Combinatorics, Topology & Computing

Martin Tancer

Department of Applied Mathematics, Charles University

Three topics

Embeddability

• Higher-dimensional generalization of graph planarity.

• Brings a lot of new combinatorial, topological or computational challenges.

Three topics

Embeddability

• Higher-dimensional generalization of graph planarity.

- Brings a lot of new combinatorial, topological or computational challenges.
- Ophere/ball recognition
 - Here I want to emphasize combinatorial tools.

Three topics

Embeddability

- Higher-dimensional generalization of graph planarity.
- Brings a lot of new combinatorial, topological or computational challenges.
- Sphere/ball recognition
 - Here I want to emphasize combinatorial tools.
- Algebra & topology in extremal combinatorics
 - Purely combinatorial weak saturation problems.
 - Solutions using algebraic and topological tools.

1. EMBEDDABILITY

Graph planarity

• A graph is planar if it admits a drawing in the plane without intersecting edges.

Graph planarity

• A graph is planar if it admits a drawing in the plane without intersecting edges.

Equivalent criteria:

Theorem (Kuratowski theorem)

A graph is planar if and only if it does not admit a subdivision of K_5 or $K_{3,3}$.

Graph planarity

• A graph is planar if it admits a drawing in the plane without intersecting edges.

Equivalent criteria:

Theorem (Kuratowski theorem)

A graph is planar if and only if it does not admit a subdivision of K_5 or $K_{3,3}$.

Theorem (Hanani-Tutte theorem)

A graph is planar if and only if it admits a drawing in which every pair of vertex-disjoint edges has an even number of intersections.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Higher-dimensional graph planarity = embeddability

Simplicial complex: A collection of simplices glued along faces.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Higher-dimensional graph planarity = embeddability

Simplicial complex: A collection of simplices glued along faces.

• Can we embed a given complex into \mathbb{R}^d ?

イロト 不得 トイヨト イヨト

Higher-dimensional graph planarity = embeddability

Simplicial complex: A collection of simplices glued along faces.

• Can we embed a given complex into \mathbb{R}^d ?

-

Types of embeddings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Embedding *k*-complexes into \mathbb{R}^{2k}

• Embedding k-complexes into \mathbb{R}^{2k+1} : always possible.

Embedding *k*-complexes into \mathbb{R}^{2k}

- Embedding k-complexes into \mathbb{R}^{2k+1} : always possible.
- Embedding k-complexes into \mathbb{R}^{2k} : the first nontrivial case. Nonembeddable complex:

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Embedding *k*-complexes into \mathbb{R}^{2k}

- Embedding k-complexes into \mathbb{R}^{2k+1} : always possible.
- Embedding k-complexes into \mathbb{R}^{2k} : the first nontrivial case. Nonembeddable complex:

• Generalizes $K_{3,3}$. (There is also another one generalizing $K_{5.}$)

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

• I do not attempt to define it. Example is better.

- I do not attempt to define it. Example is better.
- Nonplanarity of K_5 . For contradiction, it is planar.

(ロ)、

- I do not attempt to define it. Example is better.
- Nonplanarity of K_5 . For contradiction, it is planar.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- I do not attempt to define it. Example is better.
- Nonplanarity of K_5 . For contradiction, it is planar.

• All changes:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- I do not attempt to define it. Example is better.
- Nonplanarity of K_5 . For contradiction, it is planar.

All changes:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Each change keeps the parity of the number of pairs of intersecting vertex disjoint edges.

- I do not attempt to define it. Example is better.
- Nonplanarity of K_5 . For contradiction, it is planar.

All changes:

- Each change keeps the parity of the number of pairs of intersecting vertex disjoint edges.
- Can be generalized to higher dimensions as a combinatorial/algebraic criterion.

Criteria in other dimensions

 Given k and d, is there an equivalent criterion for embeddability of k-dimensional complexes in ℝ^d?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Algorithmic viewpoint on embeddability

Embeddability, $EMB_{k \rightarrow d}$

INPUT: Simplicial complex K of dimension k. QUESTION: Does K embed into \mathbb{R}^d ?

ヘロト ヘ回ト ヘヨト ヘヨト

-

Algorithmic viewpoint on embeddability

Embeddability, $EMB_{k \rightarrow d}$

INPUT: Simplicial complex K of dimension k. QUESTION: Does K embed into \mathbb{R}^d ?

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem (Matoušek, T., Wagner '11)

 $EMB_{k\rightarrow d}$ is NP-hard if $d \ge 4$ and $k > \frac{2}{3}d - 1$. In addition $EMB_{d-1\rightarrow d}$ and $EMB_{d\rightarrow d}$ are undecidable.

Embeddability - current state of art

・ロト・西・・日・・日・・日・

Embeddability - current state of art

P EMB_{$k\to d$} is polynomial time solvable for $k \leq \frac{2d-3}{3}$, series of papers by Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, Wagner '13.

Embeddability - current state of art

P EMB_{$k\to d$} is polynomial time solvable for $k \leq \frac{2d-3}{3}$, series of papers by Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, Wagner '13.

- ${\sc D}$ EMB_{2\to3} and EMB_{3\to3} are decidable, Matoušek, Sedgwick, T., Wagner '14
 - EMB_{2 \rightarrow 3} and EMB_{3 \rightarrow 3} are NP-hard, de Mesmay, Rieck, Sedgwick, T. '18

Some curiosities

• EMB_{4 \rightarrow 5} is undecidable. This implies that there is a complex with *n* vertices, such that every PL embedding requires (at least) $2^{2^{2^n}}$ subdivisions. (Direct construction is not known.)

Some curiosities

- EMB_{4 \rightarrow 5} is undecidable. This implies that there is a complex with *n* vertices, such that every PL embedding requires (at least) $2^{2^{2^n}}$ subdivisions. (Direct construction is not known.)
- Skopenkov, T. '19: So called almost embeddability differs from a 'deleted product criterion' provided that P≠NP. (Direct proof is not known.)

2. SPHERE/BALL RECOGNITION

Ball recongintion

Question: Is a given triangulated topological space homeomorphic to a d-ball?

Ball recongintion

Question: Is a given triangulated topological space homeomorphic to a d-ball?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ball recongintion

Question: Is a given triangulated topological space homeomorphic to a *d*-ball?

- d = 1: trivial
- *d* = 2: easy
- d = 3: in NP and co-NP (modulo GRH); polynomial unknown

- *d* = 4: nobody knows
- $d \ge 5$: undecidable

More on 3-ball recognition

NP-membership: Ivanov '01, Schleimer '04

• Via topological and combinatorial tools (normal surfaces theory)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

More on 3-ball recognition

NP-membership: Ivanov '01, Schleimer '04

• Via topological and combinatorial tools (normal surfaces theory)

coNP-membership: Zentner '18 (modulo Generalized Riemann Hypothesis)

• Topological and algebraic tools (e.g. group representations)

More on 3-ball recognition

NP-membership: Ivanov '01, Schleimer '04

• Via topological and combinatorial tools (normal surfaces theory)

coNP-membership: Zentner '18 (modulo Generalized Riemann Hypothesis)

• Topological and algebraic tools (e.g. group representations) **Optimist's hope:** There is a polynomial time algorithm.
More on 3-ball recognition

NP-membership: Ivanov '01, Schleimer '04

• Via topological and combinatorial tools (normal surfaces theory)

coNP-membership: Zentner '18 (modulo Generalized Riemann Hypothesis)

• Topological and algebraic tools (e.g. group representations) Optimist's hope: There is a polynomial time algorithm. Even more optimistic: There is a combinatorial polynomial time algorithm.

Combinatorial tool: Shellability

Combinatorial tool: Shellability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Shellability: A useful tool that allows induction.

Combinatorial tool: Shellability

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Shellability: A useful tool that allows induction.

Applications in:

- Piecewise linear topology
- Polytope theory
- Theory of partially ordered sets
- Combinatorial commutative algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Is every ball shellable?

Is every ball shellable?

• Unfortunately no. (Furch '24, Newman '26, Frankl '31)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Is every ball shellable?

• Unfortunately no. (Furch '24, Newman '26, Frankl '31)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• But there is always a subdivision which is shellable.

Is every ball shellable?

• Unfortunately no. (Furch '24, Newman '26, Frankl '31)

• But there is always a subdivision which is shellable.

Danaraj and Klee '78:

• Can shellability be tested in polynomial time?

Is every ball shellable?

- Unfortunately no. (Furch '24, Newman '26, Frankl '31)
- But there is always a subdivision which is shellable.

Danaraj and Klee '78:

- Can shellability be tested in polynomial time?
- Potential quick algorithm for the 3-ball recogintion:
 - Check whether the input space is a 3-manifold.
 - Build fine enough subdivision of polynomial size.

Check shellability.

Potential quick algorithm for the 3-ball recogintion:

- Check whether the input space is a 3-manifold.
- Build fine enough subdivision of polynomial size.

• Check shellability.

Potential quick algorithm for the 3-ball recogintion:

- Check whether the input space is a 3-manifold.
- Build fine enough subdivision of polynomial size.
- Check shellability.

Hardness of shellability:

 Shellability is NP-hard for simplicial complexes of dimension ≥ 2. (Goaoc, Paták, Patáková, T., Wagner '18).

Potential quick algorithm for the 3-ball recogintion:

- Check whether the input space is a 3-manifold.
- Build fine enough subdivision of polynomial size.
- Check shellability.

Hardness of shellability:

 Shellability is NP-hard for simplicial complexes of dimension ≥ 2. (Goaoc, Paták, Patáková, T., Wagner '18).

• It is NP-hard for 3-balls (Paták, T. '23).

Potential quick algorithm for the 3-ball recogintion:

- Check whether the input space is a 3-manifold.
- Build fine enough subdivision of polynomial size.
- Check shellability.

Hardness of shellability:

 Shellability is NP-hard for simplicial complexes of dimension ≥ 2. (Goaoc, Paták, Patáková, T., Wagner '18).

• It is NP-hard for 3-balls (Paták, T. '23).

Can we save something?

Potential quick algorithm for the 3-ball recogintion:

- Check whether the input space is a 3-manifold.
- Build fine enough subdivision of polynomial size.
- Check shellability.

Hardness of shellability:

- Shellability is NP-hard for simplicial complexes of dimension ≥ 2. (Goaoc, Paták, Patáková, T., Wagner '18).
- It is NP-hard for 3-balls (Paták, T. '23).
- Can we save something?
 - The high-level approach of Danaraj and Klee in principle makes sense but maybe we need some other combinatorial objects or some other tricks.

3. ALGEBRA & TOPOLOGY IN EXTREMAL COMBINATORICS

Definition

Let F, G, H be graphs with $G \subseteq F$ and V(G) = V(H). We say that G is weakly H-saturated in F, if the 'remaining' edges in $E(F) \setminus E(G)$ admit an ordering e_1, \ldots, e_k such that for every i the graph $G \cup \{e_1, \ldots, e_i\}$ contains a copy of H which contains e_i .

Definition

Let F, G, H be graphs with $G \subseteq F$ and V(G) = V(H). We say that G is weakly *H*-saturated in F, if the 'remaining' edges in $E(F) \setminus E(G)$ admit an ordering e_1, \ldots, e_k such that for every *i* the graph $G \cup \{e_1, \ldots, e_i\}$ contains a copy of *H* which contains e_i .

Example: Any spanning tree is weakly K_3 -saturated in K_n .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Definition

Let F, G, H be graphs with $G \subseteq F$ and V(G) = V(H). We say that G is weakly *H*-saturated in F, if the 'remaining' edges in $E(F) \setminus E(G)$ admit an ordering e_1, \ldots, e_k such that for every *i* the graph $G \cup \{e_1, \ldots, e_i\}$ contains a copy of *H* which contains e_i .

Example: Any spanning tree is weakly K_3 -saturated in K_n .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ つ へ つ

Definition

Let F, G, H be graphs with $G \subseteq F$ and V(G) = V(H). We say that G is weakly *H*-saturated in F, if the 'remaining' edges in $E(F) \setminus E(G)$ admit an ordering e_1, \ldots, e_k such that for every *i* the graph $G \cup \{e_1, \ldots, e_i\}$ contains a copy of *H* which contains e_i .

Example: Any spanning tree is weakly K_3 -saturated in K_n .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Definition

Let F, G, H be graphs with $G \subseteq F$ and V(G) = V(H). We say that G is weakly *H*-saturated in F, if the 'remaining' edges in $E(F) \setminus E(G)$ admit an ordering e_1, \ldots, e_k such that for every *i* the graph $G \cup \{e_1, \ldots, e_i\}$ contains a copy of *H* which contains e_i .

Example: Any spanning tree is weakly K_3 -saturated in K_n .

Definition

Let F, G, H be graphs with $G \subseteq F$ and V(G) = V(H). We say that G is weakly *H*-saturated in F, if the 'remaining' edges in $E(F) \setminus E(G)$ admit an ordering e_1, \ldots, e_k such that for every *i* the graph $G \cup \{e_1, \ldots, e_i\}$ contains a copy of *H* which contains e_i .

Example: Any spanning tree is weakly K_3 -saturated in K_n .

Definition

Let F, G, H be graphs with $G \subseteq F$ and V(G) = V(H). We say that G is weakly H-saturated in F, if the 'remaining' edges in $E(F) \setminus E(G)$ admit an ordering e_1, \ldots, e_k such that for every i the graph $G \cup \{e_1, \ldots, e_i\}$ contains a copy of H which contains e_i .

Example: Any spanning tree is weakly K_3 -saturated in K_n .

Definition

The weak saturation number wsat(F, H) is the minimum number of edges in a weakly saturated graph.

• wsat $(K_n, K_3) \le n - 1$: By a construction on the previous slide.

• wsat $(K_n, K_3) \le n - 1$: By a construction on the previous slide.

wsat(K_n, K₃) ≥ n − 1: If E(G) ≤ n − 2, then it is not connected. Thus it cannot be K₃-saturated.

• wsat $(K_n, K_3) \le n - 1$: By a construction on the previous slide.

wsat(K_n, K₃) ≥ n − 1: If E(G) ≤ n − 2, then it is not connected. Thus it cannot be K₃-saturated.

A different proof of wsat(K_n, K_3) $\ge n - 1$:

- wsat $(K_n, K_3) \leq n 1$: By a construction on the previous slide.
- wsat(K_n, K₃) ≥ n − 1: If E(G) ≤ n − 2, then it is not connected. Thus it cannot be K₃-saturated.
- A different proof of wsat(K_n, K_3) $\ge n 1$:
 - G weakly K_3 -saturated in K_n , e_1, \ldots, e_k saturating sequence.

- wsat $(K_n, K_3) \le n 1$: By a construction on the previous slide.
- wsat(K_n, K₃) ≥ n − 1: If E(G) ≤ n − 2, then it is not connected. Thus it cannot be K₃-saturated.
- A different proof of wsat(K_n, K_3) $\geq n 1$:
 - G weakly K_3 -saturated in K_n , e_1, \ldots, e_k saturating sequence.

•
$$G_i := G \cup \{e_1, \ldots, e_i\}.$$

- wsat $(K_n, K_3) \leq n-1$: By a construction on the previous slide.
- wsat(K_n, K₃) ≥ n − 1: If E(G) ≤ n − 2, then it is not connected. Thus it cannot be K₃-saturated.
- A different proof of wsat $(K_n, K_3) \ge n 1$:
 - G weakly K_3 -saturated in K_n , e_1, \ldots, e_k saturating sequence.

•
$$G_i := G \cup \{e_1, \ldots, e_i\}.$$

• G_i contains a new copy of $K_3 \Rightarrow \dim Z_1(G_i) > \dim Z_1(G_{i-1})$.

- wsat $(K_n, K_3) \leq n-1$: By a construction on the previous slide.
- wsat(K_n, K₃) ≥ n − 1: If E(G) ≤ n − 2, then it is not connected. Thus it cannot be K₃-saturated.
- A different proof of wsat $(K_n, K_3) \ge n 1$:
 - G weakly K_3 -saturated in K_n , e_1, \ldots, e_k saturating sequence.

•
$$G_i := G \cup \{e_1, \ldots, e_i\}.$$

• G_i contains a new copy of $K_3 \Rightarrow \dim Z_1(G_i) > \dim Z_1(G_{i-1})$.

 \square

• dim $Z_1(K_n) = \binom{n-1}{2} \Rightarrow k \le \binom{n-1}{2}$.

- wsat $(K_n, K_3) \leq n-1$: By a construction on the previous slide.
- wsat(K_n, K₃) ≥ n − 1: If E(G) ≤ n − 2, then it is not connected. Thus it cannot be K₃-saturated.
- A different proof of wsat $(K_n, K_3) \ge n 1$:
 - G weakly K_3 -saturated in K_n , e_1, \ldots, e_k saturating sequence.

•
$$G_i := G \cup \{e_1, \ldots, e_i\}.$$

• G_i contains a new copy of $K_3 \Rightarrow \dim Z_1(G_i) > \dim Z_1(G_{i-1})$.

 \square

• dim $Z_1(K_n) = \binom{n-1}{2} \Rightarrow k \le \binom{n-1}{2}$.

The key property: $\partial K_3 = 0$.

- wsat $(K_n, K_3) \leq n-1$: By a construction on the previous slide.
- wsat(K_n, K₃) ≥ n − 1: If E(G) ≤ n − 2, then it is not connected. Thus it cannot be K₃-saturated.
- A different proof of wsat $(K_n, K_3) \ge n 1$:
 - G weakly K_3 -saturated in K_n , e_1, \ldots, e_k saturating sequence.

•
$$G_i := G \cup \{e_1, \ldots, e_i\}.$$

- G_i contains a new copy of $K_3 \Rightarrow \dim Z_1(G_i) > \dim Z_1(G_{i-1})$.
- dim $Z_1(K_n) = \binom{n-1}{2} \Rightarrow k \le \binom{n-1}{2}$.

The key property: $\partial K_3 = 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Let V be a vector space with a basis (e_1, \ldots, e_n) .

(ロ)、(型)、(E)、(E)、 E) のQ(()

- Let V be a vector space with a basis (e_1, \ldots, e_n) .
- The exterior algebra $\bigwedge V$ has basis $(e_S)_{S \subseteq [n]}$ and a product \land .

- Let V be a vector space with a basis (e_1, \ldots, e_n) .
- The exterior algebra $\bigwedge V$ has basis $(e_S)_{S \subseteq [n]}$ and a product \land .

• e_{\emptyset} is neutral: $e_{\emptyset} \wedge e_S = e_S = e_S \wedge e_{\emptyset}$.

•
$$e_S = e_{s_1} \wedge \cdots \wedge e_{s_k}$$
 for $S = \{s_1 < \cdots < s_k\}$.

•
$$e_i \wedge e_j = -e_j \wedge e_i$$
.

- Let V be a vector space with a basis (e_1, \ldots, e_n) .
- The exterior algebra $\bigwedge V$ has basis $(e_S)_{S \subseteq [n]}$ and a product \land .

•
$$e_{\emptyset}$$
 is neutral: $e_{\emptyset} \wedge e_S = e_S = e_S \wedge e_{\emptyset}$.

•
$$e_S = e_{s_1} \wedge \cdots \wedge e_{s_k}$$
 for $S = \{s_1 < \cdots < s_k\}$.

•
$$e_i \wedge e_j = -e_j \wedge e_i$$
.

• Graphs (with weights on edges) can be encoded in the second power $\bigwedge^2 V = \{e_S : |S| = 2\}$: 1 2 4 $e_1 \wedge e_2 - \sqrt{2}e_2 \wedge e_3 + \pi e_3 \wedge e_4$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let V be a vector space with a basis (e_1, \ldots, e_n) .
- The exterior algebra $\bigwedge V$ has basis $(e_S)_{S \subseteq [n]}$ and a product \land .

•
$$e_{\emptyset}$$
 is neutral: $e_{\emptyset} \wedge e_S = e_S = e_S \wedge e_{\emptyset}$.

•
$$e_S = e_{s_1} \wedge \cdots \wedge e_{s_k}$$
 for $S = \{s_1 < \cdots < s_k\}$.

•
$$e_i \wedge e_j = -e_j \wedge e_i$$
.

- Graphs (with weights on edges) can be encoded in the second power $\bigwedge^2 V = \{e_S : |S| = 2\}$: 1 2 4 $e_1 \wedge e_2 - \sqrt{2}e_2 \wedge e_3 + \pi e_3 \wedge e_4$
- Allows to define mutually independent boundary operators:

Theorem (Frankl, Kalai ~'82, independently)

Let
$$n \ge r \ge 2$$
. Then wsat $(K_n, K_r) = \binom{n}{2} - \binom{n-r+2}{2}$.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Theorem (Frankl, Kalai \sim '82, independently)

Let
$$n \ge r \ge 2$$
. Then wsat $(K_n, K_r) = \binom{n}{2} - \binom{n-r+2}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \leq : easy but skipped here.

Theorem (Frankl, Kalai \sim '82, independently)

Let
$$n \ge r \ge 2$$
. Then wsat $(K_n, K_r) = \binom{n}{2} - \binom{n-r+2}{2}$.

- $\leq:$ easy but skipped here.
- \geq : For n = 3, the key was that $\partial K_3 = 0$.

Theorem (Frankl, Kalai \sim '82, independently)

Let
$$n \ge r \ge 2$$
. Then wsat $(K_n, K_r) = \binom{n}{2} - \binom{n-r+2}{2}$.

- $\leq:$ easy but skipped here.
- \geq : For n = 3, the key was that $\partial K_3 = 0$.
 - Replacement (along the lines of Kalai) for K_4 :

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem (Frankl, Kalai \sim '82, independently)

Let
$$n \ge r \ge 2$$
. Then wsat $(K_n, K_r) = \binom{n}{2} - \binom{n-r+2}{2}$.

- $\leq:$ easy but skipped here.
- \geq : For n = 3, the key was that $\partial K_3 = 0$.
 - Replacement (along the lines of Kalai) for K_4 :

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

 Similar approach (Kalai '82) allows to determine wsat(K_n, K_{r,r}) for n large enough (if r is fixed).

Theorem (Frankl, Kalai ~'82, independently)

Let
$$n \ge r \ge 2$$
. Then wsat $(K_n, K_r) = \binom{n}{2} - \binom{n-r+2}{2}$.

- $\leq:$ easy but skipped here.
- \geq : For n = 3, the key was that $\partial K_3 = 0$.
 - Replacement (along the lines of Kalai) for K_4 :

- Similar approach (Kalai '82) allows to determine wsat(K_n, K_{r,r}) for n large enough (if r is fixed).
- What about multipartite graphs?

• Split the basis of the exterior algebra into 'color classes' $(e_1^1, \ldots, e_{n_1}^1), (e_1^2, \ldots, e_{n_2}^2), \ldots, (e_1^k, \ldots, e_{n_k}^k).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Split the basis of the exterior algebra into 'color classes' $(e_1^1, \ldots, e_{n_1}^1), (e_1^2, \ldots, e_{n_2}^2), \ldots, (e_1^k, \ldots, e_{n_k}^k).$
- Make the generic change of basis (not discussed earlier) in each class independently.

- Split the basis of the exterior algebra into 'color classes' $(e_1^1, \ldots, e_{n_1}^1), (e_1^2, \ldots, e_{n_2}^2), \ldots, (e_1^k, \ldots, e_{n_k}^k).$
- Make the generic change of basis (not discussed earlier) in each class independently.
- Allows to build joins:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Split the basis of the exterior algebra into 'color classes' $(e_1^1, \ldots, e_{n_1}^1), (e_1^2, \ldots, e_{n_2}^2), \ldots, (e_1^k, \ldots, e_{n_k}^k).$
- Make the generic change of basis (not discussed earlier) in each class independently.
- Allows to build joins:

- With this, we (Bulavka, T., Tyomkyn '23) could determine:
 - wsat $(K_{n_1,...,n_k}, K_{r,...,r})$
 - wsat($K_{n_1,...,n_k}, K_{r_1,...,r_k}$) (in so called directed setting)

Other applications of similar tools in extremal combinatorics

- Erdős–Ko–Rado type questions (intersecting families).
- Intersection patters of convex sets (bounds for the fractional Helly theorem).

• Rigidity theory.

Other applications of similar tools in extremal combinatorics

- Erdős–Ko–Rado type questions (intersecting families).
- Intersection patters of convex sets (bounds for the fractional Helly theorem).
- Rigidity theory.

Other (future) applications?

• As an example, Kalai and Nevo '19 proposed an approach towards Turán's (3,4)-conjecture via similar tools. (Determine the minimum possible number of edges in a 3-uniform hypergraph such that every four vertices span an edge.)