Measurable Combinatorics

Oleg Pikhurko
University of Warwick

Borel/Measurable/Descriptive Combinatorics: Typical setup

- Objects: graphs on topological spaces
- Vertex set can be e.g. $[0,1]$ or $\{0,1\}^{\mathbb{N}}$
- Degrees are uniformly bounded
- Locally checkable labelling (LCL) problem
- Maximal independent set
- Proper vertex / edge k-colouring
- Perfect matching
- Aim: "Constructive" labelling

Example: irrational rotation graph \mathcal{R}_{α}

- Fix irrational $\alpha \in \mathbb{R}$
- $T:[0,1) \rightarrow[0,1), \quad x \mapsto x+\alpha(\bmod 1)$
- \cong rotation of circle by angle $\frac{\alpha}{2 \pi}$
- Graph $\mathcal{R}_{\alpha}:=([0,1),\{\{x, T x\}: x \in[0,1)\})$
- Every component is an infinite double ray
- Axiom of Choice: $\chi\left(\mathcal{R}_{\alpha}\right)=2$
- "Constructive" 2-colouring?

Borel sets

- $\mathcal{B}=\{$ Borel sets $\}: ~ \sigma$-algebra generated by open sets
- $X \subseteq[0,1]$ is Borel iff \mathbb{I}_{X} is computed by well-founded countable Boolean circuit of binary expansion
- E.g. $\{x: \exists$ two consecutive digits 1$\} \in \mathcal{B}$

- Descriptive set theory

Measurable sets

- Fixed measure μ
- A is measurable if $\exists B \in \mathcal{B}$ with $\mu(A \triangle B)=0$
- "Definable" except on measure 0
- $\mathcal{L}:=\{$ measurable sets $\}$
- σ-algebra

Measurable chromatic number of \mathcal{R}_{α}

- Irrational α
- $x \in[0,1)$ is adjacent to $x \pm \alpha(\bmod 1)$
- Measurable chromatic number $\chi_{\mathcal{L}}\left(\mathcal{R}_{\alpha}\right)>2$:
- $[0,1)=A \cup B$, measurable 2-colouring
- $T(A)=B, T(B)=A$
- Lebesgue measure $\lambda(A)=1 / 2$
- $T^{2}(A)=A$
- Ergodicity of $T^{2}: \lambda(A)=0$ or $1 \Rightarrow \Leftarrow$

Borel 3-colouring of \mathcal{R}_{α}

- Fix small $\varepsilon>0$
- $V_{3}:=[0, \varepsilon)$ gets colour 3
- Every component of $\mathcal{R}_{\alpha}-A$ is a path of length $\leq N$
- Colour by the parity of the number of steps until V_{3}
- Each V_{i} is a finite union of half-open intervals

$$
\begin{aligned}
& Y_{j}
\end{aligned}:=\left\{x: \min \left\{n \geq 0: T^{n}(x) \in V_{3}\right\}=j\right\},
$$

- Borel chromatic number $\chi_{\mathcal{B}}\left(\mathcal{R}_{\alpha}\right) \leq 3$

Motivation

- Actions of a finitely generated group $\Gamma=\langle S\rangle$ on V
- Schreier graph on V with edges $\{x, \gamma \cdot x\}, \gamma \in S$
- Countable Borel equivalence relations (CBER)
- Cost: min average degree of a spanning subgraph
- Factors of IID in probability theory
- Independent random seeds $s(x) \in[0,1]$ for $x \in \mathbb{Z}^{d}$
- Aim: invariant labelling satisfying given constraints
- Graph on $[0,1]^{\mathbb{Z}^{d}}$ with edges corresponding to shifts
- Timár'23: Matching of optimal tail between two Poisson processes on \mathbb{Z}^{d} (or on \mathbb{R}^{d})
- Bowen-Kun-Sabok' $\geq^{\prime} 23 \Rightarrow$ desired matching
- LOCAL algorithms
- Limits of bounded degree graphs
- Equidecompositions

Connections to distributed computing

- r-LOCAL algorithm on n-vertex G
- Deterministic: Label of x is a function of $N^{\leq r}(x)$
- Randomised: Uniform $V \rightarrow[0,1]$, require $\mathbb{P}[$ fail $]<1 / n$
- Bernshteyn'23: o($\log n$)-LOCAL algorithm
- Deterministic \Rightarrow Borel solution
- Randomised \Rightarrow measurable solution
- Vertex colouring for graphs with max degree Δ :

$\Delta+1$ any G	Goldberg-Plotkin- Shannon'88: $O(\log * n)$-DET	Kechris-Solecki- Todorcevic'99: Borel
Δ	Chang-Kopelowitz-	Marks'16:
forest	Pettie'19: NOT o(logn)-DET	NOT Borel
$\Delta \geq 3$	Ghaffari-Hirvonen-Kuhn-	Conley-Marks-Tucker-
no $K_{\Delta+1}$	Maus'18: o(log $n)$-RAND	Drob'16: measurable

- Brandt-Chang-Grebík-Grunau-Rozhoň-

Vidnyánszky'22: On trees, $O(\log n)$-DET iff Baire

Limits of bounded degree graphs

- r-sample from finite G : output rooted graph
$G\left[N^{\leq r}(x), x\right]$, up to isomorphism, for uniform $x \in V$
- r-sample from Borel \mathcal{G} with measure μ : take $x \sim \mu$
- $G_{n} \rightarrow \mathcal{G}$ locally: $\forall r r$-samples converge
- Aldous'07, Elek'07: limit (\mathcal{G}, μ) exists
- Measure preservation: \exists Borel $X Y$-matching \Rightarrow $\mu(X)=\mu(Y)$
- Aldous-Lyons'07: Is \forall m.p. \mathcal{G} a limit of finite graphs?
- Global-local convergence
- Similarity: any colouring in one graph can be approximately reproduced in the other
- Hatami-Lovàsz-Szegedy'14: m.p. graphs as limits
- Kun-Thom' \geq '23: \exists m.p. \mathcal{G}, not limit of finite graphs

Global-local convergence

- (\mathcal{G}, ν) : a limit of 3-regular random graphs
- (\mathcal{H}, μ) : a limit of 3-regular random bipartite graphs
- $\forall \varepsilon>0 \exists A \subseteq V(\mathcal{H})$ st $\mu(A)=\frac{1}{2}$ and average degree of $\mathcal{H}[A]$ is $\leq \varepsilon$
- False for (\mathcal{G}, ν)

Equidecompositions

- $A, B \subseteq \mathbb{R}^{k}$ are equidecomposable $(A \sim B)$:
- $\exists A=A_{1} \sqcup \cdots \sqcup A_{n}$
- $\exists B=B_{1} \sqcup \cdots \sqcup B_{n}$
st $\forall i \exists$ isometry γ_{i} with $\boldsymbol{B}_{i}=\gamma_{i}\left(\boldsymbol{A}_{i}\right)$
- $k \geq 3$
- Banach-Tarski Paradox'24: ball in \mathbb{R}^{k} can be doubled
- \Rightarrow Every mean (finitely-addivite isometry-invariant) m : $\left\{\right.$ bounded subsets of $\left.\mathbb{R}^{k}\right\} \rightarrow[0, \infty)$ is 0
- Pieces cannot be measurable
- What can be done "constructively"?

Measurable pieces in $\mathbb{R}^{k}, k \geq 3$

- Necessary conditions for $A \sim_{\mathcal{L}}[0,1]^{k}$:
- A is measurable and Lebesgue measure $\lambda(A)=1$
- finitely many copies of A cover $[0,1]^{k}$
- A is bounded
- Grabowski-Máthé-P.'22: sufficient for $k \geq 3$
- Banach-Ruziewicz Problem'30: Is every mean $\{$ bounded $\} \cap \mathcal{L} \rightarrow[0, \infty)$ a multiple of λ ?
- Margulis'82: Yes!
- Grabowski-Máthé-P.'22: new proof

Equidecompositions via graph matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$
- Bipartite graph \mathcal{H} :
- $V:=A \sqcup B$
- $E:=\left\{x y \in A \times B: \exists i \gamma_{i}(x)=y\right\}$

- Matching $\mathcal{M} \subseteq E \Longleftrightarrow$ disjoint $A_{1}, \ldots, A_{n} \subseteq A$ st $\gamma_{1}\left(A_{1}\right), \ldots, \gamma_{n}\left(A_{n}\right) \subseteq B$ are disjoint
- \exists perfect matching $\Rightarrow A \sim B$

Borel maximal matching

- Isometries $\gamma_{1}, \ldots, \gamma_{n}$
- Bipartite graph $\mathcal{H}=(V, E)$:

$$
\begin{aligned}
& V=A \sqcup B \\
& E=\left\{x y \in A \times B: \exists i \in[n] \gamma_{i}(x)=y\right\}
\end{aligned}
$$

- Greedy Algorithm:

$$
\begin{aligned}
& A_{1}:=A \cap \gamma_{1}^{-1}(B) \\
& B_{1}:=\gamma_{1}\left(A_{1}\right) \\
& A_{2}:=\left(A \backslash A_{1}\right) \cap \gamma_{2}^{-1}\left(B \backslash B_{1}\right) \\
& B_{2}:=\gamma_{2}\left(A_{2}\right) \\
& A_{3}:=\left(A \backslash\left(A_{1} \cup A_{2}\right)\right) \cap \gamma_{3}^{-1}\left(B \backslash\left(B_{1} \cup B_{2}\right)\right)
\end{aligned}
$$

- A_{i}, B_{i} are i-LOCAL functions of A, B
- Elek-Lippner'10: \exists Borel \mathcal{M}_{i} without augmenting paths of length $\leq 2 i-1$

Augmenting paths in finite graphs

- Partial matching \mathcal{M} in bipartite finite graph H
- No augmenting path of length $\leq 2 \ell+1 \Rightarrow$ fraction of unmatched vertices is $\leq \frac{1}{\ell+1}$
- Finite bipartite graph H on $A \sqcup B$ is a c-expander:
- $|A|=|B|$
- $\forall X$ in one part $|N(X)| \geq \min \left((1+c)|X|, \frac{2}{3}|A|\right)$
- Lyons-Nazarov'11: c-expander \& no augmenting $(\leq 2 \ell+1)$-path $\Rightarrow \mid$ unmatched in $A\left|\leq(1+c)^{-\ell / 2}\right| A \mid$

Measurable version

- $\mathcal{H}=(A \sqcup B, E)$ is measurable c-expander:
- $\mu(A)=\mu(B)$
- measure preserving
- \forall Borel X in a part

$$
\mu(N(X)) \geq \min \left((1+c) \mu(X), \frac{2}{3} \mu(A)\right)
$$

- Lyons-Nazarov'11: No augmenting path of length $\leq 2 \ell+1 \Rightarrow \mu($ unmatched in $A) \leq(1+c)^{-\ell / 2} \mu(A)$
- Lyons-Nazarov'11: \exists measurable perfect matching
- Iteratively augment for $\ell=0,1,2 \ldots$
- Change in measure $\leq(2 \ell+1)(1+c)^{-\ell / 2} \mu(A)$
- Borel-Cantelli: μ (changes infinitely often) $=0$

Proof of $A \sim_{\mathcal{L}} B$ in $\mathbb{R}^{k}, k \geq 3$

- Spectral gap for $\mathrm{SO}(3) \curvearrowright \mathbb{S}^{2}$ (Drinfeld'84, Lubotzky-Phillips-Sarnak'86)
- Lift to $\mathbb{R}^{k}, k \geq 3$
- $\Rightarrow \exists c>0$ \& finite S of isometries of \mathbb{R}^{k} st Schreier graph is measurable c-expander on $A \times B$
- Apply Lyons-Nazarov'11

\mathbb{R}^{k} with $k \leq 2$

- Banach'23: $A \sim B$, measurable $\Rightarrow \lambda(A)=\lambda(B)$
- Impossible to double a disk
- Tarski's Circle Squaring Problem'25: Is a disk equidecomposable to a square ?
- Laczkovich'90: Yes!
- Grabowski-Máthé-P.'17: Measurable pieces
- Marks-Unger'17: Borel pieces
- Máthé-Noel-P. \geq '23: Boolean combinations of F_{σ} sets \& Jordan measurable

Local picture

- Work in the torus $\mathbb{T}^{k}:=\mathbb{R}^{k} / \mathbb{Z}^{k}$ (i.e. modulo 1)
- Random vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathbb{T}^{k}$
- Use translations only (by multiples of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}$)

r-LOCAL functions

- r-LOCALI functions of A and B : Boolean combination of A and B, shifted by $\sum_{i=1}^{d} n_{i} \mathbf{x}_{i}$ with $\mathbf{n} \in\{-r, \ldots, r\}^{d}$
- Venn diagrams for $d=2$ and $r=1,2$:

Combinatorial part

- \mathbb{Z}^{d} with equi-distributed red and blue points
- Laczkovich'90: exists a matching that moves each vertex at distance $\leq D$
- $\mathcal{H}:=\left(A, B\right.$, dist $\left._{\mathbb{Z}^{d}} \leq D\right)$ satisfies Hall's condition
- Grabowski-Máthé-P.'17: \forall unmatched $\mathbf{x} \in A$ and $\mathbf{y} \in B \exists$ an augmenting path in \mathcal{H} from \mathbf{x} to \mathbf{y} of length $O(\operatorname{dist}(\mathbf{x}, \mathbf{y}))$
- Marks-Unger'17, Máthé-Noel-P. \geq '23: construct a Borel real-valued flow and then round it

Bounded integer-valued $A B$-flow $\Rightarrow A \sim B$

Discrete circle squaring (by András Máthé)

580×580 torus, 5 pieces, working modulo 1

Open problems

- Are every two bounded Borel $A, B \subseteq \mathbb{R}^{3}$ of equal measure and with non-empty interior equidecomposable with Borel pieces?
- Aldous-Lyons'07: Is every measure-preserving Borel graph a local limit of finite graphs?
- Bernshteyn'23: Is there a distributed computing counterpart to Borel solutions?
- "Constructive" versions of Lovász Local Lemma?
- Csóka-Grabowski-Máthé-P.-Tyros' \geq '23: Borel for subexponential growth dependency graphs
- Fischer-Ghaffari'16, Ghaffari-Harris-Kuhn'18: $o(\log n)$-RAND if $p(\Delta+1)^{8}<2^{-15}$
- Bernshteyn'23: measurable if $p(\Delta+1)^{8}<2^{-15}$

Some initial pointers

- Bernshteyn: "Descriptive Combinatorics and Distributed Algorithms", Notices of AMS, 2022
- Grebík: "Problem session" in Oberwolfach Report 8/2022 "Descriptive Combinatorics, LOCAL Algorithms and Random Processes", 2022
- Kechris-Marks: "Descriptive graph combinatorics", 139 pages (October 2020)
- Marks: "Measurable graph combinatorics", ICM 2022
- P: "Borel combinatorics of locally finite graphs", Surveys in Combinatorics, CUP 2021

Thank you!

