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Dimension: Geometric view

diagram

Dimension of P is the least d such that P is isomorphic to
a subposet of Rd



Why dimension?

diagram

Incidence posets:

A natural notion...
...with interesting connections, e.g.:

G PG

�



�
	Schnyder 1989

G planar ⇔ dim(PG ) ⩽ 3
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Standard examples have large dimension

diagram

1 2 3 4 5

1 2 3 4 5

dim(Sk) = k

S5

If P contains Sk then dim(P) ⩾ k

Standard example number se(P): Largest k s.t. P contains Sk

dim(P) ⩾ se(P)



Posets with large dimension but no big standard example

Interval orders

diagram

a b

Interval orders ≡ posets with no S2

Universal interval order Un: all intervals [i , j ] with 1 ⩽ i < j ⩽ n.

dim(Un) ⩾ log2 log2 n



χ-Boundedness and dim-boundedness

chromatic number ↭ dimension

cliques ↭ standard examples

Family G of graphs is χ-bounded if there exists f : R→ R s.t.

χ(G ) ⩽ f (ω(G )) for all G ∈ G

Family P of posets is dim-bounded if there exists f : R→ R s.t.

dim(P) ⩽ f (se(P)) for all P ∈ P



Dimension as a hypergraph coloring problem

diagram

Dimension = least number of linear extensions reversing
all incomparable pairs (a, b)

Alternating cycle: Incomparable pairs
(a1, b1), ... , (ak , bk) s.t. ai ⩽P bi+1
∀i (cyclically)

Lemma: Set I of incomparable pairs can be reversed
with one linear extension ⇔ I has no alternating cycle

Hypergraph H:
• vertex set = { incomparable pairs }
• hyperedges ↔ alternating cycles
• χ(H) = dim(P)

b1 b2 b3

a1 a2 a3



Dimension as a hypergraph coloring problem

diagram

Dimension = least number of linear extensions reversing
all incomparable pairs (a, b)

Alternating cycle: Incomparable pairs
(a1, b1), ... , (ak , bk) s.t. ai ⩽P bi+1
∀i (cyclically)

Lemma: Set I of incomparable pairs can be reversed
with one linear extension ⇔ I has no alternating cycle

Hypergraph H:
• vertex set = { incomparable pairs }
• hyperedges ↔ alternating cycles
• χ(H) = dim(P)
• cliques ↔ standard examples

b1 b2 b3

a1 a2 a3

1 2 3

1 2 3
• ω(H) = se(P)



What is this talk about?

diagram

“If a poset is nice then its dimension is small”

�



�
	Trotter and Moore 1977

If cover graph of P is a forest then dim(P) ⩽ 3

�



�
	Felsner, Trotter, Wiechert 2015

If cover graph of P is outerplanar then dim(P) ⩽ 4�



�
	J., Micek, Trotter, Wang, Wiechert 2014

If cover graph of P has treewidth ⩽ 2 then dim(P) ⩽ 1276�
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	Seweryn 2020

If cover graph of P has treewidth ⩽ 2 then dim(P) ⩽ 12
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What is this talk about?

diagram

“If a poset is nice then its dimension is small”

planar?
bounded treewidth?
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Kelly’s example

diagram

Kelly 1981

1

1

2
3
4
5

2
3

4
5

1 2 3 4 5

1 2 3 4 5

planar posets with arbitrarily large dimension
cover graphs have treewidth 3



What now?

diagram

1. Are planar posets dim-bounded?

Posets with planar cover graphs?

Conjecture (Trotter, 1980s): Yes and yes

2. Are posets with cover graphs of bounded treewidth

dim-bounded?

3. What properties of cover graphs imply bounded dimension?
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Posets with planar cover graphs
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Posets with cover graphs of bounded treewidth
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Graph cliquewidth

Build graph G using 4 operations:

▶ create new vertex v with label i

▶ disjoint union of two labeled graphs

▶ put all edges between vertices

labeled i and vertices labeled j (i ̸= j)
▶ rename label i to j

Cliquewidth: min. number of labels needed

Poset cliquewidth: Same for posets
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Colcombet’s Theorem
α

β

γ

δ

u

v

λ(u, v) = β · γ · δ

Rooted tree T

Edges labeled with elements of a finite semigroup (Λ, ·)

u <T v means “u strict ancestor of v”

For u <T v , set λ(u, v) := product of labels on u-to-v path

Split of order q: each inner node receives some number in

{1, . . . , q}

Hierarchical factorization of T
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1 1

2 1 3
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1 3 2
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level 2

etc.

Edges labeled with elements of a finite semigroup (Λ, ·)

u <T v means “u strict ancestor of v”

For u <T v , set λ(u, v) := product of labels on u-to-v path

Split of order q: each inner node receives some number in

{1, . . . , q}

Hierarchical factorization of T



Colcombet’s Theorem
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⩽ h

⩽ h

⩽ h

h

⩽ h
u

v

u <T v are h-neighbors if s(u) = s(v) = h
and s(w) ⩽ h for all w with u <T w <T v

Split is forward Ramseyan if λ(u, v) · λ(u′, v ′) = λ(u, v) for all

pairs of h-neighbors u <T v and u′ <T v
′

in particular: if u <T v and v <T w are h-neighbors then

λ(u,w) = λ(u, v) · λ(v ,w) = λ(u, v)

�



�
	Colcombet 2007

There exists a split of T of order |Λ| that is forward Ramseyan
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Inspiration:�



�
	Bonamy and Mi. Pilipczuk 2020

Graphs of bounded cliquewidth are polynomially χ-bounded

�
�

�
�

Nešeťril, Ossona de Mendez, Mi. Pilipczuk, Rabinovich, Siebertz 2021

Graphs with bounded cliquewidth excluding some half-graph as

a semi-induced subgraph are linearly χ-bounded

�



�
	J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with bounded cliquewidth are dim-bounded
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Absolute bounds on dimension�



�
	Trotter and Moore 1977

If cover graph of P has no K3 minor then dim(P) ⩽ 3�



�
	Seweryn 2020

If cover graph of P has no K4 minor then dim(P) ⩽ 12

L5�



�
	Huynh, J., Micek, Seweryn, Wollan 2022

If cover graph of P has no Lk minor then dim(P) ⩽ f (k)

Can we characterize minor-closed graph classes G s.t. posets with

cover graphs in G have bounded dimension?



Kelly’s examples again
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J., Micek, Mi. Pilipczuk, Walczak 2023

Fix a minor-closed graph class G.

Then posets with cover graphs in G have bounded di-

mension⇔ G excludes the cover graph of some Kelly

example

�

�

�

�
J., Micek, Mi. Pilipczuk, Walczak 2023

For fixed t, k , every poset with large enough dimension and

whose cover graph has treewidth ⩽ t contains the Kelly example

of order k as a subposet
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Boolean Dimension

Boolean realizer of P: sequence of k linear orders L1, . . . ,Lk on

elements of P and a k-ary Boolean function φ s.t.

x ⩽ y in P ⇔ φ
(
(x ⩽ y in L1), . . . , (x ⩽ y in Lk)

)
= 1

for all distinct x , y

bdim(P) := min. size of a Boolean realizer of P

bdim(P) ⩽ dim(P)

bdim(Sk) = 4
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�
�

�
�

Felsner, Mészáros, Micek 2020

Posets with cover graphs of bounded treewidth have bounded

Boolean dimension

�
�

�
�

J., Micek, Mi. Pilipczuk, Walczak 2023

Posets with bounded cliquewidth have bounded Boolean dimen-

sion



Open problems

Conjecture: Fix a proper minor-closed graph class G. Then

posets with cover graphs in G are dim-bounded.

True for planar graphs and graphs of bounded treewidth

NB: Posets with cover graphs of maximum degree ⩽ 3 are not

dim-bounded (Felsner, Mészáros, Micek 2017)

Conjecture (Nešeťril and Pudlák, 1989): Posets with planar

cover graphs have bounded Boolean dimension
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