Measurable Combinatorics

Eurocomb'23, Prague

Borel/Measurable/Descriptive Combinatorics: Typical setup

Objects: graphs on topological spaces

- Vertex set can be e.g. [0, 1] or $\{0, 1\}^{\mathbb{N}}$
- Degrees are uniformly bounded
- Locally checkable labelling (LCL) problem
 - Maximal independent set
 - Proper vertex / edge k-colouring
 - Perfect matching
- Aim: "Constructive" labelling

Example: irrational rotation graph \mathcal{R}_{α}

Borel sets

• $\mathcal{B} = \{ \text{Borel sets} \}: \sigma$ -algebra generated by open sets

- ► $X \subseteq [0, 1]$ is Borel iff \mathbb{I}_X is computed by well-founded countable Boolean circuit of binary expansion
- ▶ E.g. $\{x : \exists \text{ two consecutive digits } 1\} \in \mathcal{B}$

Descriptive set theory

Measurable sets

- Fixed measure μ
- A is measurable if $\exists B \in \mathcal{B}$ with $\mu(A \bigtriangleup B) = 0$
 - "Definable" except on measure 0
- L := {measurable sets}
- σ-algebra

Measurable chromatic number of \mathcal{R}_{α}

• Irrational α

- $x \in [0, 1)$ is adjacent to $x \pm \alpha \pmod{1}$
- Measurable chromatic number $\chi_{\mathcal{L}}(\mathcal{R}_{\alpha}) > 2$:
 - $[0, 1) = A \cup B$, measurable 2-colouring

$$\blacktriangleright T(A) = B, T(B) = A$$

• Lebesgue measure $\lambda(A) = 1/2$

$$T^2(A) = A$$

• Ergodicity of T^2 : $\lambda(A) = 0$ or $1 \Rightarrow \Leftarrow$

Borel 3-colouring of \mathcal{R}_{α}

- Fix small $\varepsilon > 0$
- $V_3 := [0, \varepsilon)$ gets colour 3
- Every component of $\mathcal{R}_{\alpha} A$ is a path of length $\leq N$
- Colour by the parity of the number of steps until V_3
- Each V_i is a finite union of half-open intervals

▶
$$Y_j := \{x : \min\{n \ge 0 : T^n(x) \in V_3\} = J$$

▶ $Y_0 = V_3$
▶ $Y_j = T^{-1}(Y_{j-1}) \setminus (Y_0 \cup \cdots \cup Y_{j-1})$
▶ $V_2 := Y_2 \cup Y_4 \cup Y_6 \cup ...$
▶ $V_1 := Y_1 \cup Y_3 \cup Y_5 \cup ...$

• Borel chromatic number $\chi_{\mathcal{B}}(\mathcal{R}_{\alpha}) \leq 3$

Motivation

- Actions of a finitely generated group $\Gamma = \langle S \rangle$ on V
 - Schreier graph on V with edges $\{x, \gamma. x\}, \gamma \in S$
- Countable Borel equivalence relations (CBER)
 - Cost: min average degree of a spanning subgraph
- Factors of IID in probability theory
 - ▶ Independent random seeds $s(x) \in [0, 1]$ for $x \in \mathbb{Z}^d$
 - Aim: invariant labelling satisfying given constraints
 - Graph on $[0, 1]^{\mathbb{Z}^d}$ with edges corresponding to shifts
 - Timár'23: Matching of optimal tail between two Poisson processes on Z^d (or on R^d)
 - **•** Bowen-Kun-Sabok' \geq '23 \Rightarrow desired matching
- LOCAL algorithms
- Limits of bounded degree graphs
- Equidecompositions

Connections to distributed computing

r-LOCAL algorithm on n-vertex G

- Deterministic: Label of x is a function of $N^{\leq r}(x)$
- ▶ Randomised: Uniform $V \rightarrow [0, 1]$, require $\mathbb{P}[\text{fail}] < 1/n$
- Bernshteyn'23: o(log n)-LOCAL algorithm
 - ► Deterministic ⇒ Borel solution
 - $\blacktriangleright \text{ Randomised } \Rightarrow \text{ measurable solution}$
- ► Vertex colouring for graphs with max degree *Δ*:

$\Delta + 1$	Goldberg-Plotkin-	Kechris-Solecki-
any G	Shannon'88: O(log* n)-DET	Todorcevic'99: Borel
Δ	Chang-Kopelowitz-	Marks'16:
forest	Pettie'19: NOT o(log n)-DET	NOT Borel
$\Delta \ge 3$	Ghaffari-Hirvonen-Kuhn-	Conley–Marks–Tucker-
no $K_{\Delta+1}$	Maus'18: <i>o</i> (log <i>n</i>)-RAND	Drob'16: measurable

Brandt-Chang-Grebík-Grunau-Rozhoň-Vidnyánszky'22: On trees, O(log n)-DET iff Baire

Limits of bounded degree graphs

- ► *r*-sample from finite *G*: output rooted graph $G[N^{\leq r}(x), x]$, up to isomorphism, for uniform $x \in V$
- ▶ *r*-sample from Borel G with measure μ : take $x \sim \mu$
- $G_n \rightarrow \mathcal{G}$ locally: $\forall r r$ -samples converge
- Aldous'07, Elek'07: limit (\mathcal{G}, μ) exists
- Measure preservation: \exists Borel XY-matching $\Rightarrow \mu(X) = \mu(Y)$
- ► Aldous-Lyons'07: Is ∀ m.p. G a limit of finite graphs ?
- Global-local convergence
 - Similarity: any colouring in one graph can be approximately reproduced in the other
 - Hatami-Lovàsz-Szegedy'14: m.p. graphs as limits
 - ▶ Kun-Thom' \geq '23: \exists m.p. \mathcal{G} , not limit of finite graphs

Global-local convergence

- (\mathcal{G}, ν) : a limit of 3-regular random graphs
- (\mathcal{H}, μ) : a limit of 3-regular random bipartite graphs
- ∀ ε > 0 ∃ A ⊆ V(H) st μ(A) = ½ and average degree of H[A] is ≤ ε
- False for (\mathcal{G}, ν)

Equidecompositions

• $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B)$:

$$\blacksquare A = A_1 \sqcup \cdots \sqcup A_n$$

 $\blacktriangleright \exists B = B_1 \sqcup \cdots \sqcup B_n$

st $\forall i \exists$ isometry γ_i with $B_i = \gamma_i(A_i)$

- ► *k* ≥ 3
- **Banach-Tarski Paradox'24:** ball in \mathbb{R}^k can be doubled
- ⇒ Every mean (finitely-addivite isometry-invariant)
 m: {bounded subsets of ℝ^k} → [0,∞) is 0
- Pieces cannot be measurable
- What can be done "constructively"?

Measurable pieces in \mathbb{R}^k , $k \geq 3$

- Necessary conditions for $A \sim_{\mathcal{L}} [0, 1]^k$:
 - A is measurable and Lebesgue measure $\lambda(A) = 1$
 - ▶ finitely many copies of A cover [0, 1]^k
 - A is bounded
- Grabowski-Máthé-P.'22: sufficient for $k \ge 3$
- ▶ Banach-Ruziewicz Problem'30: Is every mean $\{\text{bounded}\} \cap \mathcal{L} \rightarrow [0, \infty) \text{ a multiple of } \lambda$?
- Margulis'82: Yes!
- Grabowski-Máthé-P.'22: new proof

Equidecompositions via graph matching

- lsometries $\gamma_1, \ldots, \gamma_n$
- Bipartite graph \mathcal{H} :

 $\blacktriangleright E := \{ xy \in A \times B : \exists i \gamma_i(x) = y \}$

- Matching $\mathcal{M} \subseteq E \iff$ disjoint $A_1, \ldots, A_n \subseteq A$ st $\gamma_1(A_1), \ldots, \gamma_n(A_n) \subseteq B$ are disjoint
- ▶ \exists perfect matching \Rightarrow $A \sim B$

Borel maximal matching

- ► A_i, B_i are *i*-LOCAL functions of A, B
- ► Elek-Lippner'10: \exists Borel M_i without augmenting paths of length $\leq 2i 1$

Augmenting paths in finite graphs

- Partial matching \mathcal{M} in bipartite finite graph H
- No augmenting path of length ≤ 2ℓ + 1 ⇒ fraction of unmatched vertices is ≤ ¹/_{ℓ+1}
- Finite bipartite graph H on $A \sqcup B$ is a *c*-expander:
 - ► |*A*| = |*B*|

► $\forall X$ in one part $|N(X)| \ge \min((1+c)|X|, \frac{2}{3}|A|)$

► Lyons-Nazarov'11: *c*-expander & no augmenting $(\leq 2\ell + 1)$ -path \Rightarrow |unmatched in $A| \leq (1 + c)^{-\ell/2} |A|$

Measurable version

- $\mathcal{H} = (A \sqcup B, E)$ is measurable *c*-expander:
 - $\mu(A) = \mu(B)$
 - measure preserving
 - ► \forall Borel X in a part $\mu(N(X)) \ge \min((1+c)\mu(X), \frac{2}{3}\mu(A))$
- ► Lyons-Nazarov'11: No augmenting path of length $\leq 2\ell + 1 \Rightarrow \mu$ (unmatched in *A*) $\leq (1 + c)^{-\ell/2} \mu(A)$
- ► Lyons-Nazarov'11: ∃ measurable perfect matching
 - Iteratively augment for $\ell = 0, 1, 2...$
 - Change in measure $\leq (2\ell + 1)(1 + c)^{-\ell/2}\mu(A)$
 - **Borel-Cantelli:** μ (changes infinitely often) = 0

Proof of $A \sim_{\mathcal{L}} B$ in \mathbb{R}^k , $k \geq 3$

- Spectral gap for SO(3) S² (Drinfeld'84, Lubotzky-Phillips-Sarnak'86)
- Lift to \mathbb{R}^k , $k \geq 3$
- ► $\Rightarrow \exists c > 0$ & finite *S* of isometries of \mathbb{R}^k st Schreier graph is measurable *c*-expander on $A \times B$
- Apply Lyons-Nazarov'11

\mathbb{R}^k with $k \leq 2$

- **Banach'23:** $A \sim B$, measurable $\Rightarrow \lambda(A) = \lambda(B)$
 - Impossible to double a disk
- Tarski's Circle Squaring Problem'25: Is a disk equidecomposable to a square ?
- Laczkovich'90: Yes!
- Grabowski-Máthé-P.'17: Measurable pieces
- Marks-Unger'17: Borel pieces
- Máthé-Noel-P. ≥'23: Boolean combinations of F_σ sets & Jordan measurable

Local picture

- Work in the torus $\mathbb{T}^k := \mathbb{R}^k / \mathbb{Z}^k$ (i.e. modulo 1)
- ▶ Random vectors $\mathbf{x}_1, \ldots, \mathbf{x}_d \in \mathbb{T}^k$
- ▶ Use translations only (by multiples of **x**₁,..., **x**_d)

r-LOCAL functions

- ▶ *r*-LOCALI functions of *A* and *B*: Boolean combination of *A* and *B*, shifted by $\sum_{i=1}^{d} n_i \mathbf{x}_i$ with $\mathbf{n} \in \{-r, ..., r\}^d$
- Venn diagrams for d = 2 and r = 1, 2:

Combinatorial part

- $\triangleright \mathbb{Z}^d$ with equi-distributed red and blue points
- Laczkovich'90: exists a matching that moves each vertex at distance ≤ D
 - ▶ $\mathcal{H} := (A, B, \operatorname{dist}_{\mathbb{Z}^d} \leq D)$ satisfies Hall's condition
- Grabowski-Máthé-P.'17: ∀ unmatched x ∈ A and y ∈ B ∃ an augmenting path in H from x to y of length O(dist(x, y))
- ► Marks-Unger'17, Máthé-Noel-P. ≥'23: construct a Borel real-valued flow and then round it

Bounded integer-valued *AB*-flow \Rightarrow *A* ~ *B*

Discrete circle squaring (by András Máthé)

580×580 torus, 5 pieces, working modulo 1

Open problems

- Are every two bounded Borel A, B ⊆ R³ of equal measure and with non-empty interior equidecomposable with Borel pieces?
- Aldous-Lyons'07: Is every measure-preserving Borel graph a local limit of finite graphs?
- Bernshteyn'23: Is there a distributed computing counterpart to Borel solutions?
- "Constructive" versions of Lovász Local Lemma?
 - Csóka-Grabowski-Máthé-P.-Tyros' ≥'23: Borel for subexponential growth dependency graphs
 - Fischer-Ghaffari'16, Ghaffari-Harris-Kuhn'18: $o(\log n)$ -RAND if $p(\Delta + 1)^8 < 2^{-15}$
 - Bernshteyn'23: measurable if $p(\Delta + 1)^8 < 2^{-15}$

Some initial pointers

- Bernshteyn: "Descriptive Combinatorics and Distributed Algorithms", Notices of AMS, 2022
- Grebík: "Problem session" in Oberwolfach Report 8/2022 "Descriptive Combinatorics, LOCAL Algorithms and Random Processes", 2022
- Kechris-Marks: "Descriptive graph combinatorics", 139 pages (October 2020)
- ► Marks: "Measurable graph combinatorics", ICM 2022
- P: "Borel combinatorics of locally finite graphs", Surveys in Combinatorics, CUP 2021

Thank you!