Twin-width and its implications

Eunjung KIM, LAMSADE / CNRS, Université Paris-Dauphine

> European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'23) 28 August 2023, Prague, Czech Republic

Contraction in a trigraph

Trigraph has three types of adjacency: (black) edge, non-edge, red edge Identification of two vertices, not-necessarily adjacent

- edges with $N(u) \bigtriangleup N(v)$ turn red
- red edges stay red

Contraction Sequence

A contraction sequence of G =

a sequence of trigraphs $G = G_n, G_{n-1}, \dots, G_1$ = single-vertex graph such that G_i is obtained from G_{i+1} by one contraction

Contraction Sequence

A d-contraction sequence of G =

a sequence of trigraphs $G = G_n, G_{n-1}, \dots, G_1$ = single-vertex graph such that G_i is obtained from G_{i+1} by one contraction and the max red degree of each G_i is at most d.

2-contraction sequence

Twin-width of a graph

Twin-width of G =

the smallest d s.t. \exists d-contraction sequence of G.

What is the (upper-bound of) twin-width of ...

- clique?
- disjoint union of G and H?
- complete join of G and H?
- cograph?
- path?
- tree?

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

Generalization to bounded treewidth and even bounded rank-width

Grids

4-sequence for planar grids

Key Messages

1. Twin-width captures many known graph classes, both spare and dense.

2. With twin-width, there is a rich toolbox to investigate graph properties, be it algorithmic, structural, or logical.

3. There are much to be done (by you).

Graph classes of small twin-width [Bonnet, Geniat, K, Thomassé, Watrigant '20, '21]

- trees, graphs of bounded tree-width
- bounded clique-width (rank-width) graphs
- unit interval graphs
- strong products of two graphs of bounded tww, one with bounded degree
- $\Omega(\log n)$ -subdivision of all *n*-vertex graphs, etc.
- (subgraphs of) d-dimensional grids
- K_t -free unit ball graphs in dimension d
- hereditary proper subclass of permutation graphs
- posets of bounded antichain size
- K_t -minor-free graphs
- square of planar graphs
- map graphs
- k-planar graphs
- bounded degree string graphs

Graph classes of small twin-width [Bonnet, Geniat, K, Thomassé, Watrigant '20, '21]

- trees, graphs of bounded tree-width
- bounded clique-width (rank-width) graphs
- unit interval graphs
- strong products of two graphs of bounded tww, one with bounded degree
- $\Omega(\log n)$ -subdivision of all *n*-vertex graphs, etc.
- (subgraphs of) d-dimensional grids
- K_t -free unit ball graphs in dimension d
- hereditary proper subclass of permutation graphs
- posets of bounded antichain size
- K_t -minor-free graphs
- square of planar graphs
- map graphs
- k-planar graphs
- bounded degree string graphs

The class of all cubic graphs have unbounded twin-width

given two bags:

it means in the original graph:

Twin-width of a graph

A d-contraction sequence of G =

a sequence of partitions $\mathscr{P}_n = \{\{v\} : v \in V(G)\}, \mathscr{P}_{n-1}, ..., \mathscr{P}_i, ..., \mathscr{P}_1 = \{V(G)\} \text{ such that } \mathscr{P}_i \text{ is obtained from } P_{i+1} \text{ by merging two parts}$

and the max red degree of each quotient graph G/\mathcal{P}_i is at most d.

Twin-width of G =

the smallest d s.t. \exists d-partition sequence of G.

Stable under basic operations

- Closed under complement: $tww(G) = tww(\overline{G})$
- $tww(H) \le tww(G)$ if H is an induced subgraph of G

• Color an arbitrary vertex set $U \subseteq V(G)$ and add an apex to U. $tww(G^U) \leq 2 \cdot tww(G)$

- $tww(G \boxtimes H) \leq f(tww(G), tww(H), \Delta(H))$
- Taking a subgraph can increase the twin-width arbitrarily.
- If G is $K_{t,t}$ -free for some t: $tww(G') \leq f(tww(G), t)$ for $G' \subseteq G$

- $tww(G \boxtimes H) \leq f(tww(G), tww(H), \Delta(H))$
- Taking a subgraph can increase the twin-width arbitrarily.
- If G is $K_{t,t}$ -free for some t: $tww(G') \leq f(tww(G), t)$ for $G' \subseteq G$

Product Structure Theorem for graphs of Euler genus g [Dujmovič, Joret, Micek, Morin, Ueckerdt, Wood 2020]

Every graph of Euler genus g is a subgraph of

$$H \boxtimes P \boxtimes K_{\max\{2g,3\}}$$

where H is an apex graph of tree-width at most 4, P a path.

Bounds for graphs on surfaces

Planar

from (implicit) 2^{1000} to 583 [Bonnet, Kwon, Wood '22],

to 183 [Jacob, Pilipczuk '22], to 37 [Bekos, Da Lozzo, Hlineny, Kaufmann '22],

to 8 [Hlineny, Jedelsky '22]. A simple proof for 11 to be presented tomorrow.

Exists a planar graph with twin-width 7 [Kral, Lamaison '22].

Euler genus g

 $2^{18g+O(1)}$ to $18\sqrt{47g}+O(1)$ [Král, Pekárková, Storgel '23].

Bounds for graphs on surfaces

Planar

from (implicit) 2^{1000} to 583 [Bonnet, Kwon, Wood '22],

to 183 [Jacob, Pilipczuk '22], to 37 [Bekos, Da Lozzo, Hlineny, Kaufmann '22],

to 8 [Hlineny, Jedelsky '22]. A simple proof for 11 to be presented tomorrow.

Exists a planar graph with twin-width 7 [Kral, Lamaison '22].

Euler genus g $2^{18g+Q(1)} = 18 \sqrt{47} = 10(1)$

 $2^{18g+O(1)}$ to $18\sqrt{47g} + O(1)$ [Král, Pekárková, Storgel '23].

This approach does not extend to minor-closed families in general.

Grid Minor Theorem for twin-width
Contraction on matrices

tww(M) < d if 3 a contraction sequence from M to 1 x 1 consisting of matrices with red number < d

delete one row, replace the inconsistent entries by "R"

tww(M) < d if 3 a contraction sequence from M to 1 x 1 consisting of matrices with red number < d

delete one row, replace the inconsistent entries by "R"

tww(M) \leq d if \exists a contraction sequence from M to 1 x 1 consisting of matrices with red number \leq d

maximum number of "R"s over all rows and columns

tww(M) < d if 3 a contraction sequence from M to 1 x 1 consisting of matrices with red number < d

Partition viewpoint on matrices

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Reorder columns and rows → we merge only consecutive rows / columns call it "twin-ordered" matrix

Merging rows \Leftrightarrow "coarsening" row division by merging two row parts red entry \Leftrightarrow "cell" (row part \cap column part) is not "constant"

tww(M) \leq d if for some M' obtained by a reordering of columns and rows, \exists a sequence of divisions from m x n-division of M' to 1 x 1-division with max error value \leq d

merging two consecutive row or column parts:

a non-constant cell is marked in "ERROR"

tww(M) \leq d if for some M' obtained by a reordering of columns and rows, \exists a sequence of divisions from m x n-division of M' to 1 x 1-division with max error value \leq d

merging two consecutive row or column parts:

a non-constant cell is marked in "ERROR"

tww(M) \leq d if for some M' obtained by a reordering of columns and rows, \exists a sequence of divisions from m x n-division of M' to 1 x 1-division with max error value \leq d

maximum number of "ERROR"s over all row and column parts

tww(M) \leq d if for some M' obtained by a reordering of columns and rows, \exists a sequence of divisions from m x n-division of M' to 1 x 1-division with max error value \leq d

mixed minor

3-mixed minor = 3×3 division in which each cell is "mixed" t-mixed free if M does not have t-mixed minor

Grid Theorem for Twin-width

[Bonnet, K. Thomassé, Watrigant 2020]

mxn(M)=largest size of a mixed minor

Grid Theorem for Twin-width

[Bonnet, K. Thomassé, Watrigant 2020]

mxn(M)=largest size of a mixed minor

Kt-minor-free graphs have bd tww

• If \exists Hamiltonian path σ , A_{σ} has no 2t-mixed-minor; if it has...

Kt-minor-free graphs have bd tww

• If \exists Hamiltonian path σ , A_{σ} has no 2t-mixed-minor; if it has...

• General case can be proved using the **discovery order of Lex-DFS** as σ .

Unit Interval Graphs have bd tww

left-to-right ordering by the left endpoint of the unit interval

Unit Interval Graphs have bd tww

left-to-right ordering by the left endpoint of the unit interval

no 3-mixed grid

Interval Graphs have unbounded tww

Can we use a different vertex order? Well...

The collection of all permutations are 'encoded' in the class of interval graphs.

The idea is formalized by the notion of 'FO-interpretation/transduction'.

Interval Graphs have unbounded tww

1								
1	1	1	1					
1	1	1	1	1	1	1		
1	1							
1	1	1	1	1				
1	1	1	1	1	1	1	1	
1	1	1						
1	1	1	1	1	1			
1	1	1	1	1	1	1	1	1

Can we use a different vertex order? Well...

The collection of all permutations are 'encoded' in the class of interval graphs.

The idea is formalized by the notion of 'FO-interpretation/transduction'.

First-Order Model Checking

[Bonnet, K, Thomassé, Watrigant '20]

FO model checking can be done in time $f(d, |\phi|) \cdot n$

when a d-contraction sequence is given.

[Bonnet, K, Thomassé, Watrigant '20]

Input: a graph G, first-order sentence ϕ . Question: G $\models \phi$?

FO model checking can be done in time $f(d, |\phi|) \cdot n$

when a d-contraction sequence is given.

$$\Phi := \exists x_1 \exists x_2 \cdots \exists x_k \forall u \bigvee_{1 \le i \le k} ((x_i = u) \lor E(x_i, u))$$

~ G \= \Phi iff G has a dominating set of size k.

FO-model checking is FPT [BKTW'20]

FO-model checking is FPT [BKTW'20]

FO-transduction:

further extending the realm of twin-width

 $\tau: G = (V, E) \rightarrow$ Two-edge colored graph $(V, E \cup D)$ s.t. the new binary relation D is the set of "all pairs of $V \times V$ satisfying an FO-formula $\varphi(x, y)$ "

 $\tau: G = (V, E) \rightarrow$ Two-edge colored graph $(V, E \cup D)$ s.t. the new binary relation D is the set of "all pairs of $V \times V$ satisfying an FO-formula $\varphi(x, y)$ "

• $\tau(x, y) := E(x, y) \lor \exists z(E(x, z) \land E(z, y));$ square

•
$$\tau(x, y) = \neg E(x, y)$$
; complement

 $\tau: G = (V, E) \rightarrow$ Two-edge colored graph $(V, E \cup D)$ s.t. the new binary relation D is the set of "all pairs of $V \times V$ satisfying an FO-formula $\varphi(x, y)$ "

• $\tau(x, y) := E(x, y) \lor \exists z(E(x, z) \land E(z, y));$ square

•
$$\tau(x, y) = \neg E(x, y)$$
; complement

FO-interpretation τ of a graph class $\tau(\mathscr{C}) = \{\tau(G) : G \in \mathscr{C}\}$

 $\tau: G = (V, E) \rightarrow$ Two-edge colored graph $(V, E \cup D)$ s.t. the new binary relation D is the set of "all pairs of $V \times V$ satisfying an FO-formula $\varphi(x, y)$ "

• $\tau(x, y) := E(x, y) \lor \exists z(E(x, z) \land E(z, y));$ square

•
$$\tau(x, y) = \neg E(x, y)$$
; complement

FO-interpretation τ of a graph class $\tau(\mathscr{C}) = \{\tau(G) : G \in \mathscr{C}\}$

If $\mathscr{D} \subseteq \tau(\mathscr{C})$, " \mathscr{C} (FO-)interprets \mathscr{D} "

FO-transduction: FO-interpretation + introduce "unary relations"

Λ: G = (V,E) → graph (V, S, E) for some vertex subset S Now, you can query [$v \in S$].

FO-transduction: FO-interpretation + introduce "unary relations"

Λ: G = (V,E) → graph (V, S, E) for some vertex subset S Now, you can query [$v \in S$].

FO-transduction = a finite sequence of colorings & FO-interpretations

FO-transduction: FO-interpretation + introduce "unary relations"

Λ: G = (V,E) → graph (V, S, E) for some vertex subset S Now, you can query [$v \in S$].

FO-transduction = a finite sequence of colorings & FO-interpretations

- Linear order on the left set (i.e. transitive tournament)
- Color the right-hand side set by Y.
- $\varphi(a,b) := N(a) \cap Y \supset N(b) \cap Y$

•
$$R_{\varphi} = \{(1,2), (1,3), \dots, (3,4)\}$$

[Bonnet, K, Thomassé, Watrigant '20]

Twin-width is stable under FO-transduction.

[Bonnet, K, Thomassé, Watrigant '20]

Twin-width is stable under FO-transduction.

Read as: start from a graph class of bounded twin-width and apply an FO-transduction. The obtained class has bounded twinwidth (depending on the first tww, and the transduction).

When twin-width is THE right measure
Permutation

[BKTW'20] Let \mathscr{C} be a hereditary class of permutations. Either \mathscr{C} is the class of all permutations, or \mathscr{C} avoids some pattern AND has bounded twin-width.

Suppose there exists a permutation $\sigma \notin \mathscr{C}$.

Then for every $\pi \in \mathscr{C}$, its matrix representation does NOT have $|\sigma|$ -mixed minor.

o/w, because \mathscr{C} is hereditary, any permutation of length $|\sigma|$ - including σ itself - can be found as a sub-permutation, thus included in \mathscr{C} due to hereditary property.

 $\sigma = 312$

 \prec = vertex ordering by lex order on the interval (l(v), r(v))

On B, we can interpret two different linear orders = permutation 23514

 \prec = vertex ordering by lex order on the interval (l(v), r(v))

23

On B, we can interpret two different linear orders = permutation 23514

 \prec = vertex ordering by lex order on the interval (l(v), r(v))

On B, we can interpret two different linear orders = permutation 23514

 \prec = vertex ordering by lex order on the interval (l(v), r(v))

If there is no upper bound on the mixed minor size of a hereditary class \mathscr{C} of interval graphs, all permutations can be transduced from \mathscr{C} .

When twin-width is the right measure

[BKTW'20, BGOdSTT'21, HP'22, BCKKLT'22, GT'23]

The followings are equivalent (under some complexity assumption) for a hereditary class \mathscr{C} consisting of interval graphs | permutations | ordered graphs | tournaments | circle graphs | rooted directed path graphs.

- 1. FO model-checking is FPT on \mathscr{C} .
- 2. \mathscr{C} has bounded twin-width.
- 3. \mathscr{C} does NOT FO-transduce the class of all graphs.
- 4. The growth of \mathscr{C} is $2^{O(n)}$.

Unwinding a contraction sequence

$\chi(G) \leq (d+2)^{\omega-1}$ via unwinding

 $\omega = 2$, i.e. triangle-free G.

Consider the contraction sequence $G_n, \ldots, G_{i+1}, G_i, \ldots, G_1$ backwardly.

u inherits the color of z. Let's decide the color of v.

c(v) = c(z) if (u, v) is non-adjacent in G_{i+1} ; proper coloring

v gets the smallest available color if (u, v) is black/red-adjacent in G_{i+1}

z incident with red edges only $\rightarrow v$ has black+red degree \leq d+1 in G_{i+1}

χ -bounding function for twin-width

[Bonnet, Geniet, Kim, Thomassé, Watrigant '21] *X***-bounded**.

[Pilipczuk, Sokołowski '22] χ -bounded by quasi-polynomial.

[Bourneuf, Thomassé '23] χ -bounded by polynomial.

[Gajarský, Pilipczuk, Toruńczyk] linearly χ -bounded when sparse.

Twisting twin-width

Clique-width via contraction sequence

... s.t. any red component has bounded size

Clique-width via contraction sequence

... s.t. any red component has bounded size

A graph class C has bounded clique-width if and only if

C has bounded component twin-width

Characterization via twin-width' friends

dense classes

sparse classes

[Bonnet, Kim, Reinald, Thomassé 2022]

Concluding Remarks

- Other cool tools not covered here, leading to applications in logic, data structure, labeling scheme, structural insights, etc.
- We still do not know how to compute f(d)-contraction sequence when the input has tww d in FPT, even in XP time.
- Twin-width for non-binary relation, e.g. hypergraphs?
- Explicit construction of cubic graphs of unbounded twin-width.
- O(1)-approximation for Max Independent Set on bounded tww? (implies PTAS)

Thank you!