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% Similar to the graph case: TC(C.‘;’) = 2 for every odd L.

x  First known Turan olensi’rg_ with Coqjedureol extremal example an

‘Herated blow-up’.

x  One of few known irrational fucan densities (Yan-’Peng aoaa and

Wu 2022 ?rovio\e other examples) . /
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Evdos-Simonovits 1982 : (ML) = T(N) for every haPeramph ! and t24.
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Define £(n) 40 be the maximum number O >
of ealae.s na hapergmph like Hhis: - ——

So, £tn)= oz(3)+ o(n®).

Aheorem [main slrep\_. There exists L sit. every ha?ecamph on n verdices with
no odd ?seuo\ocacles of length €L has < £in)+Ol4) edges.

Ahis proves: TT(odd pseualocacles lena{h gL)< o, thus proving the main theorem.

Theorem (bab3 version\'.

Everg hgperaraph on n verhices with no odd ?seualoc5cle.s has < £(n) edses.
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Characterisation of haperem?hs tith no odd '.pseudocacles

Lemma. A hgperampk has no odd pseualocacles i£€ its pair of vertices can be
coloureo blue I and redl andl oriented ‘} sd. all eolaes are cherries ﬁ .

Call such a co|ouring gml. m

Ina good colourina, every third veriex in a pseudopath / pseudocycle is an *apex,
so all pseudlocycles have lenaﬂn divisible bs 3, Ppr OVina ‘onlaw ".Paﬂ'.

Ahe lemma is a aeneralisa‘rion of: a sraPh G has ho odok cacles ¥ s vertices can

be red-blue coloureel s.t. every eolae, looks like I
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Maxim'usina the number of cherries

'Fa‘aas-'Ravrg, —Vo.ua_han 2042, Huom3 aoly. Evera n-vertex sraph whose edaes

are blue or red anol oriented has < £n) cherries A .

Ahe maximiser looks like this: @ @ e
(— D — o o— R
y J

Ahe ha‘»erﬁmpk whose eolaes are the cherries is 4he hayerampk we saL earlier,

Ahe proof is by ggmmehisa’fion (Elakov 145‘2): 'rle.ml-ive.la moo(i% the Gmph,
makina it more sammelfric, without olecreasina the number of cherries.
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'Recap

We saw:

£ no odd ?seuo(ocgcles
=> pairs of verdices can be coloured I andl * st. all edaes are cherries ﬁ .

% An n-veriex ﬁraph whose edaes are coloured I ano\* has < §(n) cherries.

P
=> nverlices, no,odd ?seuolocgcles = £ 4(n) eo\ae.s . \/bo‘p‘g o R

X
o‘* w
Want: Short +0(1)
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Lemma. Let G be an n-vertex smph with eolaes coloured I andl * which has

2 £(n)-£n® cherries. Then G is close +o: @ @ @

Liu-Pikhur ko-Sharifeadeh- Staden (:zoao) provide a scheme for ?roving

s+abili’rg versions of exiremal results proveel bg sgmme’rrisa’rion.

[’fhis does not applg here because our extremal example has a varging

number of parts.] /
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Aim: show that H has < £(n)+0(4) eolaes.

% Aheceis a subhé?ersmph H'c M. obtained fom { ba removing L End edaes,
s.t. H' has no odol 'Pseuo\ocgcles.

x = (Characterisation lemma) There is a 3mph G on V(H)), whose ealaes

are coloureal I ano\‘I, s.t. eo\ﬁes m N are cherries in G.

x = (Sh\bili’rg) G is close to: @ @_)/@) @) -
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+ = H, anol thus #, are close fo: =

*x ('Di&‘ﬂcull-) there is a pardition JA,B] of VIH), with AB+@, sit.:

gno such triples are edges
03000 wes, ”"§ /

(allfuck driples are edaes

* o finish, Herate inD (unless it is too small). J except that we don't know

what happens at the end.
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“Prool of main step —continued o o ...
+ = H, anol thus #, are close fo: =

*x ('Dimcull-) there is a pardition JA,B] of VIH), with AB+@, sit.:

gno such triples are edges
03000 wes, ”“f /

(allfuch driples are edaes

% ‘o finish, Herate m® (unless it is too small). J except that we don't know

what happens at the end.

¥ D Hlookslke =S

x = H has ££(n) +00) ealae.s. O 48 liq
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