Twin-width and its implications

Eunjung KIM,
 LAMSADE / CNRS, Université Paris-Dauphine

European Conference on Combinatorics, Graph Theory and Applications
(EUROCOMB'23)
28 August 2023, Prague, Czech Republic

Contraction in a trigraph

Trigraph has three types of adjacency: (black) edge, non-edge, red edge Identification of two vertices, not-necessarily adjacent

- edges with $N(u) \triangle N(v)$ turn red
- red edges stay red

Contraction Sequence

A contraction sequence of $G=$
a sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{1}=$ single-vertex graph such that G_{i} is obtained from G_{i+1} by one contraction

Contraction Sequence

A d-contraction sequence of $G=$
a sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{1}=$ single-vertex graph such that G_{i} is obtained from G_{i+1} by one contraction and the max red degree of each G_{i} is at most d.

2-contraction sequence

Twin-width of a graph

Twin-width of $\mathrm{G}=$
the smallest d s.t. \exists d-contraction sequence of G.

What is the (upper-bound of) twin-width of ...

- clique?
- disjoint union of G and H ?
- complete join of G and H ?
- cograph?
- path?
- tree?

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Generalization to bounded treewidth and even bounded rank-width

Grids

4-sequence for planar grids

Key Messages

1. Twin-width captures many known graph classes, both spare and dense.
2. With twin-width, there is a rich toolbox to investigate graph properties, be it algorithmic, structural, or logical.
3. There are much to be done (by you).

Graph classes of small twin-width [Bonnet, Geniat, K, Thomassé, Watrigant '20, '21]

- trees, graphs of bounded tree-width
- bounded clique-width (rank-width) graphs
- unit interval graphs
- strong products of two graphs of bounded tww, one with bounded degree
- $\Omega(\log n)$-subdivision of all n-vertex graphs, etc.
-(subgraphs of) d-dimensional grids
- K_{t}-free unit ball graphs in dimension d
- hereditary proper subclass of permutation graphs
- posets of bounded antichain size
- K_{t}-minor-free graphs
- square of planar graphs
- map graphs
- k-planar graphs
- bounded degree string graphs

Graph classes of small twin-width [Bonnet, Geniat, K, Thomassé, Watrigant '20, '21]

- trees, graphs of bounded tree-width
- bounded clique-width (rank-width) graphs
- unit interval graphs
- strong products of two graphs of bounded tww, one with bounded degree
- $\Omega(\log n)$-subdivision of all n-vertex graphs, etc.
- (subgraphs of) d-dimensional grids
- K_{t}-free unit ball graphs in dimension d
- hereditary proper subclass of permutation graphs
- posets of bounded antichain size
- K_{t}-minor-free graphs
- square of planar graphs
- map graphs
- k-planar graphs
- bounded degree string graphs

The class of all cubic graphs have unbounded twin-width
given two bags:

it means in the original graph:

no edge

all edges

at least one edge, at least one non-edge

Twin-width of a graph

A d-contraction sequence of $G=$
a sequence of partitions
$\mathscr{P}_{n}=\{\{v\}: v \in V(G)\}, \mathscr{P}_{n-1}, \ldots, \mathscr{P}_{i}, \ldots, \mathscr{P}_{1}=\{V(G)\}$ such that \mathscr{P}_{i} is obtained from P_{i+1} by merging two parts and the max red degree of each quotient graph G / \mathscr{P}_{i} is at most d.

Twin-width of $\mathrm{G}=$
the smallest d s.t. $\exists \mathrm{d}$-partition sequence of G .

Stable under basic operations

- Closed under complement: $t w w(G)=t w w(\bar{G})$
- tww($H) \leq t w w(G)$ if H is an induced subgraph of G
- Color an arbitrary vertex set $U \subseteq V(G)$ and add an apex to U. $t w w\left(G^{U}\right) \leq 2 \cdot t w w(G)$
- $t w w(G \boxtimes H) \leq f(t w w(G), t w w(H), \Delta(H))$
- Taking a subgraph can increase the twin-width arbitrarily.
- If G is $K_{t, t}$-free for some t: $t w w\left(G^{\prime}\right) \leq f(t w w(G), t)$ for $G^{\prime} \subseteq G$
- $t w w(G \boxtimes H) \leq f(t w w(G), t w w(H), \Delta(H))$
- Taking a subgraph can increase the twin-width arbitrarily.
- If G is $K_{t, t}$-free for some t: $t w w\left(G^{\prime}\right) \leq f(t w w(G), t)$ for $G^{\prime} \subseteq G$

Product Structure Theorem for graphs of Euler genus g
[Dujmovič, Joret, Micek, Morin, Ueckerdt, Wood 2020]
Every graph of Euler genus g is a subgraph of

$$
H \boxtimes P \boxtimes K_{\max \{2 g, 3\}}
$$

where H is an apex graph of tree-width at most $4, \mathrm{P}$ a path.

Bounds for graphs on surfaces

Planar

from (implicit) 2^{1000} to 583 [Bonnet, Kwon, Wood '22],
to 183 [Jacob, Pilipczuk '22], to 37 [Bekos, Da Lozzo, Hlineny, Kaufmann '22],
to 8 [Hlineny, Jedelsky '22].
A simple proof for 11 to be presented tomorrow.
Exists a planar graph with twin-width 7 [Kral, Lamaison '22].

Euler genus g
$2^{18 g+O(1)}$ to $18 \sqrt{47 g}+O(1)$ KKrál, Pekárkováá, Storgel ' 23$]$.

Bounds for graphs on surfaces

Planar

from (implicit) 2^{1000} to 583 [Bonnet, Kwon, Wood '22],
to 183 [Jacob, Pilipczuk '22], to 37 [Bekos, Da Lozzo, Hlineny, Kaufmann '22],
to 8 [Hineny, Jedelsky '22].
A simple proof for 11 to be presented tomorrow.
Exists a planar graph with twin-width 7 [Kral, Lamaison '22].

Euler genus g

$2^{18 g+O(1)}$ to $18 \sqrt{47 g}+O(1)$ [Král, Pekárková, Storgel '23].

This approach does not extend to minor-closed families in general.

Grid Minor Theorem for twin-width

Contraction on matrices

$\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{ll|l|l|l|lll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Twin-width of a matrix

$t w w(M) \leqslant d$ if \exists a contraction sequence from M to 1×1
consisting of matrices with red number $\leqslant d$

Twin-width of a matrix

delete one row, replace the inconsistent entries by " R "

$t w w(M) \leqslant d$ if \exists a contraction sequence from M to 1×1 consisting of matrices with red number $\leqslant \mathbf{d}$

Twin-width of a matrix

delete one row, replace the inconsistent entries by " R "

$t w w(M) \leqslant d$ if \exists a contraction sequence from M to 1×1 consisting of matrices with red number $\leqslant \mathbf{d}$

```
maximum number of " \(R\) "s over all rows and columns
```


Twin-width of a matrix

$t w w(M) \leqslant d$ if \exists a contraction sequence from M to 1×1
consisting of matrices with red number $\leqslant d$

Partition viewpoint on matrices

$\left[\begin{array}{lll|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Reorder columns and rows \rightarrow we merge only consecutive rows / columns call it "twin-ordered" matrix

Merging rows \Leftrightarrow "coarsening" row division by merging two row parts red entry \Leftrightarrow "cell" (row part n column part) is not "constant"

Twin-width of a matrix

$\mathbf{t w w}(\mathbf{M}) \leqslant \mathbf{d i f}$ for some \mathbf{M}^{\prime} obtained by a reordering of
columns and rows, \exists a sequence of divisions from $m \times n-$ division of M' to $\mathbf{1 x}$ 1-division with max error value $\leqslant \mathbf{d}$

Twin-width of a matrix

Twin-width of a matrix

Twin-width of a matrix

$\mathbf{t w w}(\mathbf{M}) \leqslant \mathbf{d i f}$ for some \mathbf{M}^{\prime} obtained by a reordering of
columns and rows, \exists a sequence of divisions from $m \times n-$ division of M' to $\mathbf{1 x}$ 1-division with max error value $\leqslant \mathbf{d}$

mixed minor

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hdashline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

3 -mixed minor $=3 \times 3$ division in which each cell is "mixed" t -mixed free if M does not have t -mixed minor

Grid Theorem for Twin-width

[Bonnet, K. Thomassé, Watrigant 2020]

$$
\begin{aligned}
& \text { For a twin-ordered matrix M, we have } \\
& \frac{\operatorname{mxn}(M)-1}{2} \leq t w w(M) \leq 2^{2^{O(\operatorname{mxn}(M))}}
\end{aligned}
$$

$m \times n(M)=$ largest size of a mixed minor

Grid Theorem for Twin-width

[Bonnet, K. Thomassé, Watrigant 2020]

$$
\begin{aligned}
& \text { For a twin-ordered matrix M, we have } \\
& \frac{\operatorname{mxn}(M)-1}{2} \leq t w w(M) \leq 2^{2^{O(m x n(M))}}
\end{aligned}
$$

$m \times n(M)=$ largest size of a mixed minor

twin-width(G) is small

there is a vertex ordering $<$ s.t. $\operatorname{adj}_{<}(G)$ does not have a large mixed minor.

Kt-minor-free graphs have bd tww

- If \exists Hamiltonian path $\sigma, \mathrm{A}_{\sigma}$ has no 2t-mixed-minor; if it has...

Kt-minor-free graphs have bd tww

- If \exists Hamiltonian path $\sigma, \mathrm{A}_{\sigma}$ has no 2t-mixed-minor; if it has...

- General case can be proved using the discovery order of Lex-DFS as σ.

Unit Interval Graphs have bd tww

left-to-right ordering by the left endpoint of the unit interval

Unit Interval Graphs have bd tww

left-to-right ordering by the left endpoint of the unit interval

no 3-mixed grid

Interval Graphs have unbounded tww

1								
			1					
						1		
	1							
				1				
							1	
		1						
					1			
								1

Can we use a different vertex order? Well...
The collection of all permutations are 'encoded' in the class of interval graphs.

The idea is formalized by the notion of 'FO-interpretation/transduction'.

Interval Graphs have unbounded tww

1								
1	1	1	1					
1	1	1	1	1	1	1		
1	1							
1	1	1	1	1				
1	1	1	1	1	1	1	1	
1	1	1						
1	1	1	1	1	1			
1	1	1	1	1	1	1	1	1

Can we use a different vertex order? Well...
The collection of all permutations are 'encoded' in the class of interval graphs.

The idea is formalized by the notion of 'FO-interpretation/transduction'.

First-Order Model Checking

[Bonnet, K, Thomassé, Watrigant '20]

FO model checking can be done in time $f(d,|\phi|) \cdot n$ when a d-contraction sequence is given.

[Bonnet, K, Thomassé, Watrigant '20]

Input: a graph G, first-order sentence ϕ. Question: $\mathrm{G} \vDash \phi$?

 FO model checking can

 FO model checking can be done in time $\mathrm{f}(\mathrm{d},|\boldsymbol{\phi}|) \cdot \mathrm{n}$ be done in time $\mathrm{f}(\mathrm{d},|\boldsymbol{\phi}|) \cdot \mathrm{n}$ when a d-contraction sequence is given.

$$
\begin{aligned}
& \Phi:=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall u \bigvee_{1 \leq i \leq k}\left(\left(x_{i}=u\right) \vee E\left(x_{i}, u\right)\right) \\
& \leadsto \mathrm{G} \models \Phi \text { iff } \mathrm{G} \text { has a dominating set of size } \mathrm{k} .
\end{aligned}
$$

FO-model checking is FP' $_{\left[B K T W^{20]}\right.}$

dense classes

$\underbrace{\text { Guillemot, Marx ' } 14}$| permutations |
| :---: |
| avoiding a fixed |
| pattern |${ }^{\text {G }}$

Grohe, Kreutzer, Siebertz'17 sparse classes

FO-model checking is FP' $_{\left[B K T W^{20]}\right.}$

FO-transduction:

further extending the realm of twin-width

FO-interpretation: adding new relation via FO-logic

FO-interpretation: adding new relation via FO-logic

$\tau: G=(V, E) \rightarrow$ Two-edge colored graph $(V, E \cup D)$
s.t. the new binary relation D is the set of
"all pairs of $V \times V$ satisfying an FO-formula $\varphi(x, y)$ "

FO-interpretation: adding new relation via FO-logic

$\tau: G=(V, E) \rightarrow$ Two-edge colored graph $(V, E \cup D)$
s.t. the new binary relation D is the set of "all pairs of $V \times V$ satisfying an FO-formula $\varphi(x, y)$ "

- $\tau(x, y):=E(x, y) \vee \exists z(E(x, z) \wedge E(z, y))$; square
- $\tau(x, y)=\neg E(x, y)$; complement

FO-interpretation: adding new relation via FO-logic

$\tau: G=(V, E) \rightarrow$ Two-edge colored graph $(V, E \cup D)$
s.t. the new binary relation D is the set of
"all pairs of $V \times V$ satisfying an FO-formula $\varphi(x, y)$ "

- $\tau(x, y):=E(x, y) \vee \exists z(E(x, z) \wedge E(z, y))$; square
- $\tau(x, y)=\neg E(x, y)$; complement

FO-interpretation τ of a graph class

$$
\tau(\mathscr{C})=\{\tau(G): G \in \mathscr{C}\}
$$

FO-interpretation: adding new relation via FO-logic

$\tau: G=(V, E) \rightarrow$ Two-edge colored graph $(V, E \cup D)$
s.t. the new binary relation D is the set of
"all pairs of $V \times V$ satisfying an FO-formula $\varphi(x, y)$ "

- $\tau(x, y):=E(x, y) \vee \exists z(E(x, z) \wedge E(z, y))$; square
- $\tau(x, y)=\neg E(x, y)$; complement

FO-interpretation τ of a graph class

$$
\tau(\mathscr{C})=\{\tau(G): G \in \mathscr{C}\}
$$

$$
\text { If } \mathscr{D} \subseteq \tau(\mathscr{C}), " \mathscr{C} \text { (FO-)interprets } \mathscr{D} "
$$

FO-transduction: FO-interpretation + introduce "unary relations"

> $\Lambda: G=(V, E) \rightarrow$ graph (V, S, E) for some vertex subset S Now, you can query $[v \in S]$.

FO-transduction: FO-interpretation + introduce "unary relations"

$$
\begin{aligned}
\Lambda: \mathrm{G}=(\mathrm{V}, \mathrm{E}) & \rightarrow \text { graph }(\mathrm{V}, \mathrm{~S}, \mathrm{E}) \text { for some vertex subset } \mathrm{S} \\
& \text { Now, you can query }[v \in S] .
\end{aligned}
$$

FO-transduction = a finite sequence of colorings
\& FO-interpretations

FO-transduction:
 FO-interpretation + introduce "unary relations"

$\Lambda: \mathrm{G}=(\mathrm{V}, \mathrm{E}) \rightarrow$ graph $(\mathrm{V}, \mathrm{S}, \mathrm{E})$ for some vertex subset S

Now, you can query $[v \in S]$.

FO-transduction = a finite sequence of colorings
 \& FO-interpretations

- Linear order on the left set (i.e. transitive tournament)
- Color the right-hand side set by Y.
- $\varphi(a, b):=N(a) \cap Y \supset N(b) \cap Y$
- $R_{\varphi}=\{(1,2),(1,3), \cdots,(3,4)\}$
[Bonnet, K, Thomassé, Watrigant '20]

Twin-width is stable under FO-transduction.

[Bonnet, K, Thomassé, Watrigant '20]

Twin-width is stable under FO-transduction.

Read as: start from a graph class of bounded twin-width and apply an FO-transduction. The obtained class has bounded twinwidth (depending on the first tww, and the transduction).

When twin-width is THE right measure

Permutation

[BKTW'20] Let \mathscr{C} be a hereditary class of permutations. Either \mathscr{C} is the class of all permutations, or \mathscr{C} avoids some pattern AND has bounded twin-width.

$$
\sigma=312
$$

Suppose there exists a permutation $\sigma \notin \mathscr{C}$.

Then for every $\pi \in \mathscr{C}$, its matrix representation does NOT have $|\sigma|$-mixed minor.
o/w, because \mathscr{C} is hereditary, any permutation of length $|\sigma|$ - including σ itself - can be found as a sub-permutation, thus included in \mathscr{C} due to hereditary property.

Interval Graph

$<=$ vertex ordering by lex order on the interval $(l(v), r(v))$

1	10	0	0	0
1	1	10	0	0
1	1	1	1	10
10	0	0	0	0
1	1	1	10	0

On B, we can interpret two different linear orders = permutation 23514

Interval Graph

$<=$ vertex ordering by lex order on the interval $(l(v), r(v))$

	1	10	0	0	0
	1	1	10	0	0
	1	1	1	1	10
	10	0	0	0	0
	1	1	1	10	0

On B, we can interpret two different linear orders = permutation 23514

Interval Graph

$<=$ vertex ordering by lex order on the interval $(l(v), r(v))$

1	10	0	0	0
1	1	10	0	0
1	1	1	1	10
10	0	0	0	0
1	1	1	10	0

On B, we can interpret two different linear orders = permutation 23514

Interval Graph

$<=$ vertex ordering by lex order on the interval $(l(v), r(v))$

3	1	10	0	0	0
1	1	10	0	0	
1	1	1	1	10	
10	0	0	0	0	
1	1	1	10	0	

C
If there is no upper bound on the mixed minor size of a hereditary class \mathscr{C} of interval graphs, all permutations can be transduced from \mathscr{C}.

When twin-width is the right measure

[BKTW'20, BGOdSTT'21, HP'22, BCKKLT'22, GT'23]
The followings are equivalent (under some complexity assumption) for a hereditary class \mathscr{C} consisting of interval graphs | permutations | ordered graphs | tournaments | circle graphs | rooted directed path graphs.

1. FO model-checking is FPT on \mathscr{C}.
2. \mathscr{C} has bounded twin-width.
3. \mathscr{C} does NOT FO-transduce the class of all graphs.
4. The growth of \mathscr{C} is $2^{O(n)}$.

Unwinding a contraction sequence

$\chi(G) \leq(d+2)^{\omega-1}$ via unwinding
$\omega=2$, i.e. triangle-free G.
Consider the contraction sequence $G_{n}, \ldots, G_{i+1}, G_{i}, \ldots, G_{1}$ backwardly.
u inherits the color of z . Let's decide the color of v .

$$
c(v)=c(z) \text { if }(u, v) \text { is non-adjacent in } G_{i+1} ; \text { proper coloring }
$$

v gets the smallest available color if (u, v) is black/red-adjacent in G_{i+1}

\mathbf{z} incident with a black edge $\rightarrow z(G)$ independent $\rightarrow u$ and v non-adjacent in G_{i+1}

\mathbf{z} incident with red edges only $\rightarrow v$ has black+red degree $\leq d+1$ in G_{i+1}

χ-bounding function for twin-width

[Bonnet, Geniet, Kim, Thomassé, Watrigant '21] χ-bounded.
[Pilipczuk, Sokotowski '22] χ-bounded by quasi-polynomial.
[Bourneuf, Thomassé '23] χ-bounded by polynomial.
[Gajarský, Pilipczuk, Toruńczyk] linearly χ-bounded when sparse.

Twisting twin-width

Clique-width via contraction sequence

... s.t. any red component has bounded size

Clique-width via contraction sequence

... s.t. any red component has bounded size

A graph class C has bounded clique-width if and only if

C has bounded component twin-width

Characterization via twin-width' friends

sparse classes

[Bonnet, Kim, Reinald, Thomassé 2022]

Concluding Remarks

- Other cool tools not covered here, leading to applications in logic, data structure, labeling scheme, structural insights, etc.
- We still do not know how to compute $f(d)$-contraction sequence when the input has tww d in FPT, even in XP time.
- Twin-width for non-binary relation, e.g. hypergraphs?
- Explicit construction of cubic graphs of unbounded twin-width.
- O(1)-approximation for Max Independent Set on bounded tww? (implies PTAS)

Thank you!

