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The Turan number ofa graph H, denoted exIn,H), is the maximum number

of edges in a graph on avertices which has no copy ofHas a subgraph.

Mantel 2907: exIn,...) =(5). T5 (It

Turan 1941: ex(n, Kr+1) = (1- I)E.
complete graph on avertices suparts

Simonovits 1974: ex(n,C2k+1)=() for large n.
&
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*The limitalways exists.

1
Erdos-Stone (1946) determined TIH) for every graph H: T(H) = 1-x1H)-1.

*The chromatic number ofH, denoted x(H), is the minimum number of colours in a

vertex-colouring of H where every two adjacentvertices have differentcolours.

*E.g.: x(Rr) =r, k(C2k+1)=3...

This determines ex/n,H) asymptotically when z(H) =3.
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*For bipartite H, this only shows:F(H) =0, i.e. ex/n,H) =0(n4. ·
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*For almostall bipartite H, the order ofmagnitude of exIn, H) is unknown.
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The Turan number of a hypergraph H, denoted exIn,H), is the ⑤ ⑤ ⑤
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ex(n,t)
The Turan density of M, denoted (M), is lim (3).

n+s

*Like in graphs, (H) =0 if H is tripartite.

*T(N) is known for very few hypergraphs H.
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conjecture (Mubayi-Rod(2002): K(C,) =25-3 =0,464.

Razborov 2010: TICs) = 0.468 lusingFlag Algebras).
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↑ ↑ ↑ - ↑ ↑ ↑

(3)
Notice: there is no ce for 1 with 34 (we call such lodd).

=>I(C")a for lodd.
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Theorem (Ramier-2.-Pobrovskiy 2022+).

ike) =x for all sufficiently large & with 341.

*Similar to the graph case:IIe") = Ifor every odd l.

*Firstknown Turan density with conjectured extremal example an
Iiterated blow-up.

*One of few known irrational Turan densities (Yan-Peng 2022 and
Wh2022 provide other examples).
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Observation.Suppose (12) and 341.1. Then the l-blow-upof every

pseudocycle oflength (contains a tightcycle of length.

Erdos-Simonovits 1982: T(H[t1) =T(H) for every hypergraph H and t-1.

Thus: if odd pseudocycles length () -* 1 Enough to prove this!
then ill-blow-up of odd pseudocycles length-2)a for every l

observation=T(Ce") - & for odd 1-2
=>T(e) =x for odd 1=21.
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Define f(n) to be the maximum number

of edges in a hypergraph like this:

So, f(n)=x(z)+o(n).

Theorem (main step). There exists (s.t. every hypergraph on a vertices with

no odd pseudocycles oflengthL has fin)+011) edges.

This proves:iloddpseudocycles length() - 2, thus proving the main theorem.

Theorem (baby version).

Every hypergraph on a vertices with no odd pseudocycles has f(n) edges.
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Characterisation ofhypergraphs with no odd pseudocycles
Lemma. Ahypergraph has no odd pseudocycles iff its pair of vertices can be
coloured blue; and red and oriented: s.t. all edges are cherries.I

↳ ↳

.

.call such a colouring good. -.
↳

In a good colouring, everythird vertexin a pseudopath/pseudocycle is an 'apex,
so all pseudocycles have length divisible by 3, proving 'only if 'part.

The lemma is a generalisation of: a graph Ghas no odd cycles iff its vertices can
be red-blue coloured sit. every edge looks like: ·
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Falgas-Ravry-Vaughan 2012, Huang 2014. Every n-vertexgraph whose edges
are blue or red and oriented has f(n) cherries.

The maximiser looks like this: -

y
The hypergraph whose edges are the cherries is the hypergraph we saw earlier.

The proof is by symmetrication (Zykov 1952): iteratively modify the graph,
making itmore symmetric, withoutdecreasing the number ofcherries.
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=>pairs ofvertices can be coloured: and "S.t. all edges are cherries.I

*An n-vertexgraph whose edges are coloured: and "has f(n) cherries.

aby
version

=>nvertices, no odd pseudocycles => <f(n) edges - D

of
main

step

e e
Want: short +0(1)
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Stability

Lemma. Let G be an n-vertergraph with edges coloured: and I which has

<f(n)-En3 cherries. Then Gis close to: -

y

Lin-Pikhurko-Sharifzadeh-Staden (2020) provide a scheme for proving
stability versions of extremal results proved by symmetrication.

[This does notapply here because our extremal example has a varying
number of parts.]

16



/19

Proof of main step

17



/19

Proof of main step
LetH be a hypergraph on avertices, with no shortodd pseudocycles, and
maximum possiblenumber of edges.

17



/19

Proof of main step
LetH be a hypergraph on avertices, with no shortodd pseudocycles, and
maximum possible number of edges. (So, fin) edges

17



/19

Proof of main step
LetH be a hypergraph on avertices, with no shortodd pseudocycles, and
maximum possible number of edges. (So, fin) edges

Aim: show that He has f(n)+011) edges.

17



/19

Proof of main step
LetH be a hypergraph on avertices, with no shortodd pseudocycles, and
maximum possible number of edges. (So, fin) edges

Aim: show that He has f(n)+011) edges.

* rThere is a subtype graph H'EM, obtained from H by removing? En edges,
s.t. H'has no odd pseudocycles.

17



/19

Proof of main step
LetH be a hypergraph on avertices, with no shortodd pseudocycles, and
maximum possible number of edges. (So, fin) edges

Aim: show that He has f(n)+011) edges.

* There is a subhypergraph H'CM, obtained from H by removing? En edges,
s.t. H'has no odd pseudocycles.

* =>characterisation lemma There is a graph Gon VIH'), whose edges
are coloured: and", sit. edges in H' are cherries in G.

17



/19
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LetH be a hypergraph on avertices, with no shortodd pseudocycles, and
maximum possible number of edges. (So, fin) edges

Aim: show that He has f(n)+011) edges.

* There is a subhypergraph H'CM, obtained from H by removing? En edges,
s.t. H'has no odd pseudocycles.

*=>Characterisation lemma There is a graph Gon V(HY), whose edges
are coloured: and", sit. edges in H' are cherries in G.

*=>Istability) is close to:
-
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Question. Is there a nice characterisation of r-uniform hypergraph with no

pseudocycles of length notdivisible by r?

Theorem. 5(e) =x for all sufficiently large & with 341.

Question. Is there ar s.t. TK) =a- for large I notdivisible by r?

Balogh-2no 2023. TI*7= Ifor large I not divisible by 3.

Question (Conlon 2011). Is there so sit. exIn, ce") =0(n2+4e) if 124and 311?
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