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Contraction in a trigraph

Identification of two vertices, not-necessarily adjacent 

• edges with  turn red


• red edges stay red

N(u) △ N(v)

Trigraph has three types of adjacency: (black) edge, non-edge, red edge



Contraction Sequence

A     contraction sequence of G =  
 

a sequence of trigraphs = single-vertex graph 

such that  is obtained from  by one contraction

G = Gn, Gn−1, …, G1
Gi Gi+1



Contraction Sequence

A     contraction sequence of G =  
 

a sequence of trigraphs = single-vertex graph 

such that  is obtained from  by one contraction

G = Gn, Gn−1, …, G1
Gi Gi+1

and the max red degree of each  is at most d.Gi

d-



2-contraction sequence



Twin-width of a graph

Twin-width of G =


the smallest d s.t.  d-contraction sequence of G.∃



What is the (upper-bound of) twin-width 
of …


• clique?

• disjoint union of G and H?

• complete join of G and H?

• cograph?

• path?

• tree?




Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width
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4-sequence for planar grids
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4-sequence for planar grids



Key Messages
1. Twin-width captures many known  

graph classes, both spare and dense.


2. With twin-width, there is a rich  
toolbox to investigate graph properties,  
be it algorithmic, structural, or logical.


3. There are much to be done (by you).



Graph classes of small twin-width

•trees, graphs of bounded tree-width

•bounded clique-width (rank-width) graphs

•unit interval graphs

•strong products of two graphs of bounded tww, one with bounded 
degree

• -subdivision of all -vertex graphs, etc.

• (subgraphs of) d-dimensional grids

• -free unit ball graphs in dimension d

•hereditary proper subclass of permutation graphs

•posets of bounded antichain size

• -minor-free graphs

•square of planar graphs

•map graphs

• -planar graphs 

•bounded degree string graphs

Ω(log n) n

Kt

Kt

k

[Bonnet, Geniat, K, Thomassé, Watrigant ’20, ’21]



Graph classes of small twin-width

•trees, graphs of bounded tree-width

•bounded clique-width (rank-width) graphs

•unit interval graphs

•strong products of two graphs of bounded tww, one with bounded 
degree

• -subdivision of all -vertex graphs, etc.

• (subgraphs of) d-dimensional grids

• -free unit ball graphs in dimension d

•hereditary proper subclass of permutation graphs

•posets of bounded antichain size

• -minor-free graphs

•square of planar graphs

•map graphs

• -planar graphs 

•bounded degree string graphs

Ω(log n) n

Kt

Kt

k The class of all cubic graphs have 
unbounded twin-width

[Bonnet, Geniat, K, Thomassé, Watrigant ’20, ’21]



4/20

given two bags:

it means in the original graph:

no edge all edges at least one edge,
at least one non-edge



Twin-width of a graph

Twin-width of G =


the smallest d s.t.  d-partition sequence of G.∃

A d-contraction sequence of G =  
 

a sequence of partitions 
 such that  is 

obtained from  by merging two parts
𝒫n = {{v} : v ∈ V(G)}, 𝒫n−1, …, 𝒫i, …, 𝒫1 = {V(G)} 𝒫i

Pi+1
and the max red degree of each quotient graph  is at most d.G/𝒫i



• Closed under complement: 


•  if H is an induced subgraph of G


• Color an arbitrary vertex set  and add an apex to . 

tww(G) = tww(Ḡ)

tww(H) ≤ tww(G)

U ⊆ V(G) U
tww(GU) ≤ 2 ⋅ tww(G)

Stable under basic operations



• 


• Taking a subgraph can increase the twin-width arbitrarily.


• If  is -free for some t:   for 

tww(G ⊠ H) ≤ f(tww(G), tww(H), Δ(H))

G Kt,t tww(G′￼) ≤ f(tww(G), t) G′￼⊆ G



• 


• Taking a subgraph can increase the twin-width arbitrarily.


• If  is -free for some t:   for 

tww(G ⊠ H) ≤ f(tww(G), tww(H), Δ(H))

G Kt,t tww(G′￼) ≤ f(tww(G), t) G′￼⊆ G

Product Structure Theorem for graphs of Euler genus g 
[Dujmovič, Joret, Micek, Morin, Ueckerdt, Wood 2020]


Every graph of Euler genus g is a subgraph of 





where H is an apex graph of tree-width at most 4, P a path.

H ⊠ P ⊠ Kmax{2g,3}



Planar

from (implicit)  to 583 [Bonnet, Kwon, Wood ’22],

to 183 [Jacob, Pilipczuk ’22], to 37 [Bekos, Da Lozzo, Hlineny, Kaufmann ’22],

to 8 [Hlineny, Jedelsky ’22].  
A simple proof for 11 to be presented tomorrow.

Exists a planar graph with twin-width 7 [Kral, Lamaison ’22].


Euler genus g

 to  [Král, Pekárková, Storgel ’23].

21000

218g+O(1) 18 47g + O(1)

Bounds for graphs on surfaces



Planar

from (implicit)  to 583 [Bonnet, Kwon, Wood ’22],

to 183 [Jacob, Pilipczuk ’22], to 37 [Bekos, Da Lozzo, Hlineny, Kaufmann ’22],

to 8 [Hlineny, Jedelsky ’22].  
A simple proof for 11 to be presented tomorrow.

Exists a planar graph with twin-width 7 [Kral, Lamaison ’22].


Euler genus g

 to  [Král, Pekárková, Storgel ’23].

21000

218g+O(1) 18 47g + O(1)

Bounds for graphs on surfaces

This approach does not extend to minor-closed 
families in general.



Grid Minor Theorem for 
twin-width



Contraction on matrices



Twin-width of a matrix

tww(M) ⩽ d if ∃ a contraction sequence from M to 1 x 1 
consisting of matrices with red number ⩽ d
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Twin-width of a matrix

delete one row, replace the inconsistent entries by “R”

tww(M) ⩽ d if ∃ a contraction sequence from M to 1 x 1 
consisting of matrices with red number ⩽ d

maximum number of “R”s over all rows and columns



Twin-width of a matrix

tww(M) ⩽ d if ∃ a contraction sequence from M to 1 x 1 
consisting of matrices with red number ⩽ d



Partition viewpoint on matrices

Merging rows  ⇔ “coarsening” row division by merging two row parts

red entry ⇔ “cell” (row part ∩ column part) is not “constant”

Reorder  columns and rows ⤳ we merge only consecutive rows / columns

call it “twin-ordered” matrix



Twin-width of a matrix

tww(M) ⩽ d if for some M’ obtained by a reordering of 
columns and rows, ∃ a sequence of divisions from m x n-

division of M’ to 1 x 1-division with max error value ⩽ d
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merging two consecutive row or column parts:


a non-constant cell is marked in “ERROR”
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Twin-width of a matrix

tww(M) ⩽ d if for some M’ obtained by a reordering of 
columns and rows, ∃ a sequence of divisions from m x n-

division of M’ to 1 x 1-division with max error value ⩽ d



mixed minor

3-mixed minor = 3 x 3 division in which each cell is “mixed”

t-mixed free if M does not have t-mixed minor



Grid Theorem for Twin-width
[Bonnet, K. Thomassé, Watrigant 2020]

For a twin-ordered matrix M, we have  
mxn(M) − 1

2
≤ tww(M) ≤ 22O(mxn(M))

=largest size of a mixed minormxn(M)



Grid Theorem for Twin-width
[Bonnet, K. Thomassé, Watrigant 2020]

twin-width(G) is small

there is a vertex ordering  s.t. 

 does not have a large mixed minor.

≺
𝖺𝖽𝗃≺(G)

For a twin-ordered matrix M, we have  
mxn(M) − 1

2
≤ tww(M) ≤ 22O(mxn(M))

=largest size of a mixed minormxn(M)



Kt-minor-free graphs have bd tww
• If ∃ Hamiltonian path σ, Aσ has no 2t-mixed-minor; if it has…

first t parts

last t parts

Kt,t-minor model

σ

σ
B1 B4B2 B3

A1

A2
A3
A4

A1 A4A2 A3

B1 B4B2 B3



Kt-minor-free graphs have bd tww
• If ∃ Hamiltonian path σ, Aσ has no 2t-mixed-minor; if it has…

first t parts

last t parts

Kt,t-minor model

σ

σ
B1 B4B2 B3

A1

A2
A3
A4

A1 A4A2 A3

B1 B4B2 B3

• General case can be proved using the discovery order of Lex-DFS as σ.



Unit Interval Graphs have bd tww

1 1 1 1
1 1 1

1 1
1

left-to-right ordering by the left endpoint of the unit interval

x

x
y

y



Unit Interval Graphs have bd tww

1 1 1 1
1 1 1

1 1
1

left-to-right ordering by the left endpoint of the unit interval

no 3-mixed grid

x

x
y

y



Interval Graphs have unbounded tww

1
1

1
1

1
1

1
1

1

A B C

Can we use a different vertex order? Well…


The collection of all permutations are 

‘encoded’ in the class of interval graphs.


The idea is formalized by the notion of 

‘FO-interpretation/transduction’.



Interval Graphs have unbounded tww

1
1

1
1

1
1

1
1

1

A B C

1
1 1 1 1
1 1 1 1 1 1 1
1 1
1
 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

Can we use a different vertex order? Well…


The collection of all permutations are 

‘encoded’ in the class of interval graphs.


The idea is formalized by the notion of 

‘FO-interpretation/transduction’.



First-Order 

Model Checking



FO model checking can 
be done in time f(d,|φ|)∙n
when a d-contraction sequence is given.

[Bonnet, K, Thomassé, Watrigant ’20]



FO model checking can 
be done in time f(d,|φ|)∙n
when a d-contraction sequence is given.

Input: a graph G, first-order sentence φ.

Question: G ⊨ φ?

 

⤳ G ⊨ Φ iff G has a dominating set of size k.

Φ := ∃x1 ∃x2⋯∃xk ∀u ⋁
1≤i≤k

((xi = u) ∨ E(xi, u))

[Bonnet, K, Thomassé, Watrigant ’20]



unit interval 
graphs

posets of 
bounded width

bounded 
clique-width

bounded 
tree-width

planar

bounded 
expansion

bounded 
degree

nowhere 
dense

proper 
minor-closed

co-graphs

permutations 
avoiding a fixed 

pattern

bounded 
linear clique-

width

FO-model checking is FPT [BKTW’20]

sparse classesdense classes

G+’15

Flum, Grohe ‘01

Dvorák, Král, Thomas ‘13

Grohe, Kreutzer, Siebertz ‘17

Seese ‘96

Frick, Grohe ‘01

Guillemot, Marx ’14

CMR’00
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proper 
minor-closed
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permutations 
avoiding a fixed 
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FO-model checking is FPT [BKTW’20]

sparse classesdense classes

bounded 
twin-width

G+’15

Flum, Grohe ‘01

Dvorák, Král, Thomas ‘13

Grohe, Kreutzer, Siebertz ‘17

Seese ‘96

Frick, Grohe ‘01

Guillemot, Marx ’14

CMR’00



FO-transduction: 

 

further extending the realm of 
twin-width



FO-interpretation: adding new relation via 
FO-logic



FO-interpretation: adding new relation via 
FO-logic

 Two-edge colored graph 

s.t. the new binary relation D is the set of   

“all pairs of  satisfying an FO-formula ”

τ : G = (V, E) → (V, E ∪ D)

V × V φ(x, y)



• ; square


• ; complement

τ(x, y) := E(x, y) ∨ ∃z(E(x, z) ∧ E(z, y))

τ(x, y) = ¬E(x, y)

FO-interpretation: adding new relation via 
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s.t. the new binary relation D is the set of   

“all pairs of  satisfying an FO-formula ”

τ : G = (V, E) → (V, E ∪ D)

V × V φ(x, y)



• ; square


• ; complement

τ(x, y) := E(x, y) ∨ ∃z(E(x, z) ∧ E(z, y))

τ(x, y) = ¬E(x, y)

FO-interpretation: adding new relation via 
FO-logic

 Two-edge colored graph 

s.t. the new binary relation D is the set of   

“all pairs of  satisfying an FO-formula ”

τ : G = (V, E) → (V, E ∪ D)

V × V φ(x, y)

FO-interpretation  of a graph class τ
τ(𝒞) = {τ(G) : G ∈ 𝒞}



• ; square


• ; complement

τ(x, y) := E(x, y) ∨ ∃z(E(x, z) ∧ E(z, y))

τ(x, y) = ¬E(x, y)

FO-interpretation: adding new relation via 
FO-logic

 Two-edge colored graph 

s.t. the new binary relation D is the set of   

“all pairs of  satisfying an FO-formula ”

τ : G = (V, E) → (V, E ∪ D)

V × V φ(x, y)

FO-interpretation  of a graph class τ
τ(𝒞) = {τ(G) : G ∈ 𝒞}

If , “  (FO-)interprets ”𝒟 ⊆ τ(𝒞) 𝒞 𝒟



FO-transduction:  
FO-interpretation + introduce “unary relations”

Λ: G = (V,E) ➔ graph (V, S, E) for some vertex subset S

Now, you can query [ ]. v ∈ S
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FO-transduction:  
FO-interpretation + introduce “unary relations”

Λ: G = (V,E) ➔ graph (V, S, E) for some vertex subset S

Now, you can query [ ]. v ∈ S

FO-transduction = a finite sequence of colorings  
& FO-interpretations

• Linear order on the left set  
(i.e. transitive tournament)


• Color the right-hand side set by Y.


•

•

φ(a, b) := N(a) ∩ Y ⊃ N(b) ∩ Y

Rφ = {(1,2), (1,3), ⋯, (3,4)}

half-graph

X Y

1

3

4

2

1’

3’

4’

2’



Twin-width is stable 
under FO-transduction.

[Bonnet, K, Thomassé, Watrigant ’20]



Twin-width is stable 
under FO-transduction.

Read as: start from a graph class of bounded twin-width and 
apply an FO-transduction. The obtained class has bounded twin-

width (depending on the first tww, and the transduction).

[Bonnet, K, Thomassé, Watrigant ’20]



When twin-width is THE 
right measure



Permutation

1
1

1
1

1
1

1
1

1
1

[BKTW’20] Let  be a hereditary class of permutations. 

Either  is the class of all permutations, or 


 avoids some pattern AND has bounded twin-width.

𝒞
𝒞

𝒞

Suppose there exists a permutation .


Then for every , its matrix representation 

does NOT have -mixed minor.


o/w, because  is hereditary, any permutation of  
length  - including  itself - can be found  
as a sub-permutation, thus included in  due to  
hereditary property.

σ ∉ 𝒞

π ∈ 𝒞
|σ |

𝒞
|σ | σ

𝒞

σ = 312



Interval Graph

B

C

1 10 0 0 0

1 1 10 0 0

1 1 1 1 10

10 0 0 0 0

1 1 1 10 0

w.l.o.g. B ≺ C

 = vertex ordering  by lex order on the interval ≺ (l(v), r(v))

On B, we can interpret two different linear orders = permutation 23514
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 = vertex ordering  by lex order on the interval ≺ (l(v), r(v))

On B, we can interpret two different linear orders = permutation 23514
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Interval Graph

B

C

1 10 0 0 0

1 1 10 0 0

1 1 1 1 10

10 0 0 0 0

1 1 1 10 0

w.l.o.g. B ≺ C

 = vertex ordering  by lex order on the interval ≺ (l(v), r(v))

If there is no upper bound on the mixed minor size of a hereditary class  

of interval graphs, all permutations can be transduced from .

𝒞
𝒞



When twin-width is the right measure

[BKTW’20, BGOdSTT’21, HP’22, BCKKLT’22, GT’23] 


The followings are equivalent (under some complexity 
assumption) for a hereditary class  consisting of interval 
graphs | permutations | ordered graphs | tournaments  
| circle graphs | rooted directed path graphs. 

1. FO model-checking is FPT on .

2.  has bounded twin-width.

3.  does NOT FO-transduce the class of all graphs.

4. The growth of  is .

𝒞

𝒞
𝒞
𝒞

𝒞 2O(n)



Unwinding a contraction 
sequence



 via unwindingχ(G) ≤ (d + 2)ω−1

, i.e. triangle-free G.ω = 2

u

v

Consider the contraction sequence  backwardly.Gn, …, Gi+1, Gi, …, G1

u inherits the color of z. Let’s decide the color of v. 

z

 gets the smallest available color if  is black/red-adjacent in v (u, v) Gi+1

 if  is non-adjacent in  ; proper coloringc(v) = c(z) (u, v) Gi+1



u

v

z

u

v

z

z incident with a black edge →  independent   and  non-adjacent in z(G) → u v Gi+1

yy

z incident with red edges only →  has black+red degree  d+1 in v ≤ Gi+1

d+2 colors suffice



-bounding function for twin-widthχ

[Bonnet, Geniet, Kim, Thomassé, Watrigant ’21] -bounded.


[Pilipczuk, Sokołowski ’22]  -bounded by quasi-polynomial.


[Bourneuf, Thomassé ’23]  -bounded by polynomial.


[Gajarský, Pilipczuk, Toruńczyk]  linearly -bounded when sparse.


χ

χ

χ

χ



Twisting twin-width



Clique-width via contraction sequence
… s.t. any red component has bounded size 



Clique-width via contraction sequence
… s.t. any red component has bounded size 

A graph class C has bounded clique-width  
if and only if


C has bounded component twin-width



bounded 
clique-width

bounded 
tree-width

bounded linear 
clique-width

sparse classesdense classes

bounded 
twin-width

contraction sequence with 

bounded red edges

contraction sequence with 
bounded red component size

bounded 
path-width

SPARSE &  
contraction sequence with 


bounded red component size

SPARSE & 

contraction sequence with 


bounded red edges

Characterization via twin-width’ friends

[Bonnet, Kim, Reinald, Thomassé 2022]

minor-closed
MONOTONE &  

contraction sequence following 
a “tree order”



• Other cool tools not covered here, leading to applications in 
logic, data structure, labeling scheme, structural insights, etc.


• We still do not know how to compute f(d)-contraction sequence 
when the input has tww d in FPT, even in XP time.


• Twin-width for non-binary relation, e.g. hypergraphs?


• Explicit construction of cubic graphs of unbounded twin-width.


• O(1)-approximation for Max Independent Set on bounded tww? 
(implies PTAS)

Concluding Remarks



Thank you!


