χ-Boundedness for posets

Gwenaël Joret

Université libre de Bruxelles
joint work with Piotr Micek, Michał Pilipczuk, and Bartosz
Walczak

Drawing posets

diagram

Drawing posets

diagram

Drawing posets

diagram

Drawing posets

diagram

cover graph

comparability graph

Drawing posets

poset with ...

non-planar diagram

planar cover graph

Dimension

poset \mathbf{P}
$\begin{array}{llllll}0 & d & d & b & d & b \\ 0 & c & b & d & b & d \\ 0 & b & c & c & a & a \\ 0 & a & a & a & c & c\end{array}$
linear extensions of \mathbf{P}

Dimension of \mathbf{P} is the minimum d such that there are d linear extensions L_{1}, \ldots, L_{d} of \mathbf{P} with

$$
\mathbf{P}=\bigcap_{i \in[d]} L_{i}
$$

$\operatorname{dim}\left(0_{a}^{b} 00_{c}^{d}\right) \leqslant 2$ as

Dimension: Geometric view

Dimension of \mathbf{P} is the least d such that \mathbf{P} is isomorphic to a subposet of \mathbb{R}^{d}

Why dimension?

A natural notion...
...with interesting connections, e.g.:

Incidence posets:

G

\mathbf{P}_{G}

Schnyder 1989
 G planar $\Leftrightarrow \operatorname{dim}\left(\mathbf{P}_{G}\right) \leqslant 3$

Standard examples have large dimension

$$
\operatorname{dim}\left(S_{k}\right)=k
$$

Standard examples have large dimension

$$
\operatorname{dim}\left(S_{k}\right)=k
$$

If \mathbf{P} contains S_{k} then $\operatorname{dim}(\mathbf{P}) \geqslant k$

Standard examples have large dimension

$$
\operatorname{dim}\left(S_{k}\right)=k
$$

If \mathbf{P} contains S_{k} then $\operatorname{dim}(\mathbf{P}) \geqslant k$

Standard example number se(P): Largest k s.t. \mathbf{P} contains S_{k}
$\operatorname{dim}(P) \geqslant \operatorname{se}(P)$

Posets with large dimension but no big standard example

Interval orders

Interval orders \equiv posets with no S_{2}

Universal interval order U_{n} : all intervals $[i, j]$ with $1 \leqslant i<j \leqslant n$.
$\operatorname{dim}\left(U_{n}\right) \geqslant \log _{2} \log _{2} n$

χ-Boundedness and dim-boundedness

chromatic number $\leftrightarrow \rightsquigarrow$ dimension

cliques $\leftrightarrow \rightsquigarrow$ standard examples

Family \mathcal{G} of graphs is χ-bounded if there exists $f: \mathbb{R} \rightarrow \mathbb{R}$ s.t. $\chi(G) \leqslant f(\omega(G))$ for all $G \in \mathcal{G}$

Family \mathcal{P} of posets is dim-bounded if there exists $f: \mathbb{R} \rightarrow \mathbb{R}$ s.t. $\operatorname{dim}(\mathbf{P}) \leqslant f(\operatorname{se}(\mathbf{P}))$ for all $\mathbf{P} \in \mathcal{P}$

Dimension as a hypergraph coloring problem

Dimension $=$ least number of linear extensions reversing all incomparable pairs (a, b)

Alternating cycle: Incomparable pairs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)$ s.t. $a_{i} \leqslant p b_{i+1}$ $\forall i$ (cyclically)

$$
\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}
$$

Lemma: Set / of incomparable pairs can be reversed with one linear extension $\Leftrightarrow I$ has no alternating cycle

Hypergraph \mathcal{H} :

- vertex set $=\{$ incomparable pairs $\}$
- hyperedges \leftrightarrow alternating cycles
- $\chi(\mathcal{H})=\operatorname{dim}(\mathbf{P})$

Dimension as a hypergraph coloring problem

Dimension $=$ least number of linear extensions reversing all incomparable pairs (a, b)

Alternating cycle: Incomparable pairs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)$ s.t. $a_{i} \leqslant p b_{i+1}$ $\forall i$ (cyclically)

$$
\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}
$$

Lemma: Set / of incomparable pairs can be reversed with one linear extension \Leftrightarrow I has no alternating cycle

Hypergraph \mathcal{H} :

- vertex set $=\{$ incomparable pairs $\}$
- hyperedges \leftrightarrow alternating cycles
- $\chi(\mathcal{H})=\operatorname{dim}(\mathbf{P})$
- cliques \leftrightarrow standard examples
- $\omega(\mathcal{H})=\operatorname{se}(\mathbf{P})$

What is this talk about?

"If a poset is nice then its dimension is small"

Trotter and Moore 1977

If cover graph of \mathbf{P} is a forest then $\operatorname{dim}(\mathbf{P}) \leqslant 3$

What is this talk about?

"If a poset is nice then its dimension is small"

Trotter and Moore 1977
 If cover graph of \mathbf{P} is a forest then $\operatorname{dim}(\mathbf{P}) \leqslant 3$

Felsner, Trotter, Wiechert 2015
If cover graph of \mathbf{P} is outerplanar then $\operatorname{dim}(\mathbf{P}) \leqslant 4$

What is this talk about?

"If a poset is nice then its dimension is small"

Trotter and Moore 1977
 If cover graph of \mathbf{P} is a forest then $\operatorname{dim}(\mathbf{P}) \leqslant 3$

Felsner, Trotter, Wiechert 2015
If cover graph of \mathbf{P} is outerplanar then $\operatorname{dim}(\mathbf{P}) \leqslant 4$
J., Micek, Trotter, Wang, Wiechert 2014

If cover graph of \mathbf{P} has treewidth $\leqslant 2$ then $\operatorname{dim}(\mathbf{P}) \leqslant 1276$

What is this talk about?

"If a poset is nice then its dimension is small"

Trotter and Moore 1977
 If cover graph of \mathbf{P} is a forest then $\operatorname{dim}(\mathbf{P}) \leqslant 3$

Felsner, Trotter, Wiechert 2015
If cover graph of \mathbf{P} is outerplanar then $\operatorname{dim}(\mathbf{P}) \leqslant 4$
J., Micek, Trotter, Wang, Wiechert 2014

If cover graph of \mathbf{P} has treewidth $\leqslant 2$ then $\operatorname{dim}(\mathbf{P}) \leqslant 1276$

```
Seweryn 2020
If cover graph of P}\mathrm{ has treewidth }\leqslant2\mathrm{ then }\operatorname{dim}(\mathbf{P})\leqslant1
```


What is this talk about?

"If a poset is nice then its dimension is small"

Trotter and Moore 1977
 If cover graph of \mathbf{P} is a forest then $\operatorname{dim}(\mathbf{P}) \leqslant 3$

Felsner, Trotter, Wiechert 2015
If cover graph of \mathbf{P} is outerplanar then $\operatorname{dim}(\mathbf{P}) \leqslant 4$
J., Micek, Trotter, Wang, Wiechert 2014

If cover graph of \mathbf{P} has treewidth $\leqslant 2$ then $\operatorname{dim}(\mathbf{P}) \leqslant 1276$

```
Seweryn 2020
If cover graph of P}\mathrm{ has treewidth }\leqslant2\mathrm{ then }\operatorname{dim}(\mathbf{P})\leqslant1
```

Kelly's example

Kelly 1981

Kelly's example

Kelly 1981

planar posets with arbitrarily large dimension cover graphs have treewidth 3

What now?

1. Are planar posets dim-bounded?

Posets with planar cover graphs?
Conjecture (Trotter, 1980s): Yes and yes

What now?

1. Are planar posets dim-bounded?

Posets with planar cover graphs?
Conjecture (Trotter, 1980s): Yes and yes

2. Are posets with cover graphs of bounded treewidth dim-bounded?

What now?

1. Are planar posets dim-bounded?

Posets with planar cover graphs?
Conjecture (Trotter, 1980s): Yes and yes

2. Are posets with cover graphs of bounded treewidth dim-bounded?
3. What properties of cover graphs imply bounded dimension?

Posets with planar cover graphs

Blake, Hodor, Micek, Seweryn, Trotter 2023+ Posets with planar cover graphs are dim-bounded

Posets with planar cover graphs

Blake, Hodor, Micek, Seweryn, Trotter 2023+
Posets with planar cover graphs are dim-bounded

Blake, Hodor, Micek, Seweryn, Trotter 2023+ If \mathbf{P} has a planar cover graph then $\operatorname{dim}(\mathbf{P}) \leqslant 2^{O(\text { se(P)) }}$

Posets with planar cover graphs

Blake, Hodor, Micek, Seweryn, Trotter 2023+
Posets with planar cover graphs are dim-bounded

Blake, Hodor, Micek, Seweryn, Trotter 2023+ If \mathbf{P} has a planar cover graph then $\operatorname{dim}(\mathbf{P}) \leqslant 2^{O(\text { se(P)) }}$

Blake, Hodor, Micek, Seweryn, Trotter 2023+ If \mathbf{P} has a planar diagram then $\operatorname{dim}(\mathbf{P}) \leqslant 128 \mathrm{se}(\mathbf{P})+O(1)$

Posets with cover graphs of bounded treewidth

J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with cover graphs of bounded treewidth are dim-bounded

Posets with cover graphs of bounded treewidth

J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with cover graphs of bounded treewidth are dim-bounded
J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with bounded cliquewidth are dim-bounded

Posets with cover graphs of bounded treewidth

J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with cover graphs of bounded treewidth are dim-bounded
J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with bounded cliquewidth are dim-bounded

New tool: Colcombet's factorization theorem

Graph cliquewidth

Cliquewidth: min. number of labels needed

Graph cliquewidth

Cliquewidth: min. number of labels needed

Poset cliquewidth: Same for posets

Colcombet's Theorem
 $$
\lambda(u, v)=\beta \cdot \gamma \cdot \delta
$$
 Rooted tree T

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<T v$ means " u strict ancestor of v "
For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path

Colcombet's Theorem

Rooted tree T

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "
For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Colcombet's Theorem

$$
q=3
$$

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "
For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Hierarchical factorization of T

Colcombet's Theorem

$$
q=3
$$

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "
For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Hierarchical factorization of T

Colcombet's Theorem

$$
q=3
$$

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "
For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Hierarchical factorization of T

Colcombet's Theorem

$$
q=3
$$

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "
For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Hierarchical factorization of T

Colcombet's Theorem

$$
q=3
$$

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "
For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Hierarchical factorization of T

Colcombet's Theorem

$$
q=3
$$

level 2

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "

For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Hierarchical factorization of T

Colcombet's Theorem

$$
q=3
$$

level 2

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "

For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Hierarchical factorization of T

Colcombet's Theorem

$$
q=3
$$

level 2
etc.

Edges labeled with elements of a finite semigroup (Λ, \cdot)
$u<_{T} v$ means " u strict ancestor of v "

For $u<_{T} v$, set $\lambda(u, v):=$ product of labels on u-to- v path
Split of order q : each inner node receives some number in $\{1, \ldots, q\}$

Hierarchical factorization of T

Colcombet's Theorem

$u<_{T} v$ are h-neighbors if $s(u)=s(v)=h$ and $s(w) \leqslant h$ for all w with $u<_{T} w<_{T} v$

Colcombet's Theorem

$u<_{T} v$ are h-neighbors if $s(u)=s(v)=h$ and $s(w) \leqslant h$ for all w with $u<_{T} w<_{T} v$

Split is forward Ramseyan if $\lambda(u, v) \cdot \lambda\left(u^{\prime}, v^{\prime}\right)=\lambda(u, v)$ for all pairs of h-neighbors $u<_{T} v$ and $u^{\prime}<_{T} v^{\prime}$

Colcombet's Theorem

$u<_{T} v$ are h-neighbors if $s(u)=s(v)=h$ and $s(w) \leqslant h$ for all w with $u<_{T} w<_{T} v$

Split is forward Ramseyan if $\lambda(u, v) \cdot \lambda\left(u^{\prime}, v^{\prime}\right)=\lambda(u, v)$ for all pairs of h-neighbors $u<_{T} v$ and $u^{\prime}<_{T} v^{\prime}$
in particular: if $u<_{T} v$ and $v<_{T} W$ are h-neighbors then

$$
\lambda(u, w)=\lambda(u, v) \cdot \lambda(v, w)=\lambda(u, v)
$$

Colcombet's Theorem

$u<_{T} v$ are h-neighbors if $s(u)=s(v)=h$ and $s(w) \leqslant h$ for all w with $u<_{T} w<_{T} v$

Split is forward Ramseyan if $\lambda(u, v) \cdot \lambda\left(u^{\prime}, v^{\prime}\right)=\lambda(u, v)$ for all pairs of h-neighbors $u<_{T} v$ and $u^{\prime}<_{T} v^{\prime}$
in particular: if $u<_{T} v$ and $v<_{T} W$ are h-neighbors then

$$
\lambda(u, w)=\lambda(u, v) \cdot \lambda(v, w)=\lambda(u, v)
$$

Colcombet 2007
There exists a split of T of order $|\Lambda|$ that is forward Ramseyan

Inspiration:

Bonamy and Mi. Pilipczuk 2020
 Graphs of bounded cliquewidth are polynomially χ-bounded

Nešetřil, Ossona de Mendez, Mi. Pilipczuk, Rabinovich, Siebertz 2021 Graphs with bounded cliquewidth excluding some half-graph as a semi-induced subgraph are linearly χ-bounded

J., Micek, Mi. Pilipczuk, Walczak 2023 Posets with bounded cliquewidth are dim-bounded

Absolute bounds on dimension

Trotter and Moore 1977
 If cover graph of \mathbf{P} is a forest then $\operatorname{dim}(\mathbf{P}) \leqslant 3$

Seweryn 2020
If cover graph of \mathbf{P} has treewidth $\leqslant 2$ then $\operatorname{dim}(\mathbf{P}) \leqslant 12$

Absolute bounds on dimension

```
Trotter and Moore 1977
If cover graph of P}\mathrm{ has no K}\mp@subsup{K}{3}{}\mathrm{ minor then }\operatorname{dim}(\mathbf{P})\leqslant
```

Seweryn 2020
If cover graph of \mathbf{P} has no K_{4} minor then $\operatorname{dim}(\mathbf{P}) \leqslant 12$

Absolute bounds on dimension

Trotter and Moore 1977
 If cover graph of \mathbf{P} has no K_{3} minor then $\operatorname{dim}(\mathbf{P}) \leqslant 3$

Seweryn 2020
If cover graph of \mathbf{P} has no K_{4} minor then $\operatorname{dim}(\mathbf{P}) \leqslant 12$

Huynh, J., Micek, Seweryn, Wollan 2022
If cover graph of \mathbf{P} has no L_{k} minor then $\operatorname{dim}(\mathbf{P}) \leqslant f(k)$

Absolute bounds on dimension

```
Trotter and Moore 1977
If cover graph of P}\mathrm{ has no K}\mp@subsup{K}{3}{}\mathrm{ minor then }\operatorname{dim}(\mathbf{P})\leqslant
```


Seweryn 2020

If cover graph of \mathbf{P} has no K_{4} minor then $\operatorname{dim}(\mathbf{P}) \leqslant 12$

Huynh, J., Micek, Seweryn, Wollan 2022
If cover graph of \mathbf{P} has no L_{k} minor then $\operatorname{dim}(\mathbf{P}) \leqslant f(k)$

Can we characterize minor-closed graph classes \mathcal{G} s.t. posets with cover graphs in \mathcal{G} have bounded dimension?

Kelly's examples again

J., Micek, Mi. Pilipczuk, Walczak 2023

Fix a minor-closed graph class \mathcal{G}.
Then posets with cover graphs in \mathcal{G} have bounded dimension $\Leftrightarrow \mathcal{G}$ excludes the cover graph of some Kelly example

Kelly's examples again

J., Micek, Mi. Pilipczuk, Walczak 2023

Fix a minor-closed graph class \mathcal{G}.
Then posets with cover graphs in \mathcal{G} have bounded dimension $\Leftrightarrow \mathcal{G}$ excludes the cover graph of some Kelly example
J., Micek, Mi. Pilipczuk, Walczak 2023

For fixed t, k, every poset with large enough dimension and whose cover graph has treewidth $\leqslant t$ contains the Kelly example of order k as a subposet

Boolean Dimension

Boolean realizer of \mathbf{P} : sequence of k linear orders L_{1}, \ldots, L_{k} on elements of P and a k-ary Boolean function ϕ s.t.

$$
x \leqslant y \text { in } P \quad \Leftrightarrow \quad \phi\left(\left(x \leqslant y \text { in } L_{1}\right), \ldots,\left(x \leqslant y \text { in } L_{k}\right)\right)=1
$$

for all distinct x, y
$\operatorname{bdim}(\mathbf{P}):=$ min. size of a Boolean realizer of \mathbf{P}

Boolean Dimension

Boolean realizer of \mathbf{P} : sequence of k linear orders L_{1}, \ldots, L_{k} on elements of P and a k-ary Boolean function ϕ s.t.

$$
x \leqslant y \text { in } P \quad \Leftrightarrow \quad \phi\left(\left(x \leqslant y \text { in } L_{1}\right), \ldots,\left(x \leqslant y \text { in } L_{k}\right)\right)=1
$$

for all distinct x, y
$\operatorname{bdim}(\mathbf{P}):=$ min. size of a Boolean realizer of \mathbf{P}
$\operatorname{bdim}(\mathbf{P}) \leqslant \operatorname{dim}(\mathbf{P})$
$\operatorname{bdim}\left(S_{k}\right)=4$

Felsner, Mészáros, Micek 2020

Posets with cover graphs of bounded treewidth have bounded Boolean dimension

> J., Micek, Mi. Pilipczuk, Walczak 2023
> Posets with bounded cliquewidth have bounded Boolean dimension

Open problems

Conjecture: Fix a proper minor-closed graph class \mathcal{G}. Then posets with cover graphs in \mathcal{G} are dim-bounded.

True for planar graphs and graphs of bounded treewidth

Open problems

Conjecture: Fix a proper minor-closed graph class \mathcal{G}. Then posets with cover graphs in \mathcal{G} are dim-bounded.

True for planar graphs and graphs of bounded treewidth
NB: Posets with cover graphs of maximum degree $\leqslant 3$ are not dim-bounded (Felsner, Mészáros, Micek 2017)

Open problems

Conjecture: Fix a proper minor-closed graph class \mathcal{G}. Then posets with cover graphs in \mathcal{G} are dim-bounded.

True for planar graphs and graphs of bounded treewidth
NB: Posets with cover graphs of maximum degree $\leqslant 3$ are not dim-bounded (Felsner, Mészáros, Micek 2017)

Conjecture (Nešetřil and Pudlák, 1989): Posets with planar cover graphs have bounded Boolean dimension

In OOVATIOnS IN GRAPH THEORY

Innovations in Graph Theory is a mathematical journal publishing high-quality research in graph theory including its interactions with other areas.

- Diamond open access: no fees for authors and readers
- Authors retain copyright
- Member of the open access platform Centre Mersenne
- Accepting submissions now!

Innovations IN GRAPH THEORY

- Marthe Bonamy (CNRS, Université de Bordeaux, France)
- Johannes Carmesin (University of Birmingham, UK)
- Maria Chudnovsky (Princeton University, USA)
- Louis Esperet (CNRS, Université Grenoble Alpes, France)
- Fedor Fomin (University of Bergen, Norway)
- Frédéric Havet (CNRS, Université Côte d'Azur, France)
- Ross Kang (University of Amsterdam, The Netherlands), managing editor
- Gwenaël Joret (Université Libre de Bruxelles, Belgium)
- Tomáš Kaiser (University of West Bohemia, Czech Republic)
- Peter Keevash (Oxford University, UK)
- Dan Král' (Masaryk University, Czech Republic)
- Kenta Ozeki (Yokohama National University, Japan)
- Alex Scott (Oxford University, UK)
- Jean-Sébastien Sereni (CNRS, Université de Strasbourg, France), managing editor
- Sophie Spirkl (University of Waterloo, Canada), managing editor
- Maya Stein (Universidad de Chile, Chile), managing editor

