Remarks 3.7. Suppose that (K;≤) is a strong class with AP and that:

(N3) whenever A ≤ B and C ∈ K is a substructure of B which contains A, then A ≤ C.

If M is a Fräıssé limit with rich sequence (Ai)i<ω, then, for a finite A ⊆ Ai, we have A ≤M
iff A ≤ Ai. The condition implies that if A ≤ C ∈ K and A ⊆ B ≤ C, then A ≤ B.

The Fräıssé limit in Example 3.1 is not ω-categorical. We finish this section by giving a
condition which guarantees ω-categoricity.

Remarks 3.8. Suppose (K;≤) in Theorem 3.6 has only finitely many isomorphism types
of structure of each finite size. Suppose also that there is a function F : N→ N such that if
B ∈ K and A ⊆ B with |A| ≤ n, then there is C ≤ B with A ⊆ C and |C| ≤ F (n). Then
the Fräıssé limit M is ω-categorical.

To see this we note that Aut(M) has finitely many orbits on Mn. Indeed, by ≤-homogeneity
there are finitely many orbits on {c̄ ∈ MF (n) : c̄ ≤ M} and any ā ∈ Mn can be extended to
an element of this set.
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4 Hrushovski’s predimension construction

All of this is due to Ehud Hrushovski. There are several variations on the construction. We
shall focus on the the version which produces an ω-categorical 2-sparse graph (with vertices
of infinite valency).

4.1 Predimensions

Notation 4.1. Let L be a language for graphs: so we have a single 2-ary relation symbol
R. We work with the class C of finite L-structures A where R is symmetric and irreflexive.
Thus, the set RA of instances of R in A can be thought of as a set of 2-subsets from A, so
RA ⊆ [A]2. Define the predimension of A to be:

δ(A) = 2|A| − |RA|.

Remarks 4.2. This can be done more generally. Note that a graph Γ = (B;R) is 2-very
sparse iff δ(A) ≥ 0 for all finite A ⊆ B.

Lemma 4.3. (Submodularity) Suppose A ∈ C and B,C ⊆ A. Then

δ(B ∪ C) ≤ δ(B) + δ(C)− δ(B ∩ C).

Moreover, there is equality here iff RB∪C = RB ∪RC (that is, B are freely amalgamated over
B ∩ C in A).

Proof. Note that

δ(B) + δ(C)− δ(B ∩ C)− δ(B ∪ C)

= −(|RB|+ |RC | − |RB∩C | − |RB∪C |)
= |RB∪C | − (|RB|+ |RC | − |RB ∩RC |)

= |RB∪C | − |RB ∪RC | ≥ 0

with equality iff RB∪C = RB ∪RC .

Definition 4.4. Suppose B ∈ C and A ⊆ B. Write A ≤d B if δ(A) < δ(B′) for all B′ with
A ⊂ B′ ⊆ B and say that A is d-closed in B.

Lemma 4.5. Let B ∈ C.

1. If A ≤d B and X ⊆ B, then A ∩X ≤d X.

2. If A ≤d C ≤d B, then A ≤d B.

3. If A1, A2 ≤d B, then A1 ∩ A2 ≤d B.
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Proof. (1) Let Y ⊆ X with A∩X ⊂ Y . Note that Y ∩A = X ∩A. Then by submodularity:

δ(A ∪ Y ) ≤ δ(A) + δ(Y )− δ(Y ∩ A) so δ(A ∪ Y ) ≤ δ(A) + δ(Y )− δ(X ∩ A).

Therefore

δ(Y )− δ(A ∩X) ≥ δ(A ∪ Y )− δ(A).

As A ≤d B, this is > 0.

(2) Let A ⊂ X ⊆fin B. By (1), C ∩X ≤d X so

δ(A) ≤ δ(X ∩ C) ≤ δ(X)

(the first of these coming from A ≤d C and the second from X ∩ C ≤d X). As A ⊂ X, at
least one of these inequalities is strict.

(3) By (1) A1 ∩ A2 ≤d A1, so the result follows from (2).

Remarks 4.6. (3) shows that if A ⊆ B and S = {A1 : A ⊆ A1 ≤d B}, then
⋂
S ≤d B. So

there is a smallest ≤d- subset of B which contains A: denote it by cldB(A). It is easy to see
that cldB is a closure operations on B.

Lemma 4.7. For A ⊆ B ∈ C we have δ(A) ≥ δ(cldB(A)).

Proof. Amongst all the subsets X of B containing A, consider the ones for which δ(X) is
as small as possible. Amongst these, choose one, C, with as many elements as possible.
Clearly δ(C) ≥ δ(A) and if C ⊂ D ⊆ B, then δ(C) < δ(D). So C ≤d B and therefore
A ⊆ cldB(A) ≤d C ≤d B. By choice of C we have δ(C) ≤ δ(cldB(A)), therefore C = cldB(A).
The result follows.

From Lemma 4.5, the notions of distinguished substructure ≤d satisfies (N1), (N2) and (N3).
However, we do not have the JEP. For example, suppose B1, B2 ∈ C are finite and δ(B2) < 0.
Let C be the free amalgam (disjoint union) of B1 and B2. Then δ(B1) + δ(B2) < δ(B1)
so B1 6≤s C. So it makes sense to exclude structures of negative predimension. For an
ω-categorical structure, we also want to ensure that the d-closure of a finite subset of a
structure in the class we consider is bounded uniformly in the size of the subset. This is the
point of the following definition.

Definition 4.8. Let F : R≥0 → R≥0 be a continuous, increasing function with F (x) → ∞
as x→∞, and F (0) = 0. Let

CF = {B ∈ C : δ(A) ≥ F (|A|) for all A ⊆ B}.

Theorem 4.9. 1. If B ∈ CF and A ⊆ B then

|cldB(A)| ≤ F−1(α|A|).

2. If (CF ,≤d) is an amalgamation class, then the generic structure MF is ω-categorical.
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Proof. (1) By Lemma 4.7 we have δ(cldB(A)) ≤ δ(A) ≤ 2|A|. Thus (by definition of CF ) we
have |cldB(A)| ≤ F−1(α|A|).
(2) This follows from Remarks 3.8.

Main Construction: Let F as in Definition 4.8 be such that:

• F is piecewise smooth;

• the right derivative F ′ is non-increasing;

• F ′(x) ≤ 1/x for all x > 0.

The we claim that (CF ,≤d) is a free amalgamation class.

Indeed, suppose A ≤d B1, B2 ∈ CF and let E be the free amalgam of B1 and B2 over A. We
need to show that E ∈ CF . Clearly we may assume A 6= Bi.

Suppose X ⊆ E. We need to show that δ(X) ≥ F (|X|). Now, X is the free amalgam over
A ∩X of B1 ∩X and B2 ∩X and A ∩X ≤d Bi ∩X (by Lemma 4.5(1)). So we can assume
X = E and check that δ(E) ≥ F (|E|).
Note that δ(E) = δ(B1) + δ(B2)− δ(A) and |E| = |B1|+ |B2| − |A|.
The effect of the conditions on F is that for x, y ≥ 0

F (x+ y) ≤ F (x) + yF ′(x) ≤ F (x) + y/x.

We can assume that
δ(B2)− δ(A)

|B2| − |A|
≥ δ(B1)− δ(A)

|B1| − |A|
and note that the latter is at least 1/|B1| (as δ is integer-valued and A ≤d B1).

Then

δ(E) = δ(B1) + (|B2| − |A|)
δ(B2)− δ(A)

|B2| − |A|
≥ F (|B1|) + (|B2| − |A|)/|B1| ≥ F (|E|)

(taking x = |B1| and y = |B2| − |A|).
This concludes the proof of the claim.

Example 4.10. We use this to produce an example of a connected ω-categorical graph
whose automorphism group is transitive on vertices and edges, and whose smallest cycle is
a 5-gon.

Take
F (1) = 2;F (2) = 3;F (5) = 5;F (k) = log(k) + 5− log(5) for k ≥ 5.

Then one can check that:
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• The smallest cycle in CF is a 5-gon;

• If a ∈ A ∈ CF then a ≤d A

• If ab ⊆ B ∈ CF is an edge then ab ≤d B

• (CF ,≤d) is an amalgamation class (the proof of AP in the previous example applies if
at least one of B1, B2 has size ≥ 5; the other cases can be checked individually).

• The Fräıssé limit MF is connected. Given non-adjacent a, b ∈MF consider A = cld(ab).
As δ(A) ≤ δ(ab) = 4 we have |A| ≤ 3. So either A is a path of length 2 (with endpoints
a, b) or A = ab, so ab ≤d MF . In the latter case, consider a path B of length 3 with
end points a, b. Then ab ≤d B so there is a ≤d copy of B in MF over ab. In particular,
ab are at distance 3 in MF .

It follows that the smallest cycle in the Fräıssé limit MF is a 5-cycle and Aut(MF ) is transitive
on vertices and edges. In fact, the argument shows that MF is distance transitive of diameter
3.
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