χ -Boundedness for posets

Gwenaël Joret

Université libre de Bruxelles

joint work with Piotr Micek, Michał Pilipczuk, and Bartosz Walczak

poset with ...

non-planar diagram

planar cover graph

Dimension

Dimension of **P** is the minimum *d* such that there are *d* linear extensions $L_1, ..., L_d$ of **P** with $\mathbf{P} = \bigcap_{i \in [d]} L_i$

Dimension: Geometric view

Dimension of **P** is the least *d* such that **P** is isomorphic to a subposet of \mathbb{R}^d

Why dimension?

A natural notion...

...with interesting connections, e.g.:

Incidence posets:

Schnyder 1989 *G* planar $\Leftrightarrow \dim(\mathbf{P}_G) \leq 3$ Standard examples have large dimension

 S_5

 $\dim(S_k) = k$

Standard examples have large dimension

 $\dim(S_k) = k$

If **P** contains S_k then dim(**P**) $\geq k$

Standard examples have large dimension

 $\dim(S_k)=k$

If **P** contains S_k then dim(**P**) $\geq k$

Standard example number $se(\mathbf{P})$: Largest k s.t. **P** contains S_k

 $\dim(P) \geqslant \operatorname{se}(P)$

Posets with large dimension but no big standard example

Interval orders

Interval orders \equiv posets with no S_2

Universal interval order U_n : all intervals [i, j] with $1 \le i < j \le n$.

 $\dim(U_n) \geqslant \log_2 \log_2 n$

χ -Boundedness and dim-boundedness

chromatic number \iff dimension

cliques <---> standard examples

Family \mathcal{G} of graphs is χ -**bounded** if there exists $f : \mathbb{R} \to \mathbb{R}$ s.t. $\chi(G) \leq f(\omega(G))$ for all $G \in \mathcal{G}$

Family \mathcal{P} of posets is dim-**bounded** if there exists $f : \mathbb{R} \to \mathbb{R}$ s.t. $\dim(\mathbf{P}) \leq f(\operatorname{se}(\mathbf{P}))$ for all $\mathbf{P} \in \mathcal{P}$

Dimension as a hypergraph coloring problem

Dimension = least number of linear extensions reversing all incomparable pairs (a, b)

Alternating cycle: Incomparable pairs $(a_1, b_1), \dots, (a_k, b_k)$ s.t. $a_i \leq_P b_{i+1}$ $\forall i$ (cyclically)

Lemma: Set *I* of incomparable pairs can be reversed with one linear extension \Leftrightarrow *I* has no alternating cycle

Hypergraph \mathcal{H} :

- vertex set = $\{ \text{ incomparable pairs } \}$
- \bullet hyperedges \leftrightarrow alternating cycles
- $\chi(\mathcal{H}) = \dim(\mathbf{P})$

Dimension as a hypergraph coloring problem

Dimension = least number of linear extensions reversing all incomparable pairs (a, b)

Alternating cycle: Incomparable pairs $(a_1, b_1), \dots, (a_k, b_k)$ s.t. $a_i \leq_P b_{i+1}$ $\forall i$ (cyclically)

Lemma: Set *I* of incomparable pairs can be reversed with one linear extension \Leftrightarrow *I* has no alternating cycle

Hypergraph \mathcal{H} :

- vertex set = $\{ \text{ incomparable pairs } \}$
- \bullet hyperedges \leftrightarrow alternating cycles
- $\chi(\mathcal{H}) = \dim(\mathbf{P})$
- \bullet cliques \leftrightarrow standard examples
- $\omega(\mathcal{H}) = \operatorname{se}(\mathbf{P})$

"If a poset is nice then its dimension is small"

Trotter and Moore 1977 If cover graph of **P** is a forest then $\dim(\mathbf{P}) \leq 3$

"If a poset is nice then its dimension is small"

Trotter and Moore 1977 If cover graph of **P** is a forest then $dim(\mathbf{P}) \leq 3$

Felsner, Trotter, Wiechert 2015 If cover graph of **P** is outerplanar then $\dim(\mathbf{P}) \leq 4$

"If a poset is nice then its dimension is small"

Trotter and Moore 1977 If cover graph of **P** is a forest then $\dim(\mathbf{P}) \leq 3$

Felsner, Trotter, Wiechert 2015

If cover graph of **P** is outerplanar then dim(**P**) ≤ 4

J., Micek, Trotter, Wang, Wiechert 2014 If cover graph of **P** has treewidth ≤ 2 then dim(**P**) ≤ 1276

"If a poset is nice then its dimension is small"

Trotter and Moore 1977 If cover graph of **P** is a forest then $\dim(\mathbf{P}) \leq 3$

Felsner, Trotter, Wiechert 2015

If cover graph of **P** is outerplanar then $\dim(\mathbf{P}) \leq 4$

J., Micek, Trotter, Wang, Wiechert 2014

If cover graph of **P** has treewidth ≤ 2 then dim(**P**) ≤ 1276

Seweryn 2020

If cover graph of **P** has treewidth ≤ 2 then dim(**P**) ≤ 12

"If a poset is nice then its dimension is small"

Trotter and Moore 1977 If cover graph of **P** is a forest then $\dim(\mathbf{P}) \leq 3$

Felsner, Trotter, Wiechert 2015

If cover graph of **P** is outerplanar then $\dim(\mathbf{P}) \leq 4$

J., Micek, Trotter, Wang, Wiechert 2014

If cover graph of **P** has treewidth ≤ 2 then dim(**P**) ≤ 1276

Seweryn 2020

If cover graph of **P** has treewidth ≤ 2 then dim(**P**) ≤ 12

Kelly's example Kelly 1981

planar posets with arbitrarily large dimension cover graphs have treewidth 3

What now?

1. Are planar posets dim-bounded? Posets with planar cover graphs?

Conjecture (Trotter, 1980s): Yes and yes

What now?

1. Are planar posets dim-bounded? Posets with planar cover graphs?

Conjecture (Trotter, 1980s): Yes and yes

2. Are posets with cover graphs of bounded treewidth dim-bounded?

What now?

1. Are planar posets dim-bounded? Posets with planar cover graphs?

Conjecture (Trotter, 1980s): Yes and yes

2. Are posets with cover graphs of bounded treewidth dim-bounded?

3. What properties of cover graphs imply bounded dimension?

Posets with planar cover graphs

Blake, Hodor, Micek, Seweryn, Trotter 2023+ Posets with planar cover graphs are dim-bounded

Posets with planar cover graphs

Blake, Hodor, Micek, Seweryn, Trotter 2023+ Posets with planar cover graphs are dim-bounded

Blake, Hodor, Micek, Seweryn, Trotter 2023+ If **P** has a planar cover graph then $\dim(\mathbf{P}) \leq 2^{O(se(\mathbf{P}))}$

Posets with planar cover graphs

Blake, Hodor, Micek, Seweryn, Trotter 2023+ Posets with planar cover graphs are dim-bounded

Blake, Hodor, Micek, Seweryn, Trotter 2023+ If **P** has a planar cover graph then $\dim(\mathbf{P}) \leq 2^{O(se(\mathsf{P}))}$

Blake, Hodor, Micek, Seweryn, Trotter 2023+ If **P** has a planar diagram then $\dim(\mathbf{P}) \leq 128 \operatorname{se}(\mathbf{P}) + O(1)$

Posets with cover graphs of bounded treewidth

J., Micek, Mi. Pilipczuk, Walczak 2023 Posets with cover graphs of bounded treewidth are dim-bounded Posets with cover graphs of bounded treewidth

J., Micek, Mi. Pilipczuk, Walczak 2023 Posets with cover graphs of bounded treewidth are dim-bounded

J., Micek, Mi. Pilipczuk, Walczak 2023 Posets with bounded cliquewidth are dim-bounded Posets with cover graphs of bounded treewidth

J., Micek, Mi. Pilipczuk, Walczak 2023 Posets with cover graphs of bounded treewidth are dim-bounded

J., Micek, Mi. Pilipczuk, Walczak 2023 Posets with bounded cliquewidth are dim-bounded

New tool: Colcombet's factorization theorem

Graph cliquewidth

Build graph G using 4 operations:

create new vertex v with label i

- disjoint union of two labeled graphs
- ▶ put all edges between vertices labeled i and vertices labeled j (i ≠ j)
- rename label i to j

Cliquewidth: min. number of labels needed

Graph cliquewidth

Build graph G using 4 operations:

create new vertex v with label i

- disjoint union of two labeled graphs
- ▶ put all edges between vertices labeled i and vertices labeled j (i ≠ j)
- rename label i to j

Cliquewidth: min. number of labels needed

Poset cliquewidth: Same for posets

 $u <_{T} v$ means "*u* strict ancestor of *v*"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

 $u <_{T} v$ means "*u* strict ancestor of *v*"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

 $u <_{T} v$ means "*u* strict ancestor of *v*"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

 $u <_{T} v$ means "*u* strict ancestor of *v*"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

 $u <_T v$ means "u strict ancestor of v"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

 $u <_T v$ means "*u* strict ancestor of *v*"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

 $u <_T v$ means "u strict ancestor of v"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

 $u <_T v$ means "u strict ancestor of v"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

 $u <_T v$ means "*u* strict ancestor of *v*"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

 $u <_T v$ means "u strict ancestor of v"

For $u <_T v$, set $\lambda(u, v) :=$ product of labels on *u*-to-*v* path

Split of order *q*: each inner node receives some number in $\{1, \ldots, q\}$

Split is **forward Ramseyan** if $\lambda(u, v) \cdot \lambda(u', v') = \lambda(u, v)$ for all pairs of *h*-neighbors $u <_{T} v$ and $u' <_{T} v'$

Colcombet's Theorem

 $\alpha \cdot \beta \cdot \gamma \cdot \delta \cdot \kappa = \alpha \cdot \beta \cdot \gamma$ $u <_{T} v$ are *h*-neighbors if s(u) = s(v) = hand $s(w) \leq h$ for all w with $u <_T w <_T v$

Split is forward Ramseyan if $\lambda(u, v) \cdot \lambda(u', v') = \lambda(u, v)$ for all pairs of *h*-neighbors $u < \tau v$ and $u' < \tau v'$

in particular: if $u <_T v$ and $v <_T w$ are *h*-neighbors then

 $\lambda(u, w) = \lambda(u, v) \cdot \lambda(v, w) = \lambda(u, v)$

Colcombet's Theorem

 $\alpha \cdot \beta \cdot \gamma \cdot \delta \cdot \kappa = \alpha \cdot \beta \cdot \gamma$ $u <_{T} v$ are *h*-neighbors if s(u) = s(v) = hand $s(w) \leq h$ for all w with $u <_T w <_T v$

Split is forward Ramseyan if $\lambda(u, v) \cdot \lambda(u', v') = \lambda(u, v)$ for all pairs of *h*-neighbors $u < \tau v$ and $u' < \tau v'$

in particular: if $u < \tau v$ and $v < \tau w$ are *h*-neighbors then

$$\lambda(u, w) = \lambda(u, v) \cdot \lambda(v, w) = \lambda(u, v)$$

Colcombet 2007 There exists a split of T of order $|\Lambda|$ that is forward Ramseyan Inspiration:

Bonamy and Mi. Pilipczuk 2020 Graphs of bounded cliquewidth are polynomially χ -bounded

Nešetřil, Ossona de Mendez, Mi. Pilipczuk, Rabinovich, Siebertz 2021 Graphs with bounded cliquewidth excluding some half-graph as a semi-induced subgraph are linearly χ -bounded

J., Micek, Mi. Pilipczuk, Walczak 2023 Posets with bounded cliquewidth are dim-bounded

Trotter and Moore 1977

If cover graph of **P** is a forest then $dim(\mathbf{P}) \leq 3$

Seweryn 2020

If cover graph of **P** has treewidth ≤ 2 then dim(**P**) ≤ 12

Trotter and Moore 1977

If cover graph of **P** has no K_3 minor then dim(**P**) ≤ 3

Seweryn 2020

If cover graph of **P** has no K_4 minor then dim(**P**) ≤ 12

Trotter and Moore 1977 If cover graph of **P** has no K_3 minor then dim(**P**) ≤ 3

Seweryn 2020

If cover graph of **P** has no K_4 minor then dim(**P**) ≤ 12

Huynh, J., Micek, Seweryn, Wollan 2022 If cover graph of **P** has no L_k minor then dim(**P**) $\leq f(k)$

Trotter and Moore 1977

If cover graph of **P** has no K_3 minor then dim(**P**) ≤ 3

Seweryn 2020

If cover graph of **P** has no K_4 minor then dim(**P**) ≤ 12

Can we characterize minor-closed graph classes \mathcal{G} s.t. posets with cover graphs in \mathcal{G} have bounded dimension?

Kelly's examples again

J., Micek, Mi. Pilipczuk, Walczak 2023 Fix a minor-closed graph class \mathcal{G} . Then posets with cover graphs in \mathcal{G} have bounded dimension $\Leftrightarrow \mathcal{G}$ excludes the cover graph of some Kelly example

Kelly's examples again

J., Micek, Mi. Pilipczuk, Walczak 2023 Fix a minor-closed graph class \mathcal{G} . Then posets with cover graphs in \mathcal{G} have bounded dimension $\Leftrightarrow \mathcal{G}$ excludes the cover graph of some Kelly example

J., Micek, Mi. Pilipczuk, Walczak 2023

For fixed t, k, every poset with large enough dimension and whose cover graph has treewidth $\leq t$ contains the Kelly example of order k as a subposet

Boolean Dimension

Boolean realizer of **P**: sequence of k linear orders L_1, \ldots, L_k on elements of P and a k-ary Boolean function ϕ s.t.

 $x \leq y \text{ in } P \quad \Leftrightarrow \quad \phi((x \leq y \text{ in } L_1), \dots, (x \leq y \text{ in } L_k)) = 1$

for all distinct x, y

bdim(P) := min. size of a Boolean realizer of P

Boolean Dimension

Boolean realizer of **P**: sequence of k linear orders L_1, \ldots, L_k on elements of P and a k-ary Boolean function ϕ s.t.

 $x \leqslant y \text{ in } P \quad \Leftrightarrow \quad \phi((x \leqslant y \text{ in } L_1), \dots, (x \leqslant y \text{ in } L_k)) = 1$

for all distinct x, y

bdim(P) := min. size of a Boolean realizer of P

 $\mathsf{bdim}(\mathbf{P}) \leqslant \mathsf{dim}(\mathbf{P})$

 $\mathsf{bdim}(S_k) = 4$

Felsner, Mészáros, Micek 2020

Posets with cover graphs of bounded treewidth have bounded Boolean dimension

J., Micek, Mi. Pilipczuk, Walczak 2023 Posets with bounded cliquewidth have bounded Boolean dimension

Open problems

Conjecture: Fix a proper minor-closed graph class \mathcal{G} . Then posets with cover graphs in \mathcal{G} are dim-bounded.

True for planar graphs and graphs of bounded treewidth

Open problems

Conjecture: Fix a proper minor-closed graph class \mathcal{G} . Then posets with cover graphs in \mathcal{G} are dim-bounded.

True for planar graphs and graphs of bounded treewidth

NB: Posets with cover graphs of maximum degree \leq 3 are not dim-bounded (Felsner, Mészáros, Micek 2017)

Open problems

Conjecture: Fix a proper minor-closed graph class \mathcal{G} . Then posets with cover graphs in \mathcal{G} are dim-bounded.

True for planar graphs and graphs of bounded treewidth

NB: Posets with cover graphs of maximum degree \leq 3 are not dim-bounded (Felsner, Mészáros, Micek 2017)

Conjecture (Nešetřil and Pudlák, 1989): Posets with planar cover graphs have bounded Boolean dimension

Innovations in Graph Theory is a mathematical journal publishing high-quality research in graph theory including its interactions with other areas.

Diamond open access: no fees for authors and readers

- Authors retain copyright
- Member of the open access platform Centre Mersenne
- Accepting submissions now!

https://igt.centre-mersenne.org/

IN GRAPH THEORY

- Marthe Bonamy (CNRS, Université de Bordeaux, France)
- Johannes Carmesin (University of Birmingham, UK)
- Maria Chudnovsky (Princeton University, USA)
- Louis Esperet (CNRS, Université Grenoble Alpes, France)
- Fedor Fomin (University of Bergen, Norway)
- Frédéric Havet (CNRS, Université Côte d'Azur, France)
- Ross Kang (University of Amsterdam, The Netherlands), managing editor
- Gwenaël Joret (Université Libre de Bruxelles, Belgium)
- Tomáš Kaiser (University of West Bohemia, Czech Republic)
- Peter Keevash (Oxford University, UK)
- Dan Král' (Masaryk University, Czech Republic)
- Kenta Ozeki (Yokohama National University, Japan)
- Alex Scott (Oxford University, UK)
- Jean-Sébastien Sereni (CNRS, Université de Strasbourg, France), managing editor
- Sophie Spirkl (University of Waterloo, Canada), managing editor
- Maya Stein (Universidad de Chile, Chile), managing editor

