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Three topics

1 Embeddability
Higher-dimensional generalization of graph planarity.
Brings a lot of new combinatorial, topological or
computational challenges.

2 Sphere/ball recognition
Here I want to emphasize combinatorial tools.

3 Algebra & topology in extremal combinatorics
Purely combinatorial weak saturation problems.
Solutions using algebraic and topological tools.
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1. EMBEDDABILITY



Graph planarity
A graph is planar if it admits a drawing in the plane without
intersecting edges.

Equivalent criteria:

Theorem (Kuratowski theorem)
A graph is planar if and only if it does not admit a subdivision of
K5 or K3,3.

Theorem (Hanani-Tutte theorem)
A graph is planar if and only if it admits a drawing in which every
pair of vertex-disjoint edges has an even number of intersections.
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Higher-dimensional graph planarity = embeddability
Simplicial complex: A collection of simplices glued along faces.

Can we embed a given complex into Rd?

R3?
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Types of embeddings

Linear Piecewise linear
= linear on some subdivision

Topological



Embedding k-complexes into R2k

Embedding k-complexes into R2k+1: always possible.

Embedding k-complexes into R2k : the first nontrivial case.
Nonembeddable complex:

k + 1

Generalizes K3,3. (There is also another one generalizing K5.)
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A combinatorial criterion: van Kampen obstruction

I do not attempt to define it. Example is better.

Nonplanarity of K5. For contradiction, it is planar.

planar drawing?

continuous motion

All changes:

Each change keeps the parity of the number of pairs of
intersecting vertex disjoint edges.
Can be generalized to higher dimensions as a
combinatorial/algebraic criterion.
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Criteria in other dimensions

Given k and d , is there an equivalent criterion for
embeddability of k-dimensional complexes in Rd?
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Algorithmic viewpoint on embeddability

Embeddability, EMBk→d

INPUT: Simplicial complex K of dimension k .
QUESTION: Does K embed into Rd?

Theorem (Matoušek, T., Wagner ’11)

EMBk→d is NP-hard if d ≥ 4 and k > 2
3d − 1. In addition

EMBd−1→d and EMBd→d are undecidable.
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Embeddability - current state of art
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H EMB2→3 and EMB3→3 are NP-hard, de Mesmay, Rieck,
Sedgwick, T. ’18
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Some curiosities
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EMB4→5 is undecidable. This implies that there is a complex
with n vertices, such that every PL embedding requires (at
least) 222n

subdivisions. (Direct construction is not known.)

Skopenkov, T. ’19: So called almost embeddability differs from
a ‘deleted product criterion’ provided that P6=NP. (Direct
proof is not known.)
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2. SPHERE/BALL RECOGNITION



Ball recongintion
Question: Is a given triangulated topological space homeomorphic
to a d-ball?

d = 2 d = 3

d = 1: trivial
d = 2: easy
d = 3: in NP and co-NP (modulo GRH); polynomial
unknown
d = 4: nobody knows
d ≥ 5: undecidable
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More on 3-ball recognition

NP-membership: Ivanov ’01, Schleimer ’04
Via topological and combinatorial tools (normal surfaces
theory)

coNP-membership: Zentner ’18 (modulo Generalized Riemann
Hypothesis)

Topological and algebraic tools (e.g. group representations)
Optimist’s hope: There is a polynomial time algorithm.
Even more optimistic: There is a combinatorial polynomial time
algorithm.
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Combinatorial tool: Shellability
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Shellability: A useful tool that allows induction.

Applications in:
Piecewise linear topology
Polytope theory
Theory of partially ordered sets
Combinatorial commutative algebra



Combinatorial tool: Shellability

1 2

34
5

6

7

8

9
10

1 2

Shellability: A useful tool that allows induction.

Applications in:
Piecewise linear topology
Polytope theory
Theory of partially ordered sets
Combinatorial commutative algebra



Combinatorial tool: Shellability

1 2

34
5

6

7

8

9
10

1 2

Shellability: A useful tool that allows induction.

Applications in:
Piecewise linear topology
Polytope theory
Theory of partially ordered sets
Combinatorial commutative algebra



A suggestion of Danaraj & Klee for 3-ball recognition

Is every ball shellable?

Unfortunately no. (Furch ’24, Newman ’26, Frankl ’31)
But there is always a subdivision which is shellable.

Danaraj and Klee ’78:
Can shellability be tested in polynomial time?

Potential quick algorithm for the 3-ball recogintion:
Check whether the input space is a 3-manifold.
Build fine enough subdivision of polynomial size.
Check shellability.
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Difficulties for the Danaraj–Klee suggestion

Potential quick algorithm for the 3-ball recogintion:
Check whether the input space is a 3-manifold.
Build fine enough subdivision of polynomial size.
Check shellability.

Hardness of shellability:
Shellability is NP-hard for simplicial complexes of dimension
≥ 2. (Goaoc, Paták, Patáková, T., Wagner ’18).
It is NP-hard for 3-balls (Paták, T. ’23).

Can we save something?
The high-level approach of Danaraj and Klee in principle
makes sense but maybe we need some other combinatorial
objects or some other tricks.
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3. ALGEBRA & TOPOLOGY IN EXTREMAL
COMBINATORICS



Weak Saturation

Definition
Let F ,G ,H be graphs with G ⊆ F and V (G ) = V (H). We say
that G is weakly H-saturated in F , if the ‘remaining’ edges in
E (F ) \ E (G ) admit an ordering e1, . . . , ek such that for every i the
graph G ∪ {e1, . . . , ei} contains a copy of H which contains ei .

Example: Any spanning tree is weakly K3-saturated in Kn.

Definition
The weak saturation number wsat(F ,H) is the minimum number
of edges in a weakly saturated graph.
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Example: wsat(Kn,K3) = n − 1

wsat(Kn,K3) ≤ n − 1: By a construction on the previous slide.

wsat(Kn,K3) ≥ n − 1: If E (G ) ≤ n − 2, then it is not
connected. Thus it cannot be K3-saturated.

A different proof of wsat(Kn,K3) ≥ n − 1:
G weakly K3-saturated in Kn, e1, . . . , ek saturating sequence.
Gi := G ∪ {e1, . . . , ei}.
Gi contains a new copy of K3 ⇒ dimZ1(Gi ) > dimZ1(Gi−1).
dimZ1(Kn) =

(n−1
2

)
⇒ k ≤

(n−1
2

)
. �

The key property: ∂K3 = 0.

∂
∅
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A different proof of wsat(Kn,K3) ≥ n − 1:
G weakly K3-saturated in Kn, e1, . . . , ek saturating sequence.
Gi := G ∪ {e1, . . . , ei}.
Gi contains a new copy of K3 ⇒ dimZ1(Gi ) > dimZ1(Gi−1).
dimZ1(Kn) =

(n−1
2

)
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Exterior algebra
Let V be a vector space with a basis (e1, . . . , en).

The exterior algebra
∧

V has basis (eS)S⊆[n] and a product ∧.
e∅ is neutral: e∅ ∧ eS = eS = eS ∧ e∅.
eS = es1 ∧ · · · ∧ esk for S = {s1 < · · · < sk}.
ei ∧ ej = −ej ∧ ei .

Graphs (with weights on edges) can be encoded in the second
power

∧2 V = {eS : |S | = 2}:
1

2 3

4

1

−
√
2

π e1 ∧ e2 −
√
2e2 ∧ e3 + πe3 ∧ e4

Allows to define mutually independent boundary operators:
∅

∂1
∂1

∂2
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Classical results

Theorem (Frankl, Kalai ∼’82, independently)
Let n ≥ r ≥ 2. Then wsat(Kn,Kr ) =

(n
2

)
−
(n−r+2

2

)
.

≤: easy but skipped here.
≥: For n = 3, the key was that ∂K3 = 0.

Replacement (along the lines of Kalai) for K4:

∂1 ◦ ∂2 ∅
∅

∂1

∂2

Similar approach (Kalai ’82) allows to determine
wsat(Kn,Kr ,r ) for n large enough (if r is fixed).
What about multipartite graphs?
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New results—colorful setting

Split the basis of the exterior algebra into ‘color classes’
(e1

1 , . . . , e
1
n1
), (e2

1 , . . . , e
2
n2
), . . . , (ek1 , . . . , e

k
nk
).

Make the generic change of basis (not discussed earlier) in
each class independently.
Allows to build joins:

∂1 ◦ ∂2 ∅
∅

∂1

∂2
complete
multipartite

With this, we (Bulavka, T., Tyomkyn ’23) could determine:
wsat(Kn1,...,nk ,Kr ,...,r )
wsat(Kn1,...,nk ,Kr1,...,rk ) (in so called directed setting)
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Other applications of similar tools in extremal combinatorics

Erdős–Ko–Rado type questions (intersecting families).
Intersection patters of convex sets (bounds for the fractional
Helly theorem).
Rigidity theory.

Other (future) applications?
As an example, Kalai and Nevo ’19 proposed an approach
towards Turán’s (3, 4)-conjecture via similar tools. (Determine
the minimum possible number of edges in a 3-uniform
hypergraph such that every four vertices span an edge.)
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