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Drawing posets

poset with ...

non-planar diagram planar cover graph



Dimension
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Dimension of P is the minimum d such that there are d
linear extensions Ly, ..., Ly of P with p— m L
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Dimension: Geometric view

Dimension of P is the least d such that P is isomorphic to

a subposet of RY



Why dimension?

A natural notion...

...with interesting connections, e.g.:

Incidence posets:

L

Schnyder 1989
G planar & dim(Pg) <3
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Standard examples have large dimension

If P contains Si then dim(P) > k

Standard example number se(P): Largest k s.t. P contains Sy

dim(P) > se(P)



Posets with large dimension but no big standard example

Interval orders

Interval orders = posets with no S,

Universal interval order U,: all intervals [/, ] with 1 </ < j < n.

dim(U,) > log, logo n



x-Boundedness and dim-boundedness

chromatic number <« dimension

cliqgues «~ standard examples

Family G of graphs is x-bounded if there exists f : R — R s.t.
X(G) < f(w(G)) forall G € G

Family P of posets is dim-bounded if there exists f : R — R s.t.
dim(P) < f(se(P)) for all P € P



Dimension as a hypergraph coloring problem

Dimension = least number of linear extensions reversing
all incomparable pairs (a, b)

by by b3
Alternating cycle: Incomparable pairs
(a1, b1), ..., (ak, bx) s.t. ai <p b1
Vi (cyclically)

a; a2 as

Lemma: Set / of incomparable pairs can be reversed
with one linear extension < [ has no alternating cycle

Hypergraph H.:
e vertex set = { incomparable pairs }
e hyperedges < alternating cycles
e x(H) = dim(P)



Dimension as a hypergraph coloring problem

Dimension = least number of linear extensions reversing
all incomparable pairs (a, b)

by by b3
Alternating cycle: Incomparable pairs
(a1, b1), ..., (ak, bx) s.t. ai <p b1
Vi (cyclically)

a; a2 as

Lemma: Set / of incomparable pairs can be reversed
with one linear extension < [ has no alternating cycle

Hypergraph H.:
e vertex set = { incomparable pairs }
e hyperedges < alternating cycles
e x(H) = dim(P) i 2 3
e cliques <> standard examples
L e

1 2 3
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What is this talk about?

“If a poset is nice then its dimension is small”

planar?
bounded treewidth?

("Trotter and Moore 1977
kIf cover graph of P is a forest then dim(P) < 3

( Felsner, Trotter, Wiechert 2015
|_If cover graph of P is outerplanar then dim(P) <4

rJ., Micek, Trotter, Wang, Wiechert 2014
|_If cover graph of P has treewidth < 2 then dim(P) < 1276

(Seweryn 2020
\lf cover graph of P has treewidth < 2 then dim(P) < 12




Kelly's example



Kelly's example

planar posets with arbitrarily large dimension

cover graphs have treewidth 3
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What now?

1. Are planar posets dim-bounded?
Posets with planar cover graphs?

Conjecture ( ): Yes and yes

2. Are posets with cover graphs of bounded treewidth
dim-bounded?

3. What properties of cover graphs imply bounded dimension?



Posets with planar cover graphs

Blake, Hodor, Micek, Seweryn, Trotter 2023+
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Posets with planar cover graphs

Blake, Hodor, Micek, Seweryn, Trotter 2023+
Posets with planar cover graphs are dim-bounded

(" Blake, Hodor, Micek, Seweryn, Trotter 2023+
If P has a planar cover graph then dim(P) < 20(se(P)

Blake, Hodor, Micek, Seweryn, Trotter 2023+
If P has a planar diagram then dim(P) < 128se(P) + O(1)
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Posets with cover graphs of bounded treewidth

J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with cover graphs of bounded treewidth are dim-bounded
J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with bounded cliquewidth are dim-bounded

New tool: Colcombet's factorization theorem



Graph cliquewidth

Build graph G using 4 operations:

> create new vertex v with label /

v

disjoint union of two labeled graphs

» put all edges between vertices
labeled / and vertices labeled j (i # J)

» rename label / to

Cliquewidth: min. number of labels needed



Graph cliquewidth

Build graph G using 4 operations:

> create new vertex v with label /

v

disjoint union of two labeled graphs

» put all edges between vertices
labeled / and vertices labeled j (i # J)

» rename label / to

Cliquewidth: min. number of labels needed

Poset cliquewidth: Same for posets
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Colcombet’s Theorem a- By dk=a B

u <t v are h-neighbors if s(u) = s(v) =h
and s(w) < h for all w with u <7 w <7 v

Split is forward Ramseyan if A(u, v) - X(¢/, V') = X(u, v) for all
pairs of h-neighbors u <7+ v and v/ <7+ V/

in particular: if u <7 v and v <7 w are h-neighbors then

Au, w) = Xu,v) - Xv,w) = Xu,v)



Colcombet’s Theorem Q- By bk—a By

u <t v are h-neighbors if s(u) = s(v) =h
and s(w) < h for all w with u <7 w <7 v

Split is forward Ramseyan if A(u, v) - X(¢/, V') = X(u, v) for all
pairs of h-neighbors u <+ v and v/ <7+ v/

in particular: if u <7 v and v <7 w are h-neighbors then

Au, w) = Xu,v) - Xv,w) = Xu,v)

Colcombet 2007
There exists a split of T of order |A| that is forward Ramseyan




Inspiration:

Bonamy and Mi. Pilipczuk 2020
Graphs of bounded cliquewidth are polynomially x-bounded

Nesetfil, Ossona de Mendez, Mi. Pilipczuk, Rabinovich, Siebertz 2021
Graphs with bounded cliquewidth excluding some half-graph as
a semi-induced subgraph are linearly x-bounded

J., Micek, Mi. Pilipczuk, Walczak 2023
Posets with bounded cliquewidth are dim-bounded




Absolute bounds on dimension
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Absolute bounds on dimension

Trotter and Moore 1977

If cover graph of P has no K3 minor then dim(P) < 3

Seweryn 2020

If cover graph of P has no K4 minor then dim(P) < 12
Ls

Huynh, J., Micek, Seweryn, Wollan 2022

If cover graph of P has no L, minor then dim(P) < f(k)

Can we characterize minor-closed graph classes G s.t. posets with
cover graphs in G have bounded dimension?
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example




Kelly’'s examples again

J., Micek, Mi. Pilipczuk, Walczak 2023

Fix a minor-closed graph class G.

Then posets with cover graphs in G have bounded di-
mension < G excludes the cover graph of some Kelly
example

J., Micek, Mi. Pilipczuk, Walczak 2023

For fixed t, k, every poset with large enough dimension and
whose cover graph has treewidth < t contains the Kelly example
of order k as a subposet




Boolean Dimension

Boolean realizer of P: sequence of k linear orders L4
elements of P and a k-ary Boolean function ¢ s.t.

.....

x<yinP & ¢((x<yinly),..., (x<yinLy)) =1

for all distinct x, y

bdim(P) := min. size of a Boolean realizer of P



Boolean Dimension

Boolean realizer of P: sequence of k linear orders L4
elements of P and a k-ary Boolean function ¢ s.t.

.....

x<yinP & ¢((x<yinly),..., (x<yinLy)) =1

for all distinct x, y

bdim(P) := min. size of a Boolean realizer of P

bdim(P) < dim(P)

bdim(Sy) = 4



Felsner, Mészaros, Micek 2020
Posets with cover graphs of bounded treewidth have bounded
Boolean dimension

J., Micek, Mi. Pilipczuk, Walczak 2023
Posets with bounded cliquewidth have bounded Boolean dimen-
sion
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Open problems

Conjecture: Fix a proper minor-closed graph class G. Then
posets with cover graphs in G are dim-bounded.

True for planar graphs and graphs of bounded treewidth
NB: Posets with cover graphs of maximum degree < 3 are not

dim-bounded (Felsner, Mészaros, Micek 2017)

Conjecture ( ): Posets with planar
cover graphs have bounded Boolean dimension
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