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Contraction in a trigraph

Trigraph has three types of adjacency: (black) edge, non-edge, red edge

|dentification of two vertices, not-necessarily adjacent
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« edges with N(u) /\ N(v) turn red

* red edges stay red



Contraction Sequence

A contraction sequence of G =

a sequence of trigraphs G = G,, G,_4, ..., G;= single-vertex graph
such that G; is obtained from G, ; by one contraction



Contraction Sequence

A d-contraction sequence of G =

a sequence of trigraphs G = G,, G,_4, ..., G;= single-vertex graph
such that G; is obtained from G, ; by one contraction
and the max red degree of each G; is at most d.



2-contraction sequence




Twin-width of a graph

Twin-width of G =

the smallest d s.t. 4 d-contraction sequence of G.




What is the (upper-bound of) twin-width
of ...

e clique?

e disjoint union of G and H?
e complete join of G and H?
e cograph?

e path?

o tree?



Trees

O

If possible, contract two twin leaves



Trees

O

If not, contract a deepest leaf with its parent



Trees

O

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width
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4-sequence for planar grids



Kkey Messages

1. Twin-width captures many known
graph classes, both spare and dense.

&. With twin-width, there is a rich
toolbox to investigate graph properties,
be 1t algorithmic, structural, or logical.

3. There are much to be done (by you).



Graph classes of small twin-width
[Bonnet, Geniat, K, Thomasseé, Watrigant ’20, ’21]

*trees, graphs of bounded tree-width

* bounded clique-width (rank-width) graphs

* unit interval graphs

* strong products of two graphs of bounded tww, one with bounded
degree

*Q(log n)-subdivision of all n-vertex graphs, etc.

e (subgraphs of) d-dimensional grids

« K -free unit ball graphs in dimension d

* hereditary proper subclass of permutation graphs

e posets of bounded antichain size

« K.-minor-free graphs



Graph classes of small twin-width
[Bonnet, Geniat, K, Thomasseé, Watrigant ’20, ’21]

*trees, graphs of bounded tree-width

* bounded clique-width (rank-width) graphs

* unit interval graphs

* strong products of two graphs of bounded tww, one with bounded
degree

*Q(log n)-subdivision of all n-vertex graphs, etc.

* (subgraphs of) d-dimensional grids

« K -free unit ball graphs in dimension d

* hereditary proper subclass of permutation graphs

e posets of bounded antichain size

« K.-minor-free graphs

The class of all cubic graphs have

unbounded twin-width




given two bags:

it means in the original graph:
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all edges at least one edge,
at least one non-edge



Twin-width of a graph

A d-contraction sequence of G =

a sequence of partitions
P ={{v:veVG)},PL, _...P, ..., ={V(G)} such that & is

obtained from P, ; by merging two parts

and the max red degree of each quotient graph G/, is at most d.

Twin-width of G =

the smallest d s.t. 4 d-partition sequence of G.




Stable under basic operations

. Closed under complement: tww(G) = tww(G)

e tww(H) < tww(G) if H is an induced subgraph of G

 Color an arbitrary vertex set U C V(G) and add an apex to U.
tww(GY) <2 - tww(G)



« tWwW(GX H) L f(tww(G), tww(H), A(H))
e TJaking a subgraph can increase the twin-width arbitrarily.

» If G is K, ~free for some t: tww(G') < f(tww(G), 1) for G'C G



« tWwW(GX H) L f(tww(G), tww(H), A(H))

e TJaking a subgraph can increase the twin-width arbitrarily.

» If G is K, ~free for some t: tww(G') < f(tww(G), 1) for G'C G

Product Structure Theorem for graphs of Euler genus g
[Dujmovic, Joret, Micek, Morin, Ueckerdt, Wood 2020]

Every graph of Euler genus g is a subgraph of

H IZ' P Izl KmaX{Zg,3}

where H is an apex graph of tree-width at most 4, P a path.




Bounds for graphs on surfaces

Planar

from (|mpI|C|t) 21000 to 583 [Bonnet, Kwon, Wood *22],
to 183 [yacob, Pilipczuk '22], tO 37 [Bekos, Da Lozzo, Hlineny, Kaufmann ’22],

to 8 [Hiineny, Jedelsky *22].
A simple proof for 11 to be presented tomorrow.

Exists a planar graph with twin-width 7 [kral, Lamaison *22].

Euler genus g
218g +0(1) to 18\/ 47g + 0(1) [Kral, Pekarkova, Storgel '23].



Bounds for graphs on surfaces

Planar

from (|mpI|C|t) 21000 to 583 [Bonnet, Kwon, Wood "22],
to 183 [Jacob, Pilipczuk '22], to 37 [Bekos, Da Lozzo, Hlineny, Kaufmann ’22],

to 8 [Hiineny, Jedelsky *22].
A simple proof for 11 to be presented tomorrow.

Exists a planar graph with twin-width 7 [kral, Lamaison *22].

Euler genus g
218g +0(1) to 18\/ 47g + 0(1) [Krél, Pekarkova, Storgel '23].

This approach does not extend to minor-closed

families in general.




Grid Minor Theorem for
twin-width



Contraction on matrices
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Twin-width of a matrix

tww(M) < d if 3 a contraction sequence fromMto1x1

consisting of matrices with <d
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Twin-width of a matrix

delete one row, replace the inconsistent entries by “R”

tww(M) < d if 3 a contraction sequence fromMto1x1

consisting of matrices with <d

A

maximum number of “R”s over all rows and columns




Twin-width of a matrix

tww(M) < d if 3 a contraction sequence fromMto1x1

consisting of matrices with <d



Partition viewpoint on matrices

1111 1)1|1]1}|0 1111 1)1|111{0
O0f1]1 0]0]1]0]1 O|1]1 0f|0|1]0]1
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1101 1|11j0]0]|1 '1]0]1 1]1|0]0|1]

Reorder columns and rows ~ we merge only consecutive rows / columns
call it “twin-ordered” matrix

Merging rows < “coarsening” row division by merging two row parts
red entry < “cell” (row part n column part) is not “constant”



Twin-width of a matrix

tww(M) < d if for some M’ obtained by a reordering of

columns and rows, 3 a sequence of divisions from m x n-
division of M’ to 1 x 1-division with <d




Twin-width of a matrix

a non-constant cell is marked in “ERROR”

tww(M) < d if for some M’ olptained by a reordering of

columns and rows, 3 a sequence of divisions from m x n-
division of M’ to 1 x 1-division with <d




Twin-width of a matrix

a non-constant cell is marked in “ERROR”

tww(M) < d if for some M’ olptained by a reordering of

columns and rows, 3 a sequence of divisions from m x n-
division of M’ to 1 x 1-division with <d

A

maximum number of “ERROR”s over all row and column parts




Twin-width of a matrix

tww(M) < d if for some M’ obtained by a reordering of

columns and rows, 3 a sequence of divisions from m x n-
division of M’ to 1 x 1-division with <d




INOor

dm

mixe

3-mixed minor = 3 x 3 division in which each cell is “mixed”

t-mixed free if M does not have t-mixed minor



Grid Theorem for Twin-width

[Bonnet, K. Thomasseé, Watrigant 2020]

For a twin-ordered matrix M, we have

mxn(M) — 1 y 20U

< tww(M) <

2

mxn(M )=largest size of a mixed minor



Grid Theorem for Twin-width

[Bonnet, K. Thomasseé, Watrigant 2020]

For a twin-ordered matrix M, we have
mxn(M) — 1

2

< tww(M) < 227"

mxn(M )=largest size of a mixed minor

twin-width(G) is small

|

there is a vertex ordering < s.t.
ad] _(G) does not have a large mixed minor.




Kt-minor-free graphs have bd tww

 |f 3 Hamiltonian path o, As has no 2t-mixed-minor; if it has...

Kt,t-minor model

last t parts



Kt-minor-free graphs have bd tww

 |f 3 Hamiltonian path o, As has no 2t-mixed-minor; if it has...

Kt,t-minor model

last t parts

* General case can be proved using the discovery order of Lex-DFS as o.



Unit Interval Graphs have bd tww

left-to-right ordering by the left endpoint of the unit interval
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Unit Interval Graphs have bd tww

left-to-right ordering by the left endpoint of the unit interval
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no 3-mixed grid



Interval Graphs have unbounded tww
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Can we use a different vertex order? Well...

The collection of all permutations are
‘encoded’ in the class of interval graphs.

The idea is formalized by the notion of
‘FO-interpretation/transduction’.



Interval Graphs have unbounded tww
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Can we use a different vertex order? Well...

The collection of all permutations are
‘encoded’ in the class of interval graphs.

The idea is formalized by the notion of
‘FO-interpretation/transduction’.



First-Order
Model Checking



[Bonnet, K, Thomasseé, Watrigant ’20]

FO model checkin Can
be done in time f(d,|¢

when a d-contraction sequence is glven



[Bonnet, K, Thomasseé, Watrigant ’20]

Input: a graph G, first-order sentence ¢.
Question: G = c]>7

FO model Checkln Can
be done in time f(d,|¢

when a d-contraction sequence is glven.

D :=dx;dx,---dx, Vu \/ ((xl- =u) Vv E(x, u))
1<i<k
~ G E @ iff G has a dominating set of size k.



FO-model checking is FPT skrw20)

dense classes

Guillemot, Marx '14
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FO-model checking is FPT skrw20)

dense classes sparse classes

Grohe, Kreutzer, Siebertz ‘17
bounded
twin-width

nowhere
dense

Dvorak, Kral, Thomas ‘13 T

Guillemot, Marx ’14

permutations bounded bounded
avoiding a fixed posets of expansnon degree
| pattern bounded width

Seese ‘96

T G+15

CMR'00(  pounded - : proper

clique-width unitinterva mmor-closed Flum, Grohe ‘o1
T T graphs T

bounded A [ co-graphs ) [ bounded j ( planar )

linear clique- tree-width Frick, Grohe ‘o1
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FO-transduction:

further extending the realm of
twin-width



FO-interpretation: adding new relation via
FO-logic



FO-interpretation: adding new relation via
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t:G = (V,E) - Two-edge colored graph (V, EU D)
s.t. the new binary relation D is the set of
“all pairs of V X V satisfying an FO-formula ¢(x, y)”
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FO-interpretation: adding new relation via
FO-logic

t:G = (V,E) - Two-edge colored graph (V, EU D)
s.t. the new binary relation D is the set of
“all pairs of V X V satisfying an FO-formula ¢(x, y)”

e 7(x,y) ;= E(x,y) Vv dz(E(x,z) A E(z,y)); square

e 7(x,y) = " E(x,y); complement

FO-interpretation 7 of a graph class

(€)= {71(G) : G € €}

If 9 C 7(€), “6E (FO-)interprets U
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FO-interpretation + introduce “unary relations”

N\: G = (V,E) = graph (V, S, E) for some vertex subset S
Now, you can query [v € JS].
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FO-transduction:
FO-interpretation + introduce “unary relations”

N\: G = (V,E) = graph (V, S, E) for some vertex subset S
Now, you can query [v € JS].

FO-transduction = a finite sequence of colorings
& FO-interpretations

e Linear order on the left set
4 (i.e. transitive tournament)

L

X
Bl
. //,// « Color the right-hand side set by Y.

=0
> /////////. > e p(a,b) :=Na)NYDNDbL)NY

L
d * R,=1{(1,2),(1,3),---,(3,4)}

i

|

half-graph



[Bonnet, K, Thomasseé, Watrigant ’20]

Twin-width Is stable
under FO-transduction.



[Bonnet, K, Thomasseé, Watrigant ’20]

Twin-width Is stable
under FO-transduction.

Read as: start from a graph class of bounded twin-width and
apply an FO-transduction. The obtained class has bounded twin-
width (depending on the first tww, and the transduction).



When twin-width is THE
right measure



Permutation

[BKTW’20] Let € be a hereditary class of permutations.
Either € is the class of all permutations, or
€ avoids some pattern AND has bounded twin-width.

c=312

Suppose there exists a permutation o & 6.

Then for every & € €, its matrix representation
does NOT have | o | -mixed minor.

o/w, because € is hereditary, any permutation of

length | o| - including o itself - can be found ]

as a sub-permutation, thus included in & due to

hereditary property.




Interval Graph

< = vertex ordering by lex order on the interval ({(v), r(v))
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On B, we can interpret two different linear orders = permutation 23514
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Interval Graph

< = vertex ordering by lex order on the interval ({(v), r(v))

G Cot
Boy ]
—_— B,

1 {10/ 0| 0| O

1 (1110 0| O ] |
1 (111110

w.log. B<C

10 0| 0|0 | O
1(1]1]10| O

C

If there is no upper bound on the mixed minor size of a hereditary class &
of interval graphs, all permutations can be transduced from 6.




When twin-width is the right measure

[BKTW’20, BGOdSTT’21, HP’22, BCKKLT’22, GT’23]

The followings are equivalent (under some complexity

assumption) for a hereditary class € consisting of interval
graphs | permutations | ordered graphs | tournaments
| circle graphs | rooted directed path graphs.

1. FO model-checking is FPT on 6.

2. € has bounded twin-width.

3. € does NOT FO-transduce the class of all graphs.
4. The growth of & is 29",




Unwinding a contraction
sequence



7(G) < (d + 2)?"! via unwinding

@ = 2, i.e. triangle-free G.
Consider the contraction sequence G, ..., G;,{, G;, ..., G| backwardly.

u inherits the color of z. Let’s decide the color of v.
c(v) = c(z) if (u, v) is non-adjacent in G, ; ; proper coloring

v gets the smallest available color if (&, v) is black/red-adjacent in G;




d+2 colors suffice

e

I

z incident with red edges only — v has black+red degree < d+1in G,



y-bounding function for twin-width

[Bonnet, Geniet, Kim, Thomassé, Watrigant ’21])(-b0u nded .
[Pilipczuk, Sokotowski *22] )(—bounded by quasi—polynomial.
[Bourneuf, Thomassé 23] )(‘bounded by p0|yn0mia|.

Gajarsky, Pilipczuk, Toruriczyk] lIN€@rly y-bounded when sparse.



Twisting twin-width



Cligue-width via contraction sequence

... S.t. any red component has bounded size
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Cligue-width via contraction sequence

... S.t. any red component has bounded size

O—O——CO——0
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) O
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Characterization via twin-width’ friends

dense classes

bounded
twin-width

A

bounded

contraction sequence with
0 clique-width

bounded red component size

contraction sequence with
bounded red edges

bounded linear
clique-width

sparse classes

MONOTONE &
0 contraction sequence following
a “tree order”

minor-closed

bounded
tree-width

SPARSE &

0 contraction sequence with
bounded red component size

bounded SPARSE &
Ath-width 0 contraction sequence with
0 bounded red edges

[Bonnet, Kim, Reinald, Thomasseée 2022]



Concluding Remarks

* Other cool tools not covered here, leading to applications in
logic, data structure, labeling scheme, structural insights, etc.

* We still do not know how to compute f(d)-contraction sequence
when the input has tww d in FPT, even in XP time.

e Twin-width for non-binary relation, e.g. hypergraphs?
e EXxplicit construction of cubic graphs of unbounded twin-width.

* O(1)-approximation for Max Independent Set on bounded tww?
(implies PTAS)



Thank you!



