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© Embeddability
o Higher-dimensional generalization of graph planarity.
e Brings a lot of new combinatorial, topological or
computational challenges.
@ Sphere/ball recognition
o Here | want to emphasize combinatorial tools.
© Algebra & topology in extremal combinatorics

o Purely combinatorial weak saturation problems.
e Solutions using algebraic and topological tools.
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Graph planarity

@ A graph is planar if it admits a drawing in the plane without
intersecting edges.

Equivalent criteria:

Theorem (Kuratowski theorem)

A graph is planar if and only if it does not admit a subdivision of
K5 or K373.

Theorem (Hanani-Tutte theorem)

A graph is planar if and only if it admits a drawing in which every
pair of vertex-disjoint edges has an even number of intersections.
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Types of embeddings

Linear Piecewise linear Topological
= linear on some subdivision
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Embedding k-complexes into R?

o Embedding k-complexes into R?**1: always possible.
o Embedding k-complexes into R?¥: the first nontrivial case.

Nonembeddable complex:

o Generalizes K3 3. (There is also another one generalizing Ks.)
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| do not attempt to define it. Example is better.

Nonplanarity of Ks. For contradiction, it is planar.

— planar drawing?

continuous motion

ak

Each change keeps the parity of the number of pairs of
intersecting vertex disjoint edges.

All changes:

Can be generalized to higher dimensions as a
combinatorial/algebraic criterion.



Criteria in other dimensions

o Given k and d, is there an equivalent criterion for
embeddability of k-dimensional complexes in R9?

kzd2 345 6 78 910111213 14

D Always embeddable

@ Planarity
Halin-Jung criterion

@ Van Kampen obstruction

@ Deleted product obstruction
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Algorithmic viewpoint on embeddability

Embeddability, EMB,_.4

INPUT: Simplicial complex K of dimension k.
QUESTION: Does K embed into R9?

/ 7/‘\VA’$’

Theorem (Matousek, T., Wagner '11)

EMBy_,q is NP-hard if d > 4 and k > %d — 1. In addition
EMBy_1_.q and EMB,_,4 are undecidable.
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@ EMB/_,4 is polynomial time solvable for k < #, series of

papers by Cadek, Kreal, Matousek, Sergeraert, Vokfinek,
Wagner '13.

@ EMB,_,3 and EMB3_,3 are decidable, Matousek, Sedgwick, T.,
Woagner '14

EMB>_.3 and EMB3_,3 are NP-hard, de Mesmay, Rieck,
Sedgwick, T. '18
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Some curiosities

k‘d234567891011121314
1P D Always embeddable
2P + @ Polynomial
3 " Decidable
4 P NP-hard
o s NP-hard
6 PP
7 P |P Undecidable

e EMB,_,5 is undecidable. This implies that there is a complex
with n vertices, such that every PL embedding requires (at
22"

least) subdivisions. (Direct construction is not known.)

@ Skopenkov, T. '19: So called almost embeddability differs from
a ‘deleted product criterion’ provided that P#NP. (Direct
proof is not known.)
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Ball recongintion

Question: Is a given triangulated topological space homeomorphic
to a d-ball?

)
d=2 d=3
o d = 1: trivial
e d = 2: easy
e d =3:in NP and co-NP (modulo GRH); polynomial
unknown
@ d = 4: nobody knows

d > 5: undecidable
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More on 3-ball recognition

NP-membership: lvanov '01, Schleimer '04

@ Via topological and combinatorial tools (normal surfaces

theory)

coNP-membership: Zentner '18 (modulo Generalized Riemann
Hypothesis)

@ Topological and algebraic tools (e.g. group representations)
Optimist’s hope: There is a polynomial time algorithm.
Even more optimistic: There is a combinatorial polynomial time
algorithm.
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Combinatorial tool: Shellability

Shellability: A useful tool that allows induction.

Applications in:
o Piecewise linear topology
o Polytope theory
@ Theory of partially ordered sets
@ Combinatorial commutative algebra



A suggestion of Danaraj & Klee for 3-ball recognition

Is every ball shellable?



A suggestion of Danaraj & Klee for 3-ball recognition

Is every ball shellable?
e Unfortunately no. (Furch '24, Newman '26, Frankl '31)



A suggestion of Danaraj & Klee for 3-ball recognition

Is every ball shellable?
e Unfortunately no. (Furch '24, Newman '26, Frankl '31)

@ But there is always a subdivision which is shellable.



A suggestion of Danaraj & Klee for 3-ball recognition

Is every ball shellable?
e Unfortunately no. (Furch '24, Newman '26, Frankl '31)
@ But there is always a subdivision which is shellable.
Danaraj and Klee '78:

@ Can shellability be tested in polynomial time?



A suggestion of Danaraj & Klee for 3-ball recognition

Is every ball shellable?

e Unfortunately no. (Furch '24, Newman '26, Frankl '31)

@ But there is always a subdivision which is shellable.
Danaraj and Klee '78:

@ Can shellability be tested in polynomial time?
Potential quick algorithm for the 3-ball recogintion:

@ Check whether the input space is a 3-manifold.

@ Build fine enough subdivision of polynomial size.

@ Check shellability.



Difficulties for the Danaraj—Klee suggestion

Potential quick algorithm for the 3-ball recogintion:
@ Check whether the input space is a 3-manifold.

@ Build fine enough subdivision of polynomial size.
@ Check shellability.



Difficulties for the Danaraj—Klee suggestion

Potential quick algorithm for the 3-ball recogintion:
@ Check whether the input space is a 3-manifold.
@ Build fine enough subdivision of polynomial size.
@ Check shellability.

Hardness of shellability:

@ Shellability is NP-hard for simplicial complexes of dimension
> 2. (Goaoc, Patak, Patakova, T., Wagner '18).



Difficulties for the Danaraj—Klee suggestion

Potential quick algorithm for the 3-ball recogintion:
@ Check whether the input space is a 3-manifold.
@ Build fine enough subdivision of polynomial size.
@ Check shellability.

Hardness of shellability:

@ Shellability is NP-hard for simplicial complexes of dimension
> 2. (Goaoc, Patak, Patakova, T., Wagner '18).

o It is NP-hard for 3-balls (Patak, T. '23).



Difficulties for the Danaraj—Klee suggestion

Potential quick algorithm for the 3-ball recogintion:
@ Check whether the input space is a 3-manifold.
@ Build fine enough subdivision of polynomial size.
@ Check shellability.

Hardness of shellability:

@ Shellability is NP-hard for simplicial complexes of dimension
> 2. (Goaoc, Patak, Patakova, T., Wagner '18).

o It is NP-hard for 3-balls (Patak, T. '23).

Can we save something?



Difficulties for the Danaraj—Klee suggestion

Potential quick algorithm for the 3-ball recogintion:
@ Check whether the input space is a 3-manifold.
@ Build fine enough subdivision of polynomial size.
@ Check shellability.

Hardness of shellability:

@ Shellability is NP-hard for simplicial complexes of dimension
> 2. (Goaoc, Patak, Patakova, T., Wagner '18).

o It is NP-hard for 3-balls (Patak, T. '23).
Can we save something?

@ The high-level approach of Danaraj and Klee in principle
makes sense but maybe we need some other combinatorial
objects or some other tricks.



3. ALGEBRA & TOPOLOGY IN EXTREMAL
COMBINATORICS
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Weak Saturation

Definition

Let F, G, H be graphs with G C F and V(G) = V(H). We say
that G is weakly H-saturated in F, if the ‘remaining’ edges in
E(F)\ E(G) admit an ordering ey, ..., e such that for every i the
graph G U {ey, ..., e} contains a copy of H which contains e;.

Example: Any spanning tree is weakly K3-saturated in Kj,.

The weak saturation number wsat(F, H) is the minimum number
of edges in a weakly saturated graph.
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Exterior algebra

@ Let V be a vector space with a basis (eg, ..., e,).
@ The exterior algebra A\ V' has basis (es)sc(, and a product A.
e ¢y is neutral: ey A es = es = es A gy.
o es=e€, N Neg for S={sp <+ < s}
°o e Ne=—¢ Ne;.
e Graphs (with weights on edges) can be encoded in the second
power A2V = {es: |S| = 2}:
1 4

1 ™ 61/\62—\/§€2A€3+7T€3/\€4
2 3
Y
o Allows to define mutually independent boundary operators:
5 0
1
o N
e [ J
02
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Classical results

Theorem (Frankl, Kalai ~'82, independently)
Let n > r > 2. Then wsat(Ky, K;) = (5) — (”7?2).

. easy but skipped here.

<
> e For n = 3, the key was that 0K5 = 0.
o Replacement (along the lines of Kalai) for K4

61062 Q]
N R
1))

e Similar approach (Kalai '82) allows to determine
wsat(Ky, Kr r) for n large enough (if r is fixed).

@ What about multipartite graphs?
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New results—colorful setting

@ Split the basis of the exterior algebra into ‘color classes’
(el,.. .,e,l,l),(ef, .. .,e,2,2), (e e,’,‘k).

@ Make the generic change of basis (not discussed earlier) in
each class independently.

o Allows to build joins:

J 0
81062 1 (Z)
—>
g EX

complete
multipartite
e With this, we (Bulavka, T., Tyomkyn '23) could determine:

° Wsat(Knl,.wnw Kr,‘..,r)
o wsat(Kn,, . nes Kn,...r.) (in so called directed setting)
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Other applications of similar tools in extremal combinatorics

e Erdés—Ko—Rado type questions (intersecting families).

@ Intersection patters of convex sets (bounds for the fractional
Helly theorem).
o Rigidity theory.
Other (future) applications?
@ As an example, Kalai and Nevo '19 proposed an approach
towards Turan's (3, 4)-conjecture via similar tools. (Determine

the minimum possible number of edges in a 3-uniform
hypergraph such that every four vertices span an edge.)



