Turán densities of tight cycles

Shoham Letzter UCL

> Eurocomb August 2023

Joint with Nina Kamčev and Alexey Pokrovskiy

$$* ex(n, \Lambda) = \lfloor \frac{n}{2} \rfloor$$

*
$$e_x(n, \Lambda) = \lfloor \frac{n}{2} \rfloor$$
.

$$* ex(n, \mathbf{I}) = n-1$$

$$* ex(n, \Lambda) = \lfloor \frac{n}{2} \rfloor$$

$$* ex(n, I) = \begin{cases} n-1 & \text{if } n \neq 3 \\ 3 & \text{if } n=3. \end{cases}$$

$$* ex(n, \Lambda) = \lfloor \frac{n}{2} \rfloor.$$

$$* ex(n, I) = \begin{cases} n-1 & \text{if } n \neq 3 \\ 3 & \text{if } n=3. \end{cases}$$

$$\bigtriangleup \square \bigtriangleup \bigcirc$$

* ex(n, fall cyclesf) = n-1.

Mantel 1907:
$$ex(n, \Delta) = \lfloor \frac{n^2}{4} \rfloor$$
. $\lceil \frac{n}{2} \rceil$

The <u>Turán number</u> of a graph H, denoted ex(n,H), is the maximum number of edges in a graph on n vertices which has no copy of H as a subgraph.

Mantel 1907:
$$ex(n, \Delta) = \lfloor \frac{n^2}{4} \rfloor$$
. $\lceil \frac{n}{2} \rceil$

<u>Turán 1941</u>: $ex(n, K_{r+1}) \approx (1 - \frac{1}{r}) \frac{n^2}{2}$. Complete graph on r+1 vertices

The <u>Turán number</u> of a graph H, denoted ex(n,H), is the maximum number of edges in a graph on n vertices which has no copy of H as a subgraph. <u>Mantel 1907:</u> $ex(n, \Delta) = \lfloor \frac{n^2}{4} \rfloor$. $\lceil \frac{n}{2} \rceil$ }[<u>+</u>] r parts <u>Iurán 1941</u>: $ex(n, k_{r+1}) \approx (1 - \frac{1}{r}) \frac{n^2}{2}$. Complete graph on r+1 vertices $ex(n, C_{2k+1}) = \left\lfloor \frac{n^2}{4} \right\rfloor \text{ for large } n.$ Cycle of length 2k+1 Simonovits 1974:

The <u>Turán number</u> of a graph H, denoted ex(n,H), is the maximum number of edges in a graph on n vertices which has no copy of H as a subgraph. <u>Mantel 1907:</u> $ex(n, \Delta) = \lfloor \frac{n^2}{4} \rfloor$. $\lfloor \frac{n}{2} \rceil$ }[<u>}</u>] r parts <u>Iurán 1941</u>: $ex(n, k_{r+1}) \approx (1 - \frac{1}{r}) \frac{n^2}{2}$. Complete graph on r+1 vertices ₩ F ex(n, C_{2k+1}) = $\left\lfloor \frac{n^2}{4} \right\rfloor$ for large n. Cycle of length 2k+1 Simonovits 1974: (<u>Füredi-Gunderson (2013)</u> determined ex(n,C_{2k+1}) for all n.) 2/19

The <u>Turán density</u> of a graph H, denoted $\pi(H)$, is $\lim_{n \to \infty} \frac{ex(n, H)}{\binom{n}{2}}$.

The Turán density of a graph H, denoted $\pi(H)$, is $\lim_{n \to \infty} \frac{e_x(n, H)}{(2)}$.

* The limit always exists.

The <u>Turán density</u> of a graph H, denoted $\pi(H)$, is $\lim_{n \to \infty} \frac{e_x(n, H)}{\binom{n}{2}}$.

* The limit always exists.

<u>Erdős-Stone (1946)</u> determined $\pi(H)$ for every graph H: $\pi(H) = 1 - \frac{1}{\alpha(H) - 1}$.

The <u>Turán density</u> of a graph H, denoted $\pi(H)$, is $\lim_{n \to \infty} \frac{e_x(n, H)}{\binom{n}{2}}$.

* The limit always exists.

<u>Erdős-Stone (1946)</u> determined $\pi(H)$ for every graph H: $\pi(H) = 1 - \frac{1}{\alpha(H) - 1}$.

* The <u>chromatic number</u> of H, denoted X(H), is the minimum number of colours in a vertex-colouring of H where every two adjacent vertices have different colours.

The <u>Turán density</u> of a graph H, denoted $\pi(H)$, is $\lim_{n \to \infty} \frac{e_x(n, H)}{\binom{n}{2}}$.

* The limit always exists.

<u>Erdős-Stone (1946)</u> determined $\pi(H)$ for every graph H: $\pi(H) = 1 - \frac{1}{\alpha(H) - 1}$.

* The chromatic number of H, denoted x(H), is the minimum number of colours in a vertex-colouring of H where every two adjacent vertices have different colours.

* E.g.: $\chi(R_r) = r$, $\chi(C_{2k+1}) = 3$.

The <u>Turán density</u> of a graph H, denoted $\pi(H)$, is $\lim_{n \to \infty} \frac{e_x(n, H)}{\binom{n}{2}}$.

* The limit always exists.

<u>Erdős-Stone (1946)</u> determined $\pi(H)$ for every graph H: $\pi(H) = 1 - \frac{1}{\alpha(H) - 1}$.

* The chromatic number of H, denoted x(H), is the minimum number of colours in a vertex-colouring of H where every two adjacent vertices have different colours.

* E.g.: $\chi(R_r) = r$, $\chi(C_{2k+1}) = 3$.

This determines $e_{n,H}$ asymptotically when $x(H) \ge 3$.

The Turán density of a graph H, denoted
$$\pi(H)$$
, is $\lim_{n \to \infty} \frac{ex(n, H)}{\binom{n}{2}}$.

<u>Erdős - Stone (1946)</u>: $\pi(H) = 1 - \frac{1}{\alpha(H) - 1}$.

The Turán density of a graph H, denoted
$$\pi(H)$$
, is $\lim_{n \to \infty} \frac{e_x(n, H)}{\binom{n}{2}}$.

<u>Erdős – Stone (1946)</u>: $\pi(H) = 1 - \frac{1}{\alpha(H) - 1}$.

* For bipartite H, this only shows: $\pi(H)=0$, i.e. $ex(n,H)=o(n^2)$.

The Turán density of a graph H, denoted
$$\pi(H)$$
, is $\lim_{n \to \infty} \frac{e_x(n, H)}{\binom{n}{2}}$.

<u>Erdős-Stone (1946)</u>: $\pi(H) = 1 - \frac{1}{\alpha(H) - 1}$.

* For bipartite H, this only shows: $\pi(H) = 0$, i.e. $ex(n, H) = o(n^2)$.

* For almost all bipartite H, the order of magnitude of ex(n, H) is unknown.

The Turán density of a graph H, denoted
$$\pi(H)$$
, is $\lim_{n \to \infty} \frac{e_x(n, H)}{\binom{n}{2}}$.

<u>Erdős-Stone (1946)</u>: $\pi(H) = 1 - \frac{1}{\alpha(H) - 1}$.

* For bipartite H, this only shows: $\pi(H) = 0$, i.e. $ex(n, H) = o(n^2)$.

* For almost all bipartite H, the order of magnitude of ex(n, H) is unknown.

* E.g. it is unknown for even cycles length \neq 4, 6, 10.

4/19

In this talk a <u>hypergraph</u> is a 3-uniform hypergraph, which consists of vertices and edges, which are triples of vertices.

In this talk a <u>hypergraph</u> is a 3-uniform hypergraph, which consists of vertices and edges, which are triples of vertices.

The <u>Turán number</u> of a hypergraph H, denoted ex(n,H), is the maximum number of edges in an n-vertex H-free hypergraph.

The Turán density of H, denoted
$$\pi(H)$$
, is $\lim_{n \to \infty} \frac{ex(n,H)}{\binom{n}{3}}$.

In this talk a <u>hypergraph</u> is a 3-uniform hypergraph, which consists of vertices and edges, which are triples of vertices.

The <u>Turán number</u> of a hypergraph H, denoted ex(n,H), is the maximum number of edges in an n-vertex H-free hypergraph.

The Turán density of H, denoted
$$\pi(H)$$
, is $\lim_{n \to \infty} \frac{ex(n,H)}{n \to \infty}$

* Like in graphs, $\pi(H) = 0$ if H is <u>tripartite</u>.

In this talk a <u>hypergraph</u> is a 3-uniform hypergraph, which consists of vertices and edges, which are triples of vertices.

The <u>Turán number</u> of a hypergraph H, denoted ex(n,H), is the maximum number of edges in an n-vertex H-free hypergraph.

The Turán density of H, denoted
$$\pi(H)$$
, is $\lim_{n \to \infty} \frac{ex(n,H)}{3}$.

* Like in graphs,
$$\pi(H) = 0$$
 if H is tripartite.

* $\pi(H)$ is known for very few hypergraphs H.

6/19

Some conjectured Turán densities

7/19

Some conjectured Turán densities Conjecture (Turán 1941): $\pi(\kappa_4^{(3)}) = \frac{5}{9}$. Conjecture (Mubayi 2003): $\pi(\kappa_4^{(3)-}) = \frac{2}{7}$.

The <u>tight cycle</u> of length L, denoted $C_{L}^{(3)}$, is the hypergraph on vertices $\overline{11}, \ldots, L^{2}$ and edges $\overline{1}(i, i+1, i+2)^{2}$ for $i \in \overline{11}, \ldots, L^{2}$.

7/19

Some conjectured Turán densities <u>Conjecture</u> (Turán 1941): $\pi(\kappa_4^{(3)}) = \frac{5}{9}$. <u>Conjecture</u> (Mubayi 2003): $\pi(\kappa_4^{(3)-}) = \frac{2}{7}$.

The <u>tight cycle</u> of length L, denoted $C_{L}^{(3)}$, is the hypergraph on vertices $\overline{11}, \ldots, L^{2}$ and edges $\overline{1}(i, i+1, i+2)^{2}$ for $i \in \overline{11}, \ldots, L^{2}$.

Conjecture (Mubayi-Rödl 2002):
$$\pi(C_{s}^{(3)})$$
 = 213-3.

Some conjectured Turán densities <u>Conjecture</u> (Turán 1941): $\pi(\kappa_4^{(3)}) = \frac{5}{9}$. <u>Conjecture</u> (Mubayi 2003): $\pi(\kappa_4^{(3)-}) = \frac{2}{7}$.

The <u>tight cycle</u> of length L, denoted $C_{L}^{(3)}$, is the hypergraph on vertices $11, \dots, L^2$ and edges $\frac{1}{(i,i+1,i+2)^2}$ for $i \in \frac{1}{2}, \dots, L^2$.

Conjecture (Mubayi-Rödl 2002):
$$\pi(C_5^{(3)}) = 2\sqrt{3}-3$$
.

<u>Conjecture</u> (Mubayi-Pikhurko-Sudakov 2011): $\pi(C_5^{(3)}) = \frac{1}{4}$.

7/19

<u>More on $\pi(C_s^{(3)})$ </u> <u>conjecture</u> (Mubayi-Rödl 2002): $\pi(C_s^{(3)}) = 2(3-3 \approx 0.464$. <u>Razborov 2010</u>: $\pi(C_s^{(3)}) \leq 0.468$ (using Flag Algebras). <u>More on $\pi(C_{5}^{(3)})$ </u> <u>conjecture</u> (Mubayi-Rödl 2002): $\pi(C_{5}^{(3)}) = 2(3-3) \approx 0.464$. <u>Razborov 2010</u>: $\pi(C_{5}^{(3)}) \leq 0.468$ (using Flag Algebras). Conjectured extremal example: More on $\pi(C_{5}^{(3)})$ <u>Conjecture</u> (Mubayi-Rödl 2002): $\pi(C_{5}^{(3)}) = 2(3-3) \approx 0.464$. <u>Razborov 2010</u>: $\pi(C_{5}^{(3)}) \leq 0.468$ (using Flag Algebras). Conjectured extremal example:

Notice: there is no $C_{L}^{(3)}$ for L with $3 \nmid L$

8/19

8/19

Theorem (Kamčev-L.-Pokrovskiy 2022+).

$$\pi(C_{\ell}^{(3)}) = \alpha$$
 for all sufficiently large L with 3tL.

Theorem (Kamčev-L.-Pokrovskiy 2022+).

$$\pi(C_{\ell}^{(3)}) = \alpha$$
 for all sufficiently large l with 3 l .

* Similar to the graph case:
$$\pi(C_{\ell}^{(2)}) = \frac{1}{2}$$
 for every odd ℓ .

Theorem (Kamčev-L.-Pokrovskiy 2022+).

$$\pi(C_{\ell}^{(3)}) = \alpha$$
 for all sufficiently large L with 31L.

* Similar to the graph case:
$$\pi(C_{\ell}^{(2)}) = \frac{1}{2}$$
 for every odd L.

* First known Turán density with conjectured extremal example an 'iterated blow-up'.

Theorem (Kamčev-L.-Pokrovskiy 2022+).

$$\pi(C_{\ell}^{(3)}) = \alpha$$
 for all sufficiently large l with 3/L.

* Similar to the graph case:
$$\pi(C_{\ell}^{(2)}) = \frac{1}{2}$$
 for every odd L.

- * First known Turán density with conjectured extremal example an 'iterated blow-up'.
- * One of few known irrational Turán densities (Yan-Peng 2022 and Wu 2022 provide other examples).

The <u>t-blow-up</u> of a graph/hypergraph H, denoted H(t), is obtained by replacing each vertex in H by an independent set of size t.

The <u>t-blow-up</u> of a graph/hypergraph H, denoted H[t], is obtained by replacing each vertex in H by an independent set of size t.

A <u>pseudocycle</u> of length L is a cyclic sequence v_1, \dots, v_k s.t. $V:v_{i+1}V_{i+2}$ is an edge for $i\in\{1,\dots,k\}$

The <u>t-blow-up</u> of a graph/hypergraph H, denoted H[t], is obtained by replacing each vertex in H by an independent set of size t.

A <u>pseudocycle</u> of length L is a cyclic sequence v_1, \ldots, v_k s.t. $V_i v_{i+1} v_{i+2}$ is an edge for $i \in \{1, \ldots, k\}$ (the v_i 's need not be distinct).

The <u>t-blow-up</u> of a graph/hypergraph H, denoted H[t], is obtained by replacing each vertex in H by an independent set of size t.

 $\land \land$

A <u>pseudocycle</u> of length L is a cyclic sequence v_1, \ldots, v_k s.t. $V_i v_{i+1} v_{i+2}$ is an edge for $i \in \{1, \ldots, k\}$ (the v_i 's need not be distinct).

Observation. Suppose 1>2L and 3/1.L. Then the L-blow-up of every pseudocycle of length L contains a tight cycle of length L.

10/19

The <u>t-blow-up</u> of a graph/hypergraph H, denoted H[t], is obtained by replacing each vertex in H by an independent set of size t.

A <u>pseudocycle</u> of length L is a cyclic sequence v_1, \ldots, v_k s.t. $V_i v_{i+1} v_{i+2}$ is an edge for $i \in \{1, \ldots, k\}$ (the v_i 's need not be distinct).

Observation. Suppose 1>2L and 31L,L. Then the L-blow-up of every pseudocycle of length L contains a tight cycle of length L.

The <u>t-blow-up</u> of a graph/hypergraph H, denoted H[t], is obtained by replacing each vertex in H by an independent set of size t.

A <u>pseudocycle</u> of length L is a cyclic sequence v_1, \ldots, v_k s.t. $V_i v_{i+1} v_{i+2}$ is an edge for $i \in \{1, \ldots, k\}$ (the v_i 's need not be distinct).

<u>Observation</u>. Suppose $1 \ge 2L$ and $3 \nmid L,L$. Then the L-blow-up of every pseudocycle of length L contains a tight cycle of length L.

H[t] = t - blow - up of H.

<u>Observation</u>. Suppose $1 \ge 2L$ and $3 \nmid L,L$. Then the 1-blow-up of every pseudocycle of length L contains a tight cycle of length L.

H[t] = t - blow - up of H.

<u>Observation</u>. Suppose $l \ge 2L$ and $3 \nmid L,L$. Then the l-blow-up of every pseudocycle of length L contains a tight cycle of length L.

Erdős-Simonovits 1982: $\pi(H[t]) = \pi(H)$ for every hypergraph H and t>1.

H[t] = t - blow - up of H.

<u>Observation</u>. Suppose $l \ge 2L$ and $3 \nmid L,L$. Then the l-blow-up of every pseudocycle of length L contains a tight cycle of length L.

Erdős-Simonovits 1982: $\pi(H[t]) = \pi(H)$ for every hypergraph H and t>1.

Thus: if $\pi(\text{odd} \text{ pseudocycles length } \leq L) \leq \infty$

H[t] = t - blow - up of H.

Observation. Suppose 1>2L and 3/1.L. Then the 1-blow-up of every pseudocycle of length L contains a tight cycle of length L.

Erdős-Simonovits 1982: $\pi(H[t]) = \pi(H)$ for every hypergraph H and t>1.

Thus: if $\pi(\text{odd} \text{ pseudocycles length } \leq L) \leq \alpha$ then $\pi(L-blow-up \text{ of odd} \text{ pseudocycles length } \leq L) \leq \alpha$ for every L

H[t] = t - blow - up of H.

Observation. Suppose 1>2L and 3/L.L. Then the L-blow-up of every pseudocycle of length L contains a tight cycle of length L.

Erdős-Simonovits 1982: $\pi(H[t]) = \pi(H)$ for every hypergraph H and t>1.

Thus: if $\pi(\text{odd} \text{pseudocycles length} \leq L) \leq \alpha$ then $\pi(L-\text{blow-up of odd} \text{pseudocycles length} \leq L) \leq \alpha$ for every L $\text{observation} \Rightarrow \pi(C_{1}^{(3)}) \leq \alpha$ for odd $L \geq aL$

H[t] = t - blow - up of H.

Observation. Suppose 1>2L and 3/1.L. Then the 1-blow-up of every pseudocycle of length L contains a tight cycle of length L.

Erdős-Simonovits 1982: $\pi(H[t]) = \pi(H)$ for every hypergraph H and t>1.

Thus: if
$$\pi(\text{odd} \text{pseudocycles length} \leq L) \leq \alpha$$

then $\pi(L-\text{blow-up of odd} \text{pseudocycles length} \leq L) \leq \alpha$ for every L
 $observation \Rightarrow \pi(C_{L}^{(3)}) \leq \alpha$ for odd $L \geq aL$
 $\pi(C_{L}^{(3)}) = \alpha$ for odd $L \geq aL$.
Matching lower bound

H[t] = t - blow - up of H.

Observation. Suppose 1>2L and 31L.L. Then the L-blow-up of every pseudocycle of length L contains a tight cycle of length L.

Erdős-Simonovits 1982: $\pi(H[t]) = \pi(H)$ for every hypergraph H and t>1.

Thus: if $T(\text{odol pseudocycles length} \leq L) \leq \alpha$ then $T(L-blow-up of odol pseudocycles length \leq L) \leq \alpha$ for every L $observation \Rightarrow T(C_{L}^{(3)}) \leq \alpha$ for odd $L \geq aL$ $\Rightarrow T(C_{L}^{(3)}) = \alpha$ for odd $L \geq aL$. matching lower bound() 11/19

<u>The main step</u>

<u>The main step</u>

Define f(n) to be the maximum number of edges in a hypergraph like this:

<u>The main step</u>

Define f(n) to be the maximum number of edges in a hypergraph like this:

So, $f(n) = \alpha \binom{n}{3} + o(n^3)$.

<u>The main step</u>

Define f(n) to be the maximum number of edges in a hypergraph like this: So, $f(n) = \alpha \binom{n}{3} + o(n^3)$.

<u>Theorem (main step</u>). There exists L s.t. every hypergraph on n vertices with no odd pseudocycles of length $\leq L$ has $\leq f(n) + O(1)$ edges.

<u>The main step</u>

Define f(n) to be the maximum number of edges in a hypergraph like this: So, $f(n) = \alpha \binom{n}{3} + o(n^3)$.

<u>Theorem (main step)</u>. There exists L s.t. every hypergraph on n vertices with no odd pseudocycles of length $\leq L$ has $\leq f(n) + O(1)$ edges.

This proves: $\pi(\text{odd pseudocycles length} \leq L) \leq \infty$, thus proving the main theorem.

<u>The main step</u>

Define f(n) to be the maximum number of edges in a hypergraph like this: So, $f(n) = \alpha \binom{n}{3} + o(n^3)$.

<u>Theorem (main step</u>). There exists L s.t. every hypergraph on n vertices with no odd pseudocycles of length $\leq L$ has $\leq f(n) + O(1)$ edges.

This proves: $\pi(\text{odd pseudocycles length} \leq L) \leq \infty$, thus proving the main theorem.

<u>Theorem (baby version)</u>.

Every hypergraph on n vertices with no odd pseudocycles has $\leq f(n)$ edges.

<u>Lemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue I and red and oriented I s.t. all edges are cherries A.

<u>Zemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue I and red and oriented I s.t. all edges are cherries A.

Call such a colouring good.

<u>Lemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue I and red and oriented $\frac{1}{2}$ s.t. all edges are cherries \underline{A} .

Call such a colouring good.

In a good colouring, every third vertex in a pseudopath/pseudocycle is an 'apex'

<u>Zemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue I and red and oriented I s.t. all edges are cherries A.

Call such a colouring good.

In a good colouring, every third vertex in a pseudopath/pseudocycle is an `apex', so all pseudocycles have length divisible by 3, proving 'only if' part.

<u>Zemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured blue I and red and oriented I s.t. all edges are cherries A.

Call such a colouring good.

In a good colouring, every third vertex in a pseudopath/pseudocycle is an `apex', so all pseudocycles have length divisible by 3, proving 'only if' part.

The lemma is a generalisation of: a graph G has no odd cycles iff its vertices can be red-blue coloured s.t. every edge looks like [.

13/19

<u>Falgas-Ravry – Vaughan 2012, Huang 2014.</u> Every n-vertex graph whose edges are blue or red and oriented has $\leq f(n)$ cherries Δ .

The maximiser looks like this:

<u>Falgas-Ravry – Vaughan 2012, Huang 2014.</u> Every n-vertex graph whose edges are blue or red and oriented has $\leq f(n)$ cherries Δ .

The maximiser looks like this:

The hypergraph whose edges are the cherries is the hypergraph we sow earlier.

<u>Falgas-Ravry – Vaughan 2012, Huang 2014.</u> Every n-vertex graph whose edges are blue or red and oriented has $\leq f(n)$ cherries Δ .

The maximiser looks like this:

The hypergraph whose edges are the cherries is the hypergraph we sow earlier.

<u>Falgas-Ravry – Vaughan 2012, Huang 2014.</u> Every n-vertex graph whose edges are blue or red and oriented has $\leq f(n)$ cherries A.

The maximiser looks like this:

The hypergraph whose edges are the cherries is the hypergraph we saw earlier. The proof is by <u>symmetrisation</u> (Zykov 1952)

<u>Falgas-Ravry – Vaughan 2012, Huang 2014.</u> Every n-vertex graph whose edges are blue or red and oriented has $\leq f(n)$ cherries A.

The maximiser looks like this:

The hypergraph whose edges are the cherries is the hypergraph we saw earlier. The proof is by <u>symmetrisation</u> (Zykov 1952): iteratively modify the graph, making it more symmetric, without decreasing the number of cherries. 14/19

We saw:

∗ no odd pseudocycles
 ⇒ pairs of vertices can be coloured I and I s.t. all edges are cherries A.

We saw:

We saw:

 \Rightarrow n vertices, no odd pseudocycles $\Rightarrow \leq f(n)$ edges.

We saw:

$$\Rightarrow$$
 n vertices, no odd pseudocycles $\Rightarrow \leq f(n)$ edges. V_{baby} version step of main step

15/19

We saw:

$$\Rightarrow$$
 n vertices, no odd pseudocycles $\Rightarrow \leq f(n)$ edges. V baby version
Want: short $+O(1)$

15/19

Stability

Stability

<u>Liu-Pikhurko-Sharifzadeh-Staden (2020)</u> provide a scheme for proving stability versions of extremal results proved by symmetrisation.

Stability

<u>Liu-Pikhurko-Sharifzadeh-Staden (2020)</u> provide a scheme for proving stability versions of extremal results proved by symmetrisation.

[This does not apply here because our extremal example has a varying number of parts.]

16/19

17/19

Let H be a hypergraph on n vertices, with no short odd pseudocycles, and maximum possible number of edges.

<u>Proof of main step</u>

Let H be a hypergraph on n vertices, with no short odd pseudocycles, and maximum possible number of edges. [So, \ge f(n) edges.]

Let H be a hypergraph on n vertices, with no short odd pseudocycles, and maximum possible number of edges. [So, \ge f(n) edges.]

<u>Aim</u>: show that H has \leq f(n) + O(1) edges.

Let H be a hypergraph on n vertices, with no short odd pseudocycles, and maximum possible number of edges. [So, \ge f(n) edges.]

<u>Aim</u>: show that H has \leq f(n) + O(1) edges.

* There is a subhypergraph H'⊆ N, obtained from H by removing ≤ En³ edges,
 s.t. H' has no odd pseudocycles.

Let H be a hypergraph on n vertices, with no short odd pseudocycles, and maximum possible number of edges. [So, \ge f(n) edges.]

<u>Aim</u>: show that H has \leq f(n) + O(1) edges.

- * There is a subhypergraph H'⊆ N, obtained from H by removing ≤ En³ edges,
 s.t. H' has no odd pseudocycles.
- * \Rightarrow (Characterisation lemma) There is a graph G on V(H'), whose edges are coloured I and I, s.t. edges in H' are cherries in G.

Let H be a hypergraph on n vertices, with no short odd pseudocycles, and maximum possible number of edges. [So, \ge f(n) edges.]

<u>Aim</u>: show that H has \leq f(n) + O(1) edges.

- * There is a subhypergraph H'⊆ N, obtained from H by removing ≤ En³ edges,
 s.t. H' has no odd pseudocycles.
- * \Rightarrow (Characterisation lemma) There is a graph G on V(H'), whose edges are coloured I and I, s.t. edges in H' are cherries in G.
- * \Rightarrow (Stability) G is close to:

<u>Proof of main step - continued</u>

 $* \Rightarrow H'$, and thus H, are close to:

- <u>Proof of main step continued</u> $* \implies H'$, and thus H, are close to:

 - * \Rightarrow (Difficult) there is a partition $\{A, B\}$ of V(H), with $A, B \neq \phi$, s.t.:

Proof of main step - continued $* \Rightarrow H'$, and thus H, are close to:

* \Rightarrow (Difficult) there is a partition $\{A, B\}$ of V(H), with $A, B \neq \phi$, s.t.:

18/19

<u>Zemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and I s.t. all edges are cherries A.

<u>Zemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and I s.t. all edges are cherries A.

<u>Question</u>. Is there a nice characterisation of r-uniform hypergraph with no pseudocycles of length not divisible by r?

<u>Zemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and I s.t. all edges are cherries A.

<u>Question</u>. Is there a nice characterisation of r-uniform hypergraph with no pseudocycles of length not divisible by r?

<u>Theorem</u>. $\pi(C_{\ell}^{(3)}) = \alpha$ for all sufficiently large ℓ with $3\ell \ell$.

<u>Lemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and I s.t. all edges are cherries A.

<u>Question</u>. Is there a nice characterisation of r-uniform hypergraph with no pseudocycles of length not divisible by r?

<u>Theorem</u>. $\pi(C_{\ell}^{(3)}) = \alpha$ for all sufficiently large ℓ with $3\ell \ell$.

Question. Is there α_r s.t. $\pi(C_{\ell}^{(r)}) = \alpha_r$ for large l not divisible by r?

<u>Lemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured] and] s.t. all edges are cherries A.

<u>Question</u>. Is there a nice characterisation of r-uniform hypergraph with no pseudocycles of length not divisible by r?

<u>Theorem</u>. $\pi(C_{\ell}^{(3)}) = \alpha$ for all sufficiently large ℓ with $3\ell \ell$.

<u>Question</u>. Is there α_r s.t. $\pi(C_L^{(r)}) = \alpha_r$ for large L not divisible by r? <u>Balogh-Luo 2023</u>. $\pi(C_L^{(3)-}) = \frac{4}{4}$ for large L not divisible by 3.

Summary

<u>Lemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and I s.t. all edges are cherries A.

<u>Question</u>. Is there a nice characterisation of r-uniform hypergraph with no pseudocycles of length not divisible by r?

<u>Theorem</u>. $\pi(C_{\ell}^{(3)}) = \alpha$ for all sufficiently large ℓ with $3\ell \ell$.

<u>Question</u>. Is there α_r s.t. $\pi(C_{\ell}^{(r)}) = \alpha_r$ for large l not divisible by r? <u>Balogh-Luo 2023</u>. $\pi(C_{\ell}^{(3)-}) = \frac{4}{4}$ for large l not divisible by 3. <u>Question (Conlon 2011)</u>. Is there c>o s.t. $e_x(n, C_{\ell}^{(3)}) = O(n^{2+c/\ell})$ if l > 4 and 3 | l?

<u>Lemma.</u> A hypergraph has no odd pseudocycles iff its pair of vertices can be coloured I and I s.t. all edges are cherries A.

<u>Question</u>. Is there a nice characterisation of r-uniform hypergraph with no pseudocycles of length not divisible by r?

<u>Theorem</u>. $\pi(C_{\ell}^{(3)}) = \alpha$ for all sufficiently large l with 3ll.

<u>Question</u>. Is there α_r s.t. $\pi(C_{\ell}^{(r)}) = \alpha_r$ for large l not divisible by r? <u>Balogh-Luo 2023</u>. $\pi(C_{\ell}^{(3)-}) = \frac{4}{4}$ for large l not divisible by 3. <u>Question (Conlon 2011)</u>. Is there c>o s.t. $ex(n, C_{\ell}^{(3)}) = O(n^{2+c/\ell})$ if $l \ge 4$ and $\exists | l ?$