## Turán densities of tight cycles

## Shoham Letster U.CL

## Eurocomb

Angust 2003

Joint with Nima Kamcèev and Alexey Polkrovskiy

Turán numbers

$$
1 / 19
$$

Turán numbers

The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

Turán numbers
The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

$$
* \operatorname{ex}(n, \varnothing \cdot 0)=\left\lfloor\frac{n}{2}\right\rfloor
$$

! ! ! ! .

Turán numbers

The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

$$
\begin{aligned}
& * \operatorname{ex}(n, 0 \cdot 0)=\left\lfloor\frac{n}{2}\right\rfloor \\
& * \operatorname{ex}(n, 0 \cdot 0)=n-1
\end{aligned}
$$

Turán numbers

The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

$$
* \operatorname{ex}(n, \circ \cdot)=\left\lfloor\frac{n}{2}\right\rfloor
$$

Turán numbers

The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

$$
\begin{aligned}
& * \operatorname{ex}(n, 0 \cdot)=\left\lfloor\frac{n}{2}\right\rfloor \\
& * \operatorname{ex}(n, \bullet \bullet)= \begin{cases}n-1 & \text { if } n \neq 3 \\
3 & \text { if } n=3\end{cases}
\end{aligned}
$$

- •. - . -

* $\operatorname{ex}(n,\{$ all cycles $\})=n-1$.


Turán numbers
The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

Mantel 1907: $\operatorname{ex}(n, 0.0)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
$\left\lceil\frac{n}{2}\right\rceil\{$ 年 $\}\left\lfloor\frac{n}{2}\right\rfloor$

Turán numbers

The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

Mantel 1907: $\operatorname{ex}\left(n, B_{0}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.


Turán 1941: $\operatorname{ex}\left(n, k_{r+1}\right) \approx\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}$.
$C_{\text {complete graph on } r+1 \text { vertices }}$


Turán numbers
The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

Mantel 1907: $\operatorname{ex}(n, 00)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.

Turán 1941: $\operatorname{ex}\left(n, K_{r+1}\right) \approx\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}$.
$C_{\text {complete graph on } \mathrm{r}+1 \text { vertices }}$


Simonovits 1974: ex $\left(n, c_{2 k+1}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ for large $n$.

Turán numbers
The Turán number of a graph $H$, denoted ex $(n, H)$, is the maximum number of edges in a graph on $n$ vertices which has no copy of $H$ as a subgraph.

Mantel 1907: $\operatorname{ex}(n, 00)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
$\left\lceil\frac{n}{2}\right\rceil\left\{\right.$ 年 $\left\{\left\lfloor\frac{n}{2}\right\rfloor\right.$
Turán 1941: $\operatorname{ex}\left(n, K_{r+1}\right) \approx\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}$.
$C_{\text {complete graph on } r+1 \text { vertices }}$


Simonovits 1974: $\operatorname{ex}\left(n, c_{2 k+1}\right)=\left\lfloor\sum_{c y c l e} \frac{n^{2}}{4}\right\rfloor$ for length $2 k+10$ large $n$.
(Füredi-Gunderson (2013) determined ex $\left(n, C_{2 k+1}\right)$ for all $\left.n.\right)$

Turán densities
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\left(\begin{array}{l}(2)\end{array}\right)}$.

Turán densities
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\left(\begin{array}{l}(2)\end{array}\right)}$.

* The limit always exists.

Turán densities
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{(2)}{2}}$.

* The limit always exists.

Erdös-Stone (1946) determined $\pi(H)$ for every graph $H: \pi(H)=1-\frac{1}{x(H)-1}$.

Turán densities
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{e x(n, H)}{\binom{n}{2}}$.

* The limit always exists.

Erdös-Stone (1946) determined $\pi(H)$ for every graph $H: \pi(H)=1-\frac{1}{x(H)-1}$.

* The chromatic number of $H$, denoted $x(H)$, is the minimum number of colours in a vertex-colouring of $H$ where every two adjacent vertices have different colours.

Turán densities
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{e_{x}(n, H)}{\binom{n}{2}}$.

* The limit always exists.

Erdös-Stone (1946) determined $\pi(H)$ for every graph $H: \pi(H)=1-\frac{1}{x(H)-1}$.

* The chromatic number of $H$, denoted $x(H)$, is the minimum number of colours in a vertex-colouring of $H$ where every two adjacent vertices have different colours.
* Eng.: $x\left(R_{r}\right)=r, \quad x\left(C_{2 k+1}\right)=3$.


Turán densities
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{e_{x}(n, H)}{\binom{n}{2}}$.

* The limit always exists.

Erdös-Stone (1946) determined $\pi(H)$ for every graph $H: \pi(H)=1-\frac{1}{x(H)-1}$.

* The chromatic number of $H$, denoted $\boldsymbol{x}(H)$, is the minimum number of colours in a vertex-colouring of $H$ where every two adjacent vertices have different colours.
* Eng.: $x\left(R_{r}\right)=r, \quad x\left(C_{2 k+1}\right)=3$.

This determines ex $(n, H)$ asymptotically when $x(H) \geqslant 3$.

Turán densities of bipartite graphs
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{e x(n, H)}{\left(\begin{array}{l}(2)\end{array}\right)}$.

Erdös-Stone (194G): $\pi(H)=1-\frac{1}{x(H)-1}$.

Turán densities of bipartite graphs

The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{e_{x}(n, H)}{\binom{n}{2}}$.

Erdös-Stone (1946): $\pi(H)=1-\frac{1}{x(H)-1}$.

* For bipartite $H$, this only shows: $\pi(H)=0$, i.e. $\operatorname{ex}(n, H)=o\left(n^{2}\right)$.


Turán densities of bipartite graphs
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{e_{x}(n, H)}{\binom{n}{2}}$.

Erdös-Stone (1946): $\pi(H)=1-\frac{1}{x(H)-1}$.

* For bipartite $H$, this only shows: $\pi(H)=0$, ie. $\operatorname{ex}(n, H)=o\left(n^{2}\right)$.
* For almost all bipartite $H$, the order of magnitude of $\operatorname{ex}(n, H)$ is untenown.

Turán densities of bipartite graphs
The Turán density of a graph $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{e_{x}(n, H)}{\binom{n}{2}}$.

Erdös-Stone (1946): $\pi(H)=1-\frac{1}{x(H)-1}$.

* For bipartite $H$, this only shows: $\pi(H)=0$, ie. $\operatorname{ex}(n, H)=o\left(n^{2}\right)$.
* For almost all bipartite $H$, the order of magnitude of ex $(n, H)$ is unlenown.
* Egg. it is unknown for even cycles length $\neq 4,6,10$.

Turán numbers and densities of hypergraphs

$$
5 / 19
$$

Turán numbers and densities of hypergraphs
In this talk a hypergraph is a 3-uniform hypergraph, which consists of vertices and edges, which are triples of vertices.


Turän numbers and densities of hypergraphs

In this talk a hypergraph is a 3-uniform hypergraph, which consists of vertices and edges, which are triples of vertices.


The Turán number of a hypergraph $H$, denoted ex $(n, H)$, is the maximum number of edges in an $n$-vertex $M$-free nypergraph.

The Turán density of $\mu$, denoted $\pi(\mu)$, is $\lim _{n \rightarrow \infty} \frac{e x(n, H)}{\binom{n}{3}}$.

Turán numbers and densities of hypergraphs
In this talk a hypergraph is a 3-uniform hypergraph, which consists of vertices and edges, which are triples of vertices.


The Turán number of a hypergraph $H$, denoted ex( $n, H)$, is the maximum number of edges in an $n$-vertex $M$-free hypergraph.
The Turán density of $\mu$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{e x(n, H)}{\binom{n}{3}}$.

* Like in graphs, $\pi(H)=0$ if $H$ is tripartite.


Turán numbers and densities of hypergraphs
In this talk a hypergraph is a 3-uniform hypergraph, which consists of vertices and edges, which are triples of vertices.


The Turán number of a hypergraph $H$, denoted ex( $n, H)$, is the maximum number of edges in an $n$-vertex $M$-free hypergraph.

The Turán density of $H$, denoted $\pi(H)$, is $\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{3}}$.

* Like in graphs, $\pi(H)=0$ if $H$ is tripartite.
* $\pi(\mu)$ is known for very few hypergraphs $H$.


Known Turán densities of hypergraphs

$$
6 / 19
$$

Known Turán densities of hypergraphs


Known Turán densities of hypergraphs

independent neighbourhoods


Füredi-Pikhurko-Simonovits 2003

Known Turán densities of hypergraphs


Some conjectured Turán densities

$$
7 / 19
$$

Some conjectured Turán densities
Conjecture (Turán 1941): $\pi\left(K_{4}^{(3)}\right)=\frac{5}{9}$.


$$
7 / 19
$$

Some conjectured Turán densities
Conjecture (Turán 1941): $\pi\left(K_{4}^{(3)}\right)=\frac{5}{9}$.
Conjecture (Mubayi 2003): $\pi\left(K_{4}^{(3)-}\right)=\frac{2}{7}$.


Some conjectured Turán densities
Conjecture (Turán 1941): $\pi\left(K_{4}^{(3)}\right)=\frac{5}{9}$.
Conjecture (Mubayi 2003): $\pi\left(K_{4}^{(3)-}\right)=\frac{2}{7}$.

The tight cycle of length $l$, denoted $C_{l}^{(3)}$, is the hypergraph on vertices $\{1, —, l\}$ and edges $\{(i, i+1, i+2)\}$ for $i \in\{1,-, l\}$.


Some conjectured Turán densities
Conjecture (Turán 1941): $\pi\left(K_{4}^{(3)}\right)=\frac{5}{9}$.
Conjecture (Mubayi 2003): $\pi\left(K_{4}^{(3)-}\right)=\frac{2}{7}$.

The tight cycle of length $l$, denoted $C_{l}^{(3)}$, is the hypergraph on vertices $\{1,-, l\}$ and edges $\{(i, i+1, i+2)\}$ for $i \in\{1,-l, l$.

Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=2 \sqrt{3}-3$.


Some conjectured Turán densities
Conjecture (Turán 1941): $\pi\left(K_{4}^{(3)}\right)=\frac{5}{9}$.
Conjecture (Mubayi 2003): $\pi\left(K_{4}^{(3)-}\right)=\frac{2}{7}$.

The tight cycle of length $l$, denoted $C_{l}^{(3)}$, is the hypergraph on vertices $\{1,-, l\}$ and edges $\{(i, i+1, i+2)\}$ for $i \in\{1,-l, l$.

Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{s}^{(3)}\right)=2 \sqrt{3}-3$.
Conjecture (Mubayi-Pikhurko-Sudakov 2011): $\pi\left(C_{s}^{(3)-}\right)=\frac{1}{4}$.


More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.

$$
8 / 19
$$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{5}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(C_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$


More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(c_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$ (we call such $l$ odd).

More on $\pi\left(C_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{5}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0.464$.
Razborov 2010: $\pi\left(c_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $\ell$ with $3 \nmid \ell$ (we call such $l$ odd). $\Rightarrow \pi\left(C_{l}^{(3)}\right) \geqslant \alpha$ for $\ell$ odd.


More on $\pi\left(c_{5}^{(3)}\right)$
Conjecture (Mubayi-Rödl 2002): $\pi\left(C_{s}^{(3)}\right)=\overbrace{2 \sqrt{3}-3}^{\alpha} \approx 0,464$.
Razborov 2010: $\pi\left(c_{s}^{(3)}\right) \leqslant 0.468$ (using Flag Algebras).
Conjectured extremal example:

Notice: there is no $C_{l}^{(3)}$ for $l$ with $3 \nmid \ell$ (we call such $l$ odd). $\Rightarrow \pi\left(C_{l}^{(3)}\right) \geqslant \alpha$ for $\ell$ odd.

Question: is $\pi\left(C_{l}^{(3)}\right)=\alpha$ for odd $\ell \geqslant 5$ ?

Our result
Theorem (Kamčev-L.-Pokrouskiy 2022+).
$\pi\left(C_{\ell}{ }^{(3)}\right)=\alpha$ for all sufficiently large $\ell$ with $3 \nmid \ell$.

Our result
Theorem (Kamčev-L.-Pokrouskiy 2022+).
$\pi\left(C_{\ell}{ }^{(3)}\right)=\alpha$ for all sufficiently large $\ell$ with $3 \nmid \ell$.

* Similar to the graph case: $\pi\left(C_{l}^{(2)}\right)=\frac{1}{2}$ for every odd $l$.

Our result
Theorem (Kamčev-L.-Pokrouskiy 2022+).
$\pi\left(C_{\ell}{ }^{(3)}\right)=\alpha$ for all sufficiently large $\ell$ with $3 \nmid \ell$.

* Similar to the graph case: $\pi\left(C_{l}^{(2)}\right)=\frac{1}{2}$ for every odd $l$.
* First known Turán density with conjectured extremal example an 'iterated blow-up'.

Our result
Theorem (Kamčev-L.-Pokrouskiy 2022+).
$\pi\left(C_{\ell}{ }^{(3)}\right)=\alpha$ for all sufficiently large $\ell$ with $3 \nmid \ell$.

* Similar to the graph case: $\pi\left(C_{l}^{(2)}\right)=\frac{1}{2}$ for every odd $l$.
* First known Turán density with conjectured extremal example an 'iterated blow-up'.
* One of few known irrational Turán densities (Yan-Peng 2022 and Wu 2022 provide other examples).

Blow-ups and pseudocycles
The $t$-blow-up of a graph/hypergraph $H$, denoted $H[t]$, is obtained by replacing each vertex in H by an independent set of size $t$.

$10 / 19$

Blow-ups and pseudocycles
The t-blow-up of a graph/hypergraph $H$, denoted $H[t]$, is obtained by replacing each vertex in H by an independent set of size $t$.

A pseudocycle of length $l$ is a cyclic sequence $v_{1}$, , $v_{l}$ s.t. $v_{i} v_{i+1} v_{i+2}$ is an edge for $i \in\{1,-, l\}$

Blow-ups and pseudocycles
The t-blow-up of a graph/hypergraph $H$, denoted $H[t]$, is obtained by replacing each vertex in $H$ by an independent set of size $t$.

A pseudocycle of length $l$ is a cyclic sequence $v_{1}$, , $v_{l}$ s.t. $v_{i} v_{i+1} v_{i+2}$ is an edge for $i \in\{1,-l\}$ (the $v_{i}$ 's need not be distinct).


Blow-ups and pseudocycles
The t-blow-up of a graph/hypergraph $H$, denoted $H[t]$, is obtained by replacing each vertex in H by an independent set of size $t$.

A pseudocycle of length $l$ is a cyclic sequence $v_{1}$, , $v_{l}$ s.t. $v_{i} v_{i+1} v_{i+2}$ is an edge for $i \in\{1,-l\}$ (the $v_{i}$ 's need not be distinct).


Observation. Suppose $l \geq 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Blow-ups and pseudocycles
The t-blow-up of a graph/hypergraph $H$, denoted $H[t]$, is obtained by replacing each vertex in H by an independent set of size $t$.

A pseudocycle of length $l$ is a cyclic sequence $v_{1}$, , $v_{l}$ s.t. $v_{i} v_{i+1} v_{i+2}$ is an edge for $i \in\{1,-l\}$ (the $v_{i}$ 's need not be distinct).


Observation. Suppose $l \geq 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Blow-ups and pseudocycles
The t-blow-up of a graph/ hypergraph $H$, denoted $H[t]$, is obtained by replacing each vertex in H by an independent set of size $t$.

A pseudocycle of length $l$ is a cyclic sequence $v_{1}$, , $v_{l}$ s.t. $v_{i} v_{i+1} v_{i+2}$ is an edge for $i \in\{1,-l\}$ (the $v_{i}$ 's need not be distinct).


Observation. Suppose $l \geq 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Supersaturation

$$
H[t]=t-\text { blow-up of } H .
$$

Observation. Suppose $\ell \geqslant 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Supersaturation

$$
H[t]=t-\text { blow-up of } H .
$$

Observation. Suppose $\ell \geqslant 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Erdös-Simonovits 1982: $\pi(\alpha e[t])=\pi(\alpha)$ for every hypergraph $H$ and $t \geqslant 1$.

Supersaturation

$$
H[t]=t-\text { blow-up of } H .
$$

Observation. Suppose $\ell \geqslant 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Erdös-Simonovits 1982: $\pi(\alpha e[t])=\pi(\mu)$ for every hypergraph $H$ and $t \geqslant 1$.
Thus: if $\pi$ (odd psendocycles length $\leqslant L) \leqslant \alpha$

Supersaturation

$$
H[t]=t-\text { blow-up of } H .
$$

Observation. Suppose $\ell \geqslant 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Erdös-Simonovits 1982: $\pi(\alpha e[t])=\pi(\mu)$ for every hypergraph $H$ and $t \geqslant 1$.
Thus: if $\pi$ (odd pseudocycles length $\leqslant L) \leqslant \alpha$ then $\pi(\ell$-blow-up of odd pseudocycles length $\leqslant L) \leqslant \alpha$ for every $\ell$

Supersaturation

$$
H[t]=t-\text { blow-up of } H .
$$

Observation. Suppose $\ell \geqslant 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Erdös-Simonovits 1982: $\pi(H e[t])=\pi(\mu)$ for every hypergraph $H$ and $t \geqslant 1$.
Thus: if $\pi$ (odd pseudocycles length $\leqslant L$ ) $\leqslant \alpha$
then $\pi(\ell$-blow-up of odd pseudocycles length $\leqslant L) \leqslant \alpha$ for every $\ell$ Dos ${ }^{\text {beratation }} \Rightarrow \pi\left(C_{l}^{(3)}\right) \leqslant \alpha$ for odd $l \geqslant 2 L$

Supersaturation
$H[t]=t-$ blow-up of $H$.
Observation. Suppose $\ell \geqslant 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Erdős-Simonovits 1982: $\pi(\mu[t])=\pi(\mu)$ for every hypergraph $H$ and $t \geqslant 1$.
Thus: if $\pi$ (odd pseudocycles length $\leqslant L$ ) $\leqslant \alpha$
then $\pi(\ell$-blow-up of odd pseudocycles length $\leqslant L) \leqslant \alpha$ for every $\ell$


$$
\Rightarrow \pi\left(c_{l}^{(3)}\right)=\alpha \text { for odd } \ell \geqslant 2 L \text {. }
$$

matching lower bound)

Supersaturation
$H[t]=t-$ blow-up of $H$.
Observation. Suppose $\ell \geqslant 2 L$ and $3 \nmid \ell, L$. Then the $l$-blow-up of every pseudocycle of length $L$ contains a tight cycle of length $\ell$.

Erdös-Simonovits 1982: $\pi(d[t])=\pi(\alpha)$ for every hypergraph H and $t \geqslant 1$.
Thus: if $\pi($ odd pseudocycles length $\leqslant L) \leqslant \alpha \longleftarrow$ Enough to prove this! then $\pi(\ell$-blow-up of odd pseudocycles length $\leqslant L) \leqslant \alpha$ for every $\ell$ observation $\Rightarrow \pi\left(C_{l}^{(3)}\right) \leqslant \alpha$ for odd $l \geqslant \alpha L$

$$
\Rightarrow \pi\left(c_{l}^{(3)}\right)=\alpha \text { for odd } l \geqslant 2 L \text {. }
$$

matching lower bound)

The main step

$$
12 / 19
$$

The main step
Define $f(n)$ to be the maximum number of edges in a hypergraph like this:

The main step
Define $f(n)$ to be the maximum number of edges in a hypergraph like this:
So, $f(n)=\alpha\binom{n}{3}+o\left(n^{3}\right)$.

The main step
Define $f(n)$ to be the maximum number of edges in a hypergraph like this:
So, $f(n)=\alpha\binom{n}{3}+o\left(n^{3}\right)$.
Theorem (main step). There exists $L$ sit. every hypergraph on $n$ vertices with no odd pseudocycles of length $\leqslant L$ has $\leqslant f(n)+O(1)$ edges.

The main step
Define $f(n)$ to be the maximum number of edges in a hypergraph like this:
So, $f(n)=\alpha\binom{n}{3}+o\left(n^{3}\right)$.
Theorem (main step). There exists $L$ sit. every hypergraph on $n$ vertices with no odd pseudocycles of length $\leqslant L$ has $\leqslant f(n)+O(1)$ edges.

This proves: $\pi($ odd pseudocycles length $\leqslant L) \leqslant \alpha$, thus proving the main theorem.

The main step
Define $f(n)$ to be the maximum number of edges in a hypergraph like this:
So, $f(n)=\alpha\binom{n}{3}+o\left(n^{3}\right)$.
Theorem (main step). There exists $L$ sit. every hypergraph on $n$ vertices with no odd pseudocycles of length $\leqslant L$ has $\leqslant f(n)+O(1)$ edges.

This proves: $\pi($ odd pseudocycles length $\leqslant L) \leqslant \alpha$, thus proving the main theorem.
Theorem (baby version).
Every hypergraph on $n$ vertices with no odd pseudocycles has $\leqslant f(n)$ edges.

Characterisation of hypergraphs with no odd pseudocycles

$$
13 / 19
$$

Characterisation of hypergraphs with no odd pseudocycles
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue $f$ and red and oriented if s.t. all edges are cherries

Characterisation of hypergraphs with no odd pseudocycles
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue $!$ and red and oriented $\ddagger$ s.t. all edges are cherries $\&$.
call such a colouring good.

Characterisation of hypergraphs with no odd pseudocycles
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue $f$ and red and oriented if st. all edges are cherries .

Call such a colouring good.


In a good colouring, every third vertex in a pseudopath/psendocycle is an 'apex'

Characterisation of hypergraphs with no odd pseudocycles
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue $!$ and red and oriented $\ddagger$ s.t. all edges are cherries $\&$.

Call such a colouring good.


In a good colouring, every third vertex in a pseudopath/pseudocycle is an 'apex', so all pseudocycles have length divisible by 3 , proving 'only if' part.

Characterisation of hypergraphs with no odd pseudocycles
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue $!$ and red and oriented if st. all edges are cherries
call such a colouring good.


In a good colouring, every third vertex in a pseudopath/pseudocycle is an 'apex', so all pseudocycles have length divisible by 3, proving 'only if' part.

The lemma is a generalisation of: a graph $G$ has no odd cycles iff its vertices can be red-blue coloured sit. every edge looks like $\AA$.

$$
13 / 19
$$

Maximising the number of cherries

$$
14 / 19
$$

Maximising the number of cherries
Falgas-Ravry_Vaughan 2012, Huang 2014. Every n-vertex graph whose edges are blue or red and oriented has $\leqslant f(n)$ cherries $\&$.

$$
14 / 19
$$

Maximising the number of cherries
Falgas-Ravry_Vaughan 2012, Huang 2014. Every n-vertex graph whose edges are blue or red and oriented has $\leqslant f(n)$ cherries $\searrow$.

The maximiser looks like this:


Maximising the number of cherries
Falgas-Ravry_Vaughan 2012, Huang 2014. Every n-vertex graph whose edges are blue or red and oriented has $\leqslant f(n)$ cherries $\searrow$.

The maximiser looks like this:


The hypergraph whose edges are the cherries is the hypergraph we saw earlier.

Maximising the number of cherries
Falgas-Ravry_Vaughan 2012, Huang 2014. Every n-vertex graph whose edges are blue or red and oriented has $\leqslant f(n)$ cherries $\searrow$.

The maximiser looks like this:


The hypergraph whose edges are the cherries is the hypergraph we saw earlier.

Maximising the number of cherries
Falgas-Ravry_Vaughan 2012, Huang 2014. Every n-vertex graph whose edges are blue or red and oriented has $\leqslant f(n)$ cherries $\searrow$.

The maximiser looks like this:


The hypergraph whose edges are the cherries is the hypergraph we saw earlier.
The proof is by symmetrisation (zukor 1952)

Maximising the number of cherries
Falgas-Ravry_Vaughan 2012, Huang 2014. Every n-vertex graph whose edges are blue or red and oriented has $\leqslant f(n)$ cherries $\&$.

The maximiser looks like this:


The hypergraph whose edges are the cherries is the hypergraph we saw earlier.
The proof is by symmetrisation (zykov 1952): iteratively modify the graph, making it more symmetric, without decreasing the number of cherries.

Recap

$$
15 / 19
$$

## Recap

## We saw:

* no odd pseudocycles
$\Rightarrow$ pairs of vertices can be coloured $!$ and st. all edges are cherries

Recap
We saw:

* no odd pseudocycles
$\Rightarrow$ pairs of vertices can be coloured $\dot{I}$ and $\dot{I}$ s.t. all edges are cherries .
* An n-vertex graph whose edges are coloured $\|_{\text {and }}^{\ddagger}$ has $\leqslant f(n)$ cherries.

Recap
We saw:

* no odd pseudocycles
$\Rightarrow$ pairs of vertices can be coloured $!$ and $\ddagger$ s.t. all edges are cherries $\Sigma$.
* An $n$-vertex graph whose edges are coloured $£$ and $\ddagger$ has $\leqslant f(n)$ cherries.
$\Rightarrow n$ vertices, no odd pseudocycles $\Rightarrow \leqslant f(n)$ edges.

Recap
We saw:

* no odd pseudocycles
$\Rightarrow$ pairs of vertices can be coloured $!$ and $\ddagger$ s.t. all edges are cherries $\AA$.
* An $n$-vertex graph whose edges are coloured $!$ and $\ddagger$ has $\leqslant f(n)$ cherries.

15/19

Recap
We saw:

* no odd pseudocycles
$\Rightarrow$ pairs of vertices can be coloured $!$ and $\ddagger$ s.t. all edges are cherries $\AA$.
* An $n$-vertex graph whose edges are coloured $!$ and $\ddagger$ has $\leqslant f(n)$ cherries.
 15/19

Stability

Stability
Lemma. Let $G$ be an $n$-vertex graph with edges coloured $I$ and $I$ which has $\geqslant f(n)-\varepsilon n^{3}$ cherries. Then $G$ is close to:


## Stability

Lemma. Let $G$ be an $n$-vertex graph with edges coloured I and $I$ which has
$\geqslant f(n)-\varepsilon n^{3}$ cherries. Then $G$ is close to:


Liu-Pikhurko-Sharifzadeh-Staden (2020) provide a scheme for proving stability versions of extremal results proved by symmetrisation.

Stability
Lemma. Let $G$ be an $n$-vertex graph with edges coloured $d$ and $f$ which has $\geqslant f(n)-\varepsilon n^{3}$ cherries. Then $G$ is close to:


Liu-Pikhurko-Sharifzadeh-Staden (2020) provide a scheme for proving stability versions of extremal results proved by symmetrisation.
[This does not apply here because our extremal example has a varying number of parts.]

Proof of main step

$$
17 / 19
$$

Proof of main step
Let $H$ be a hypergraph on $n$ vertices, with no short odd pseudocycles, and maximum possible number of edges.

$$
17 / 19
$$

Proof of main step
Let $H$ be a hypergraph on $n$ vertices, with no short odd pseudocycles, and maximum possible number of edges. [so, $\geqslant f(n)$ edges. $]$


$$
17 / 19
$$

Proof of main step
Let $H$ be a hypergraph on $n$ vertices, with no short odd pseudocycles, and maximum possible number of edges. $[$ So, $\geqslant f(n)$ edges. $]$

Aim: show that $H$ has $\leqslant f(n)+O(1)$ edges.

Proof of main step
Let $H$ be a hypergraph on $n$ vertices, with no short odd pseudocycles, and maximum possible number of edges. $[$ So, $\geqslant f(n)$ edges. $]$

Aim: show that $H$ has $\leqslant f(n)+O(1)$ edges.

* There is a subhypergraph $H^{\prime} \subseteq \mathcal{H}$, obtained from $H$ by removing $\leqslant \varepsilon n^{3}$ edges, s.t. H' has no odd pseudocycles.

$$
17 / 19
$$

Proof of main step
Let $H$ be a hypergraph on $n$ vertices, with no short odd pseudocycles, and maximum possible number of edges. [so, $\geqslant f(n)$ edges.]

Aim: show that $\mathcal{H}$ has $\leqslant f(n)+O(1)$ edges.

* There is a subhypergraph $H^{\prime} \subseteq H$, obtained from $H$ by removing $\leq \varepsilon n^{3}$ edges, s.t. $H^{\prime}$ has no odd pseudocycles.
* $\Rightarrow$ (Characterisation lemma) There is a graph $G$ on $V\left(H^{\prime}\right)$, whose edges are coloured $I_{\text {and }} \dot{l}^{\prime}$, s.t. edges in $H^{\prime}$ are cherries in $G$.

$$
17 / 19
$$

Proof of main step
Let $H$ be a hypergraph on $n$ vertices, with no short odd pseudocycles, and maximum possible number of edges. [so, $\geqslant f(n)$ edges.]

Aim: show that $\mathcal{H}$ has $\leqslant f(n)+O(1)$ edges.

* There is a subhypergraph $H^{\prime} \subseteq H$, obtained from $H$ by removing $\leq \varepsilon n^{3}$ edges, s.t. $H^{\prime}$ has no odd pseudocycles.
* $\Rightarrow$ (Characterisation lemma) There is a graph $G$ on $V\left(H^{\prime}\right)$, whose edges are coloured $\mathscr{L}_{\text {and }} \dot{I}^{\prime}$, s.t. edges in $\mathrm{H}^{\prime}$ are cherries in $G$.
* $\Rightarrow$ (Stability) $G$ is close to:


Proof of main step - continued

* $\Rightarrow \mathcal{H}^{\prime}$, and thus $H$, are close to:


$$
18 / 19
$$

Proof of main step -continued

* $\Rightarrow \mathcal{H}^{\prime}$, and thus $H$, are close to:
* $\Rightarrow$ (Difficult) there is a partition $\{A, B\}$ of $V(H)$, with $A, B \neq \phi$, s.t.:


Proof of main step - continued

* $\Rightarrow \mathcal{H}^{\prime}$, and thus $H$, are close to:

* $\Rightarrow$ (Difficult) there is a partition $\{A, B\}$ of $V(H)$, with $A, B \neq \phi$, s.t.:

* To finish, iterate in $B$ (unless it is too small).

Proof of main step -continued

* $\Rightarrow H^{\prime}$, and thus $H$, are close to:

* $\Rightarrow$ (Difficult) there is a partition $\{A, B\}$ of $V(H)$, with $A, B \neq \phi$, s.t.:

* To finish, iterate in $B$ (unless it is too small).
* $\quad \Rightarrow$ H looks like what happens at the end.

Proof of main step -continued

* $\Rightarrow \mathcal{H}^{\prime}$, and thus $H$, are close to:

* $\Rightarrow$ (Difficult) there is a partition $\{A, B\}$ of $V(H)$, with $A, B \neq \phi$, s.t.:

* To finish, iterate in $B$ (unless it is too small).
* $\Rightarrow$ म looks like
* $\Rightarrow H$ has $\leqslant f(n)+O(1)$ edges.

Summary

$$
19 / 19
$$

Summary
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and is .t. all edges are cherries $\AA$.

Summary
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and if st. all edges are cherries .

Question. Is there a nice characterisation of $r$-uniform hypergraph with no pseudocycles of length not divisible by $r$ ?

Summary
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured $I$ and if st. all edges are cherries

Question. Is there a nice characterisation of $r$-uniform hypergraph with no pseudocycles of length not divisible by $r$ ?

Theorem. $\pi\left(C_{l}{ }^{(3)}\right)=\alpha$ for all sufficiently large $\ell$ with 3 tl.

Summary
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and if st. all edges are cherries .

Question. Is there a nice characterisation of $r$-uniform hypergraph with no pseudocycles of length not divisible by $r$ ?

Theorem. $\pi\left(C_{l}{ }^{(3)}\right)=\alpha$ for all sufficiently large $\ell$ with 3 tl.
Question. Is there $\alpha_{r}$ s.t. $\pi\left(C_{\ell}^{(r)}\right)=\alpha_{r}$ for large $\ell$ not divisible by $r$ ?

Summary
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and if st. all edges are cherries .

Question. Is there a nice characterisation of $r$-uniform hypergraph with no pseudocycles of length not divisible by $r$ ?

Theorem. $\pi\left(C_{l}{ }^{(3)}\right)=\alpha$ for all sufficiently large $\ell$ with 3 tl.
Question. Is there $\alpha_{r}$ s.t. $\pi\left(C_{l}^{(r)}\right)=\alpha_{r}$ for large $\ell$ not divisible by $r$ ?
Balogh-Luo 2023. $\pi\left(C_{l}^{(3)-}\right)=\frac{1}{4}$ for large $\ell$ not divisible by 3.

Summary
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and if st. all edges are cherries .

Question. Is there a nice characterisation of $r$-uniform hypergraph with no pseudocycles of length not divisible by $r$ ?

Theorem. $\pi\left(C_{l}^{(3)}\right)=\alpha$ for all sufficiently large $l$ with $3 \nmid l$.
Question. Is there $\alpha_{r}$ s.t. $\pi\left(C_{l}^{(r)}\right)=\alpha_{r}$ for large $\ell$ not divisible by $r$ ?
Balogh-Luo 2023. $\pi\left(C_{l}^{(3)-}\right)=\frac{1}{4}$ for large $\ell$ not divisible by 3.
Question (Conlon 2011). Is there $c>0$ s.t. $\operatorname{ex}\left(n, c_{l}^{(3)}\right)=O\left(n^{2+c / \ell)}\right.$ if $\ell \geqslant 4$ and $3 \mid \ell$ ?

Summary
Lemma. A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and if st. all edges are cherries .

Question. Is there a nice characterisation of $r$-uniform hypergraph with no pseudocycles of length not divisible by $r$ ?

Theorem. $\pi\left(C_{l}{ }^{(3)}\right)=\alpha$ for all sufficiently large $\ell$ with 3 t $l$.
Question. Is there $\alpha_{r}$ s.t. $\pi\left(C_{l}^{(r)}\right)=\alpha_{r}$ for large $\ell$ not divisible by $r$ ?
Balogh-Luo 2023. $\pi\left(C_{l}^{(3)-}\right)=\frac{1}{4}$ for large $\ell$ not divisible by 3.
Question (Conlon 2011). Is there $c>0$ s.t. $\operatorname{ex}\left(n, c_{\ell}^{(3)}\right)=O\left(n^{2+c / l)}\right.$ if $\ell \geqslant 4$ and $3 \mid \ell$ ?
Thank you for listening!

