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Not necessarily
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Obstruction since δ > τ !
Theorem (Erdös 1959)
There exist graphs of arbitrarily large min degree & girth.
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When is Kt roughly the hardest part of G to color?

A coloring assigns
adjacent vertices
different colors.

The chromatic num
χ(G) = min number

of colors.

Theorem (Erdös 1959)
There exist graphs of arbitrarily large chromatic num & girth.

The clique number ω(G) = max t so that Kt ⊆ G . A class
of graphs F is χ-bounded if ∃f : N → N such that for any
H ≤ind F , we have χ(H) ≤ f (ω(H)).
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Conjecture
The obstructions for being δ-bounded with function
f (x) = x are K3 and the holes of length > 4.
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Let T be any tree, and let FT = {G : no induced copy of T}.

Conjecture (Gyárfás 75; Sumner 81)
The class FT is χ-bounded.

Theorem (Hajnal-Rödl; Kierstead-Penrice 94)
The class FT is δ-bounded.

Theorem (Scott-Seymour-Spirkl 22)
The class FT is δ-bounded by a polynomial function pT (τ).
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Let H be any graph, and let FH = {G : no induced
subdivision of H}. So for H = K4, we exclude...

Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14)

The class FK1
5

is not χ-bounded.

Theorem (Kühn-Osthus 04)
The class FH is δ-bounded for any H.

Conjecture (BBPRTW 22)

The class FH is δ-bounded by a polynomial pH(τ) for any H.
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non-intersecting parts. The chromatic number χ = min# parts.

If S ⊆ R are pairwise intersecting, then χ ≥ |S|. The clique
number ω = max |S|. So we have ω ≤ χ.

Theorem (Kostochka-Kratochvíl 97; Kostochka 88)
For every R, we have χ ≤ 50 · 2ω. And ∃R with χ ≥ 1

4ω log(ω).
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Let C ⊂ R2 be a circle. A chord is a line segment with ends in C.
Given a finite collection of chords R, we want to partition R into
non-intersecting parts. The chromatic number χ = min# parts.

If S ⊆ R are pairwise intersecting, then χ ≥ |S|. The clique
number ω = max |S|. So we have ω ≤ χ.

Theorem (Davies 22)
For every R, we have χ ≤ 15ω log(ω).
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Let C ⊂ R2 be a circle. A chord is a line segment with ends in C.
Given a finite collection of chords R, we want to find a chord
which intersects few others. This is the minimum degree δ.

A biclique consists of disjoint S,T ⊆ R such that every chord in S
intersects every chord in T.

Theorem (Fox-Pach 10)
For every R, we have δ ≤ O(τ).
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The class FK1
5

is not χ-bounded since it contains all segment
intersection graphs.

Theorem (Lee 17)
Segment & string intersection graphs satisfy δ ≤ O(τ log(τ)).



What if we look at line segments whose ends
are not required to be on a circle?

Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 14)

The class FK1
5

is not χ-bounded since it contains all segment
intersection graphs.

Theorem (Lee 17)
Segment & string intersection graphs satisfy δ ≤ O(τ log(τ)).

Can we prove the same
for induced-minor-free
graphs using recent
separator theorem of

Korhonen-Lokshtanov?
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Consider a Jordan curve J and a finite set of points P ⊂ J . Two
points in P are visible if the line segment between them is inside
of J . A coloring partitions P into invisible parts.

A clique is a set of pairwise visible points in P.

Question
Is this class δ-bounded?



How quickly can optimal
bounding functions grow?

χ ≤ ω

χ ≤ ω3

χ ≤ 2ω

χ ≤ ωωω
ωω

ω

. . .
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Conjecture (Esperet)
Every χ-bounded class has a polynomial χ-bounding function.

Conjecture says that if χ ≤ ωωωωωω

then χ ≤ cωd too!

Theorem (Briański-Davies-Walczak 23+)
Optimal χ-bounding functions can grow arbitrarily quickly.

Theorem (Du-Girão-Hunter-McCarty-Scott 23+)

For any δ-bounded class F , we have δ ≤ 2O(τ3).



How quickly can optimal
bounding functions grow?

Conjecture (Esperet)
Every χ-bounded class has a polynomial χ-bounding function.

Conjecture says that if χ ≤ ωωωωωω

then χ ≤ cωd too!

Theorem (Briański-Davies-Walczak 23+)
Optimal χ-bounding functions can grow arbitrarily quickly.

Theorem (Du-Girão-Hunter-McCarty-Scott 23+)

For any δ-bounded class F , we have δ ≤ 2O(τ3).

Says that if δ ≤ τ τ
ττ

ττ

then δ ≤ 2cτ3 too!



Some intuition for the bound δ ≤ 2O(τ 3)

Theorem (Kwan-Letzter-Sudakov-Tran 20)

For any d and t, every graph with δ ≥ 2d22poly(t) has either Kt
or an induced, bipartite subgraph with δ ≥ d.
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Some intuition for the bound δ ≤ 2O(τ 3)

Theorem (Kwan-Letzter-Sudakov-Tran 20)

For any d and t, every graph with δ ≥ 2d22poly(t) has either Kt
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Some intuition for the bound δ ≤ 2O(τ 3)

Theorem (Kwan-Letzter-Sudakov-Tran 20)

For any d and t, every graph with δ ≥ 2d22poly(t) has either Kt
or an induced, bipartite subgraph with δ ≥ d.

We can do better by assuming there is no “roughly regular”
induced subgraph with δ large.
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Conjecture (Thomassen 1983)
There exists f : N → N such that for any d , k, every graph
with δ ≥ f (d , k) has a subgraph with δ ≥ d and girth ≥ k.

δ ≥ d , girth ≥ k



What if we want an induced subgraph of large
average degree and girth?

clique K6 biclique K3,3
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Conjecture
There exists f : N → N such that for any d , k, every graph
with δ ≥ f (d , k) has as an induced subgraph either Kd , Kd ,d ,
or a graph with δ ≥ d and girth ≥ k.

clique biclique δ ≥ d , girth ≥ k
Implies Thomassen’s Conjecture.

True for k = 6.
True for “roughly regular graphs”.



Thank you!


