Angry theorems and decompositions of 3-connected graphs

Johannes Carmesin

University of Birmingham

Joint work with Jan Kurkofka

Johannes Carmesin Angry theorems and decompositions of 3-connected graphs

★ Ξ →

Decomposing 2-connected graphs

< ∃ >

э

X crosses Y if X separates Y.

Tutte's Angry theorem (1961)

A 2-connected graph all whose 2-separatos are crossed is a cycle or 3-connected.

Tutte's 2-separator theorem (1961)

Every 2-connected graph has a canonical tree-decomposition of adhesion 2 all whose torsos are 3-connected or cycles.

Tutte's 2-separator theorem (1961)

Every 2-connected graph has a canonical tree-decomposition of adhesion 2 all whose torsos are 3-connected or cycles.

Applications:

- Group Theory
- Computer Science (FPT algorithms, cobs and robbers games,..)
- Structural Graph Theory

A simple application in Geometric Group Theory

Fact

A 2-connected vertex-transitive graph is 3-connected or a cycle.

- Cunningham's angry theorem for 1-joins;
- recent works on 1-separations in digraphs by Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich;

Local Tutte Theorem (C 2023)

Given $r \in \mathbb{N}$, an *r*-locally 2-connected graph all of whose *r*-local 2-separators are crossed is a cycle of length at most *r* or *r*-locally 3-connected.

More???

Part I: there is no angry theorem for 3-separators (1961-2022)

Part II: an angry theorem for separators of size 3 (2023)

Part III: Outlook and Applications

• • = • • = •

Wheels are 3-angry

・ 同 ト ・ ヨ ト ・ ヨ

Internally 4-connected graphs are 3-angry

A 3-connected graph is internally 4-connected if all its 3-separators X leave only two components and one of them is a singleton, and X is an anti-clique.

Conjecture (false)

A 3-connected graph in which every 3-separator is crossed is a wheel or internally 4-connected.

Counterexample 1

▲御▶ ▲ 陸▶ ▲ 陸▶

Counterexample 2

▲御▶ ▲ 臣▶ ▲ 臣▶

э

Part II: an angry theorem for separators of size 3

.

Our perspective

A <u>tri-separator</u> is a separator consisting of three vertices or edges, where vertices are replaced by edges if possible, roughly speaking.

Our perspective

A <u>tri-separator</u> is a separator consisting of three vertices or edges, where vertices are replaced by edges if possible, roughly speaking.

Our perspective

A <u>tri-separator</u> is a separator consisting of three vertices or edges, where vertices are replaced by edges if possible, roughly speaking.

Intuition behind this

- same notion of separability BUT
- smoother notion of crossing.

Counter example 2

▲御▶ ▲ 臣▶ ▲ 臣▶

э

Formal definition

A mixed separation is a pair (A, B) such that $V(G) = A \cup B$ and $A \setminus B$ and $B \setminus A$ are nonempty. Its separator is $A \cap B$ together with $E(A \setminus B, B \setminus A)$.

→ < Ξ → <</p>

A mixed separation is a pair (A, B) such that $V(G) = A \cup B$ and $A \setminus B$ and $B \setminus A$ are nonempty. Its separator is $A \cap B$ together with $E(A \setminus B, B \setminus A)$. A tri-separation is a mixed 3-separation such that every vertex in A or B has two neighbours in A or B, respectively. A tri-separator is the separator of a tri-separation. A tri-separation (A, B) is trivial if A or B consists of a single

vertex.

Angry tri-separator theorem (C, Kurkofka 2023)

A 3-connected graph in which every nontrivial tri-separator is crossed is a wheel, $K_{3,m}$, or internally 4-connected.

Note: G internally 4-connected \leftrightarrow all tri-separators are trivial and $G \neq K_{3,3}$.

▲御▶ ▲ 陸▶ ▲ 陸▶

æ

Extend the theory from crossing 3-separators to tri-separators.

Extend the theory from crossing 3-separators to tri-separators.

So: $\exists v \in V(G)$ so that G - v has two crossing 2-separators (or a few special cases).

Extend the theory from crossing 3-separators to tri-separators.

So: $\exists v \in V(G)$ so that G - v has two crossing 2-separators (or a few special cases).

Example

3-edge cuts are always tri-separators and can only be crossed if they are trivial.

Apply Tutte's 2-separator theorem to G - v.

G - v is obtained from 2-connected graphs and single edges by 2-summing them at a cycle.

Apply Tutte's 2-separator theorem to G - v.

G-v is obtained from 2-connected graphs and single edges by 2-summing them at a cycle.

Candidate for a tri-separator that is not crossed.

Idea: characterise when a tri-separator is not crossed via a connectivity property.

Example

A tri-separator consisting of three vertices is not crossed if any two of its vertices are adjacent or joined by three internally disjoint paths avoiding the third vertex.

Idea: characterise when a tri-separator is not crossed via a connectivity property.

Example

A tri-separator consisting of three vertices is not crossed if any two of its vertices are adjacent or joined by three internally disjoint paths avoiding the third vertex.

Proof: final step, in a special case

Claim: X is not crossed.

< ∃ >

Proof: final step, in a special case

Claim: X is not crossed.

Proof: final step, in a special case

Claim: X is not crossed.

< ∃ >

Let G be an angry graph that is not internally 4-connected.

- extend theory of 3-separators to tri-separators;
 - \rightarrow find vertex v so that G v has two crossing 2-separators;

Summary of the proof

Let G be an angry graph that is not internally 4-connected.

- extend theory of 3-separators to tri-separators;
 - \rightarrow find vertex v so that G v has two crossing 2-separators;
- apply Tutte's theorem to G v: If G is not a wheel and not $K_{3,m}$, then this decomposition is 'nontrivial';

 \rightarrow in total 5 patterns, and a few special cases;

Summary of the proof

Let G be an angry graph that is not internally 4-connected.

- extend theory of 3-separators to tri-separators;
 - \rightarrow find vertex v so that G v has two crossing 2-separators;
- apply Tutte's theorem to G v: If G is not a wheel and not $K_{3,m}$, then this decomposition is 'nontrivial';

 \rightarrow in total 5 patterns, and a few special cases;

• use connectivity to prove that some tri-separator is not crossed.

Summary of the proof

Let G be an angry graph that is not internally 4-connected.

- extend theory of 3-separators to tri-separators;
 - \rightarrow find vertex v so that G v has two crossing 2-separators;
- apply Tutte's theorem to G v: If G is not a wheel and not $K_{3,m}$, then this decomposition is 'nontrivial';

 \rightarrow in total 5 patterns, and a few special cases;

• use connectivity to prove that some tri-separator is not crossed.

Decomposition theorem for 3-connected graphs

A tri-separation is totally nested if it is not crossed by a tri-separation.

Tri-separator theorem (C, Kurkofka 2023, vague version)

If we cut at all totally nested nontrivial tri-separations simultaneously all pieces are essentially angry graphs.

Tri-separator theorem (C, Kurkofka 2023, version from paper)

Let G be a 3-connected graph and let N denote its set of totally-nested nontrivial tri-separations. Each torso τ of N is a minor of G and satisfies one of the following:

- τ is quasi 4-connected;
- τ is a wheel;
- τ is a thickened $K_{3,m}$ or $G = K_{3,m}$ with $m \ge 0$.

< ロ > < 同 > < 回 > < 回 > .

$\lambda\text{-}\mathsf{connectivity}$ augmentation problem

Input:

numbers n, k, graph G on n vertices and set F of edges outside G.

Decide:

is there $X \subseteq F$ with $|X| \leq k$ such that G + X is λ -connected?

Theorem (C, Sridharan 2023+)

For every $\lambda \leq 4$, λ -connectivity augmentation can be decided in time $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Second example: replace vertices by triangles!

伺 ト イヨト イヨト

Second example: replace vertices by triangles!

A graph G is <u>almost 4-connected</u> if it is 3-connected, and the removal of every 3-separator leaves exactly two components and one component with at most three vertices.

Corollary

A 3-connected vertex-transitive graph is a complete graph, $K_{3,3}$ or almost 4-connected graph.

(stronger version in the paper)

Is there a decomposition theorem that works for all k?

▲御▶ ▲ 臣▶ ▲ 臣▶

э

Is there a decomposition theorem that works for all k?

Yes: Robertson Seymour Graph Minor structure theorem

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Is there a decomposition theorem that works for all k?

Yes: Robertson Seymour Graph Minor structure theorem

Structure theorem \rightarrow existence results via a coarse topological structure Tutte's theorem \rightarrow excluded minors for series-parallel graphs Tri-separator theorem \rightarrow excluded minors for planar graphs

Is there an angry theorem for 4-connected graphs?

・ 同 ト ・ ヨ ト ・ ヨ ト

Is there an angry theorem for 4-connected graphs?

Question

Is there an angry theorem for 3-connected matroids?

Question

Is there an angry theorem for 3-connected graphs G via bipartitions of G of rank at most two?

- (同) - (目) - (目)