δ-boundedness

Rose McCarty
Department of Mathematics
PRINCETON
UNIVERSITY

Eurocomb 2023
With Xiying Du, António Girão, Zach Hunter, Alex Scott, James Davies, Tomasz Krawczyk, and Bartosz Walczak.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

> min degree $\delta(G)=$ $\min _{v \in V(G)} \operatorname{deg}(v)$

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

> min degree $\delta(G)=$ $\min _{v \in V(G)} \operatorname{deg}(v)$

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

> min degree $\delta(G)=$ $\min _{v \in V(G)} \operatorname{deg}(v)$

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

girth $=$
min number of edges in a cycle

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

girth $=$
min number of edges in a cycle

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

girth $=$
min number of edges in a cycle

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced; here $\tau=3$.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced; here $\tau=3$.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced; here $\tau=3$.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in \mathcal{F},

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced; here $\tau=3$.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced;
here $\tau=3$.

Consider the function $f(x)=x$.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced;
here $\tau=3$.

Consider the function $f(x)=x$.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced;
here $\tau=3$.

Consider the function $f(x)=x$.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced;
here $\tau=3$.

Consider the function $f(x)=x$.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced;
here $\tau=3$.

Consider the function $f(x)=x$.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced;
here $\tau=3$.

Consider the function $f(x)=x$.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced; here $\tau=2$.

Consider the function $f(x)=x$.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced; here $\tau=2$.

Obstruction since $\delta>\tau$!

> Consider the function $f(x)=x$.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H))$.

When is $\mathrm{K}_{\mathrm{t}, \mathrm{t}}$ roughly the densest part of G ?

Not necessarily induced; here $\tau=1$.

> Consider the function $f(x)=x$.

Obstruction since $\delta>\tau$!
Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.
The biclique number $\tau(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}, \mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is δ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any induced subgraph H of any graph in $\mathcal{F}, \delta(H) \leq f(\tau(H)$).

When is K_{t} roughly the hardest part of G to color?

When is K_{t} roughly the hardest part of G to color?

A coloring assigns adjacent vertices different colors.

When is K_{t} roughly the hardest part of G to color?

A coloring assigns adjacent vertices different colors.

When is K_{t} roughly the hardest part of G to color?

A coloring assigns adjacent vertices different colors.

The chromatic num $\chi(G)=$ min number of colors.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large chromatic num \& girth.

When is K_{t} roughly the hardest part of G to color?

A coloring assigns adjacent vertices different colors.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large chromatic num \& girth.
The clique number $\omega(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}} \subseteq G$.

When is K_{t} roughly the hardest part of G to color?

A coloring assigns adjacent vertices different colors.

The chromatic num
$\chi(G)=$ min number of colors.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large chromatic num \& girth.
The clique number $\omega(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is χ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that

When is K_{t} roughly the hardest part of G to color?

A coloring assigns adjacent vertices different colors.

The chromatic num
$\chi(G)=$ min number of colors.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large chromatic num \& girth.
The clique number $\omega(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is χ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any $H \leq_{\text {ind }} \mathcal{F}$,

When is K_{t} roughly the hardest part of G to color?

A coloring assigns adjacent vertices different colors.

The chromatic num
$\chi(G)=$ min number of colors.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large chromatic num \& girth.
The clique number $\omega(G)=\max t$ so that $\mathrm{K}_{\mathrm{t}} \subseteq G$. A class of graphs \mathcal{F} is χ-bounded if $\exists f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any $H \leq{ }_{\text {ind }} \mathcal{F}$, we have $\chi(H) \leq f(\omega(H))$.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\{H \leq$ ind $\mathcal{F}: \omega(\mathbf{H})=2\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\{H \leq$ ind $\mathcal{F}: \omega(\mathbf{H})=2\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Theorem (Kwan-Letzter-Sudakov-Tran 20; McCarty 21) A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\{H \leq$ ind $\mathcal{F}: \tau(\mathbf{H})=1\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\{H \leq$ ind $\mathcal{F}: \omega(\mathbf{H})=2\}$ is bounded.

Theorem (Kwan-Letzter-Sudakov-Tran 20; McCarty 21) A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\{H \leq$ ind $\mathcal{F}: \tau(\mathbf{H})=1\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Theorem (Kwan-Letzter-Sudakov-Tran 20; McCarty 21) A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\left\{H \leq{ }_{\text {ind }} \mathcal{F}: \tau(\mathbf{H})=1\right\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Theorem (Kwan-Letzter-Sudakov-Tran 20; McCarty 21) A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\{H \leq$ ind $\mathcal{F}: \tau(\mathbf{H})=1\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Theorem (Kwan-Letzter-Sudakov-Tran 20; McCarty 21) A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\{H \leq$ ind $\mathcal{F}: \tau(\mathbf{H})=1\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Theorem (Kwan-Letzter-Sudakov-Tran 20; McCarty 21) A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\{H \leq$ ind $\mathcal{F}: \tau(\mathbf{H})=1\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Theorem (Kwan-Letzter-Sudakov-Tran 20; McCarty 21) A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\{H \leq$ ind $\mathcal{F}: \tau(\mathbf{H})=1\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Theorem (Kwan-Letzter-Sudakov-Tran 20; McCarty 21) A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\left\{H \leq_{\text {ind }} \mathcal{F}: \operatorname{girth}(H) \geq 6\right\}$ is bounded.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Conjecture

A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\{H \leq$ ind $\mathcal{F}: \operatorname{girth}(H) \geq k\}$ is bounded for some $k \in \mathbb{N}$.
χ-bounded: $\chi \leq f(\omega) \quad \delta$-bounded: $\delta \leq f(\tau)$

Theorem (Carbonero-Hompe-Moore-Spirkl 23)
There exists a class \mathcal{F} which is not χ-bounded so that the chromatic number of $\left\{H \leq_{\text {ind }} \mathcal{F}: \omega(\mathbf{H})=2\right\}$ is bounded.

Conjecture

A class \mathcal{F} is δ-bounded if and only if the minimum degree of $\{H \leq$ ind $\mathcal{F}: \operatorname{girth}(H) \geq k\}$ is bounded for some $k \in \mathbb{N}$.

Theorem (Chudnovsky-Robertson-Seymour-Thomas 06)
The obstructions for being χ-bounded with function $f(\mathrm{x})=\mathrm{x}$ are the odd holes (below) and their complements.

Theorem (Chudnovsky-Robertson-Seymour-Thomas 06)
The obstructions for being χ-bounded with function $f(\mathrm{x})=\mathrm{x}$ are the odd holes (below) and their complements.

Conjecture
The obstructions for being δ-bounded with function $f(\mathrm{x})=\mathrm{x}$ are K_{3} and the holes of length >4.

K_3

C_5

Let T be any tree, and let $\mathcal{F}_{T}=\{G:$ no induced copy of $T\}$.

Let T be any tree, and let $\mathcal{F}_{T}=\{G:$ no induced copy of $T\}$.

Conjecture (Gyárfás 75; Sumner 81)
The class \mathcal{F}_{T} is χ-bounded.

Let T be any tree, and let $\mathcal{F}_{T}=\{G:$ no induced copy of $T\}$.

Conjecture (Gyárfás 75; Sumner 81)
The class \mathcal{F}_{T} is χ-bounded.
Theorem (Hajnal-Rödl; Kierstead-Penrice 94)
The class \mathcal{F}_{T} is δ-bounded.

Let T be any tree, and let $\mathcal{F}_{T}=\{G:$ no induced copy of $T\}$.

Conjecture (Gyárfás 75; Sumner 81)
The class \mathcal{F}_{T} is χ-bounded.
Theorem (Hajnal-Rödl; Kierstead-Penrice 94)
The class \mathcal{F}_{T} is δ-bounded.
Theorem (Scott-Seymour-Spirkl 22)
The class \mathcal{F}_{T} is δ-bounded by a polynomial function $p_{T}(\tau)$.

Let H be any graph, and let $\mathcal{F}_{H}=\{G:$ no induced subdivision of $H\}$.

Let H be any graph, and let $\mathcal{F}_{H}=\{G$: no induced subdivision of $H\}$. So for $H=K_{4}$, we exclude...

Let H be any graph, and let $\mathcal{F}_{H}=\{G$: no induced subdivision of $H\}$. So for $H=K_{4}$, we exclude...

Let H be any graph, and let $\mathcal{F}_{H}=\{G$: no induced subdivision of $H\}$. So for $H=K_{4}$, we exclude...

Let H be any graph, and let $\mathcal{F}_{H}=\{G$: no induced subdivision of $H\}$. So for $H=K_{4}$, we exclude...

Let H be any graph, and let $\mathcal{F}_{H}=\{G$: no induced subdivision of $H\}$. So for $H=K_{4}$, we exclude...

Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14)
The class $\mathcal{F}_{K_{5}^{1}}$ is not χ-bounded.

Let H be any graph, and let $\mathcal{F}_{H}=\{G$: no induced subdivision of $H\}$. So for $H=K_{4}$, we exclude...

Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14)
The class $\mathcal{F}_{K_{5}^{1}}$ is not χ-bounded.

Theorem (Kühn-Osthus 04)
The class \mathcal{F}_{H} is δ-bounded for any H.

Let H be any graph, and let $\mathcal{F}_{H}=\{G$: no induced subdivision of $H\}$. So for $H=C_{5}$, we exclude...

Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14)
The class $\mathcal{F}_{K_{5}^{1}}$ is not χ-bounded.
Theorem (Kühn-Osthus 04)
The class \mathcal{F}_{H} is δ-bounded for any H.

Thm (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak 22)
The class $\mathcal{F}_{C_{\ell}}$ is δ-bounded by a polynomial $p_{\ell}(\tau)$ for any ℓ.

Let H be any graph, and let $\mathcal{F}_{H}=\{G$: no induced subdivision of $H\}$. So for $H=K_{4}$, we exclude...

Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14)
The class $\mathcal{F}_{K_{5}^{1}}$ is not χ-bounded.
Theorem (Kühn-Osthus 04)
The class \mathcal{F}_{H} is δ-bounded for any H.
Conjecture (BBPRTW 22)
The class \mathcal{F}_{H} is δ-bounded by a polynomial $p_{H}(\tau)$ for any H.

Let $C \subset \mathbb{R}^{2}$ be a circle.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C.

intersecting chords

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C.

non-intersecting chords

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R},

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

If $S \subseteq \mathcal{R}$ are pairwise intersecting, then $\chi \geq|S|$.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

If $S \subseteq \mathcal{R}$ are pairwise intersecting, then $\chi \geq|S|$. The clique number $\omega=\max |S|$.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

If $S \subseteq \mathcal{R}$ are pairwise intersecting, then $\chi \geq|S|$. The clique number $\omega=\max |S|$. So we have $\omega \leq \chi$.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

If $S \subseteq \mathcal{R}$ are pairwise intersecting, then $\chi \geq|S|$. The clique number $\omega=\max |S|$. So we have $\omega \leq \chi$.

Theorem (Gyárfás 85)
For every \mathcal{R}, we have $\chi \leq 4^{\omega \log (\omega)}$.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

If $S \subseteq \mathcal{R}$ are pairwise intersecting, then $\chi \geq|S|$. The clique number $\omega=\max |S|$. So we have $\omega \leq \chi$.

Theorem (Kostochka-Kratochvíl 97)
For every \mathcal{R}, we have $\chi \leq 50 \cdot 2^{\omega}$.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

If $S \subseteq \mathcal{R}$ are pairwise intersecting, then $\chi \geq|S|$. The clique number $\omega=\max |S|$. So we have $\omega \leq \chi$.

Theorem (Kostochka-Kratochvíl 97; Kostochka 88)
For every \mathcal{R}, we have $\chi \leq 50 \cdot 2^{\omega}$. And $\exists \mathcal{R}$ with $\chi \geq \frac{1}{4} \omega \log (\omega)$.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

If $S \subseteq \mathcal{R}$ are pairwise intersecting, then $\chi \geq|S|$. The clique number $\omega=\max |S|$. So we have $\omega \leq \chi$.

Theorem (Davies-McCarty 21)
For every \mathcal{R}, we have $\chi \leq 7 \omega^{2}$.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to partition \mathcal{R} into non-intersecting parts. The chromatic number $\chi=\min \#$ parts.

If $S \subseteq \mathcal{R}$ are pairwise intersecting, then $\chi \geq|S|$. The clique number $\omega=\max |S|$. So we have $\omega \leq \chi$.

Theorem (Davies 22)
For every \mathcal{R}, we have $\chi \leq 15 \omega \log (\omega)$.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R},

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to find a chord which intersects few others.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to find a chord which intersects few others. This is the minimum degree δ.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to find a chord which intersects few others. This is the minimum degree δ.

A biclique consists of disjoint $S, T \subseteq \mathcal{R}$ such that every chord in S intersects every chord in T.

Let $C \subset \mathbb{R}^{2}$ be a circle. A chord is a line segment with ends in C. Given a finite collection of chords \mathcal{R}, we want to find a chord which intersects few others. This is the minimum degree δ.

A biclique consists of disjoint $S, T \subseteq \mathcal{R}$ such that every chord in S intersects every chord in T.

Theorem (Fox-Pach 10)
For every \mathcal{R}, we have $\delta \leq \mathcal{O}(\tau)$.

What if we look at line segments whose ends are not required to be on a circle?

What if we look at line segments whose ends are not required to be on a circle?

What if we look at line segments whose ends are not required to be on a circle?

What if we look at line segments whose ends are not required to be on a circle?

What if we look at line segments whose ends are not required to be on a circle?

Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14) The class $\mathcal{F}_{K_{5}^{1}}$ is not χ-bounded.

What if we look at line segments whose ends are not required to be on a circle?

Fig. 1. Segments, probes and roots.
Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14)
The class $\mathcal{F}_{K_{5}^{1}}$ is not χ-bounded since it contains all segment intersection graphs.

What if we look at line segments whose ends are not required to be on a circle?

Fig. 1. Segments, probes and roors.
Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14) The class $\mathcal{F}_{K_{5}^{1}}$ is not χ-bounded since it contains all segment intersection graphs.

Theorem (Lee 17)
Segment \& string intersection graphs satisfy $\delta \leq \mathcal{O}(\tau \log (\tau))$.

What if we look at line segments whose ends are not required to be on a circle?

Can we prove the same for induced-minor-free graphs using recent separator theorem of Korhonen-Lokshtanov?

Fig. 1. Segments, probes and roors.
Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14)
The class $\mathcal{F}_{K_{5}^{1}}$ is not χ-bounded since it contains all segment intersection graphs.

Theorem (Lee 17)
Segment \& string intersection graphs satisfy $\delta \leq \mathcal{O}(\tau \log (\tau))$.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are visible if the line segment between them is inside of \mathcal{J}.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are visible if the line segment between them is inside of \mathcal{J}.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are visible if the line segment between them is inside of \mathcal{J}.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in P are visible if the line segment between them is inside of \mathcal{J}. A coloring partitions \mathbf{P} into invisible parts.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in P are visible if the line segment between them is inside of \mathcal{J}. A coloring partitions \mathbf{P} into invisible parts.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are visible if the line segment between them is inside of \mathcal{J}. A coloring partitions \mathbf{P} into invisible parts.

A clique is a set of pairwise visible points in P.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are visible if the line segment between them is inside of \mathcal{J}. A coloring partitions \mathbf{P} into invisible parts.

A clique is a set of pairwise visible points in P .
Theorem (Davies-Krawczyk-McCarty-Walczak 21)
For any \mathbf{P}, we have $\chi \leq 4^{\omega}$.

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are visible if the line segment between them is inside of \mathcal{J}. A coloring partitions \mathbf{P} into invisible parts.

A clique is a set of pairwise visible points in P .
Question
Is this class δ-bounded?

How quickly can optimal bounding functions grow?

$$
\begin{gathered}
\chi \leq \omega \\
\chi \leq \omega^{3} \\
\chi \leq 2^{\omega} \\
\chi \leq \omega^{\omega^{\omega^{\omega}}}
\end{gathered}
$$

How quickly can optimal bounding functions grow?

Conjecture (Esperet)
Every χ-bounded class has a polynomial χ-bounding function.

How quickly can optimal bounding functions grow?

Conjecture (Esperet)
Every χ-bounded class has a polynomial χ-bounding function.
Conjecture says that if $\chi \leq \omega^{\omega^{\omega^{\omega^{\omega}}}}$ then $\chi \leq c \omega^{d}$ too!

How quickly can optimal bounding functions grow?

Conjecture (Esperet)
Every χ-bounded class has a polynomial χ-bounding function.
Conjecture says that if $\chi \leq \omega^{\omega^{\omega^{\omega^{\omega}}}}$ then $\chi \leq c \omega^{d}$ too!
Theorem (Briański-Davies-Walczak 23+)
Optimal χ-bounding functions can grow arbitrarily quickly.

How quickly can optimal bounding functions grow?

Conjecture (Esperet)
Every χ-bounded class has a polynomial χ-bounding function.
Conjecture says that if $\chi \leq \omega^{\omega^{\omega^{\omega^{\omega}}}}$ then $\chi \leq c \omega^{d}$ too!
Theorem (Briański-Davies-Walczak 23+)
Optimal χ-bounding functions can grow arbitrarily quickly.
Theorem (Du-Girão-Hunter-McCarty-Scott 23+)
For any δ-bounded class \mathcal{F}, we have $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$.

How quickly can optimal bounding functions grow?

Conjecture (Esperet)
Every χ-bounded class has a polynomial χ-bounding function.
Conjecture says that if $\chi \leq \omega^{\omega^{\omega^{\omega^{\omega}}}}$ then $\chi \leq c \omega^{d}$ too!
Theorem (Briański-Davies-Walczak 23+)
Optimal χ-bounding functions can grow arbitrarily quickly.
Theorem (Du-Girão-Hunter-McCarty-Scott 23+)
For any δ-bounded class \mathcal{F}, we have $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$.
Says that if $\delta \leq \tau^{\tau^{\tau^{\tau^{\tau}}}}$ then $\delta \leq 2^{c \tau^{3}}$ too!

Some intuition for the bound $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$
Theorem (Kwan-Letzter-Sudakov-Tran 20)
For any d and t, every graph with $\delta \geq 2^{d^{22^{\text {poll }}(t)}}$ has either K_{t} or an induced, bipartite subgraph with $\delta \geq d$.

Some intuition for the bound $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$
Theorem (Kwan-Letzter-Sudakov-Tran 20)
For any d and t, every graph with $\delta \geq 2^{d^{2} 2^{\text {poly }}(t)}$ has either K_{t} or an induced, bipartite subgraph with $\delta \geq d$.

Some intuition for the bound $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$
Theorem (Kwan-Letzter-Sudakov-Tran 20)
For any d and t, every graph with $\delta \geq 2^{d^{22^{\text {poll }}(t)}}$ has either K_{t} or an induced, bipartite subgraph with $\delta \geq d$.

Some intuition for the bound $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$
Theorem (Kwan-Letzter-Sudakov-Tran 20)
For any d and t, every graph with $\delta \geq 2^{d^{22^{\text {poll }}(t)}}$ has either K_{t} or an induced, bipartite subgraph with $\delta \geq d$.

Some intuition for the bound $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$
Theorem (Kwan-Letzter-Sudakov-Tran 20)
For any d and t, every graph with $\delta \geq 2^{d^{22^{\text {poll }}(t)}}$ has either K_{t} or an induced, bipartite subgraph with $\delta \geq d$.

Some intuition for the bound $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$
Theorem (Kwan-Letzter-Sudakov-Tran 20)
For any d and t, every graph with $\delta \geq 2^{d^{22^{\text {poll }}(t)}}$ has either K_{t} or an induced, bipartite subgraph with $\delta \geq d$.

Some intuition for the bound $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$
Theorem (Kwan-Letzter-Sudakov-Tran 20)
For any d and t, every graph with $\delta \geq 2^{d^{22^{\text {poll }}(t)}}$ has either K_{t} or an induced, bipartite subgraph with $\delta \geq d$.

Some intuition for the bound $\delta \leq 2^{\mathcal{O}\left(\tau^{3}\right)}$
Theorem (Kwan-Letzter-Sudakov-Tran 20)
For any d and t, every graph with $\delta \geq 2^{d^{2} 2^{\text {poll }}(t)}$ has either K_{t} or an induced, bipartite subgraph with $\delta \geq d$.

We can do better by assuming there is no "roughly regular" induced subgraph with δ large.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree \& girth.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.

Theorem (Erdös 1959)

There exist graphs of arbitrarily large min degree \& girth.

Conjecture (Thomassen 1983)

There exists $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any d, k, every graph with $\delta \geq f(d, k)$ has a subgraph with $\delta \geq d$ and girth $\geq k$.

What if we want an induced subgraph of large average degree and girth?

Conjecture

There exists $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any d, k, every graph with $\delta \geq f(d, k)$ has as an induced subgraph either $K_{d}, K_{d, d}$, or a graph with $\delta \geq d$ and girth $\geq k$.

clique

biclique

$\delta \geq d$, girth $\geq k$

Conjecture

There exists $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any d, k, every graph with $\delta \geq f(d, k)$ has as an induced subgraph either $K_{d}, K_{d, d}$, or a graph with $\delta \geq d$ and girth $\geq k$.

biclique

$\delta \geq d$, girth $\geq k$

Implies Thomassen's Conjecture.

Conjecture

There exists $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any d, k, every graph with $\delta \geq f(d, k)$ has as an induced subgraph either $K_{d}, K_{d, d}$, or a graph with $\delta \geq d$ and girth $\geq k$.

biclique

$$
\delta \geq d, \text { girth } \geq k
$$

Implies Thomassen's Conjecture.
True for $k=6$.

Conjecture

There exists $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any d, k, every graph with $\delta \geq f(d, k)$ has as an induced subgraph either $K_{d}, K_{d, d}$, or a graph with $\delta \geq d$ and girth $\geq k$.

clique

biclique

$\delta \geq d$, girth $\geq k$

Implies Thomassen's Conjecture.
True for $k=6$.
True for "roughly regular graphs".

Thank you!

