
Angry theorems and decompositions of
3-connected graphs

Johannes Carmesin

University of Birmingham

Joint work with Jan Kurkofka

Johannes Carmesin Angry theorems and decompositions of 3-connected graphs



Decomposing 2-connected graphs

2-sum

decomposition
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X

Y

X crosses Y if X separates Y .

Tutte’s Angry theorem (1961)

A 2-connected graph all whose 2-separatos are crossed is a cycle or
3-connected.
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Decomposing 2-connected graphs

Tutte’s 2-separator theorem (1961)

Every 2-connected graph has a canonical tree-decomposition of
adhesion 2 all whose torsos are 3-connected or cycles.
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Canonical tree-decompositions of graphs

Applications:

Group Theory

Computer Science
(FPT algorithms, cobs and robbers games,..)

Structural Graph Theory
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A simple application in Geometric Group Theory

Fact

A 2-connected vertex-transitive graph is 3-connected or a cycle.
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Other angry theorems

Cunningham’s angry theorem for 1-joins;

recent works on 1-separations in digraphs by Bowler, Gut,
Hatzel, Kawarabayashi, Muzi, Reich;

Local Tutte Theorem (C 2023)

Given r ∈ N, an r-locally 2-connected graph all of whose r-local
2-separators are crossed is a cycle of length at most r or r-locally
3-connected.

More???
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today

Part I: there is no angry theorem for 3-separators (1961-2022)

Part II: an angry theorem for separators of size 3 (2023)

Part III: Outlook and Applications
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Wheels are 3-angry
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Internally 4-connected graphs are 3-angry

A 3-connected graph is internally 4-connected if all its 3-separators
X leave only two components and one of them is a singleton, and
X is an anti-clique.
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An angry theorem for 3-separators?

Conjecture (false)

A 3-connected graph in which every 3-separator is crossed is a
wheel or internally 4-connected.
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Counterexample 1
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Counterexample 2
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Part II: an angry theorem for separators of size 3
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Our perspective

A tri-separator is a separator consisting of three vertices or edges,
where vertices are replaced by edges if possible, roughly speaking.

Intuition behind this

same notion of separability BUT

smoother notion of crossing.
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Counter example 2
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Formal definition

A B

A mixed separation is a pair (A,B) such that V (G) = A ∪B and
A \B and B \A are nonempty.
Its separator is A ∩B together with E(A \B,B \A).

A tri-separation is a mixed 3-separation such that every vertex in A
or B has two neighbours in A or B, respectively. A tri-separator is
the separator of a tri-separation.
A tri-separation (A,B) is trivial if A or B consists of a single
vertex.
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Main theorem

Angry tri-separator theorem (C, Kurkofka 2023)

A 3-connected graph in which every nontrivial tri-separator is
crossed is a wheel, K3,m, or internally 4-connected.

Note:
G internally 4-connected ↔ all tri-separators are trivial and G ̸= K3,3.
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Corner diagrams

A B
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Proof: step 1

Extend the theory from crossing 3-separators to tri-separators.

1vx 1 vx or edge1 vx or edge

1

1

So: ∃v ∈ V (G) so that G− v has two crossing 2-separators
(or a few special cases).

Example

3-edge cuts are always tri-separators and can only be crossed if
they are trivial.

3-edge cut trivial tri-separator
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Proof: step 2

Apply Tutte’s 2-separator theorem to G− v.

v

G− v is obtained from 2-connected graphs and single edges by
2-summing them at a cycle.
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Proof: step 2.5

v

Candidate for a tri-separator that is not crossed.
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Proof: step 3

Idea: characterise when a tri-separator is not crossed via a
connectivity property.

Example

A tri-separator consisting of three vertices is not crossed if any two
of its vertices are adjacent or joined by three internally disjoint
paths avoiding the third vertex.
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Proof: final step, in a special case

v

Claim: X is not crossed.

v v
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Summary of the proof

Let G be an angry graph that is not internally 4-connected.

extend theory of 3-separators to tri-separators;
→ find vertex v so that G− v has two crossing 2-separators;

apply Tutte’s theorem to G− v:
If G is not a wheel and not K3,m, then this decomposition is
‘nontrivial’;
→ in total 5 patterns, and a few special cases;

use connectivity to prove that some tri-separator is not
crossed.
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Decomposition theorem for 3-connected graphs

A tri-separation is totally nested if it is not crossed by a
tri-separation.

Tri-separator theorem (C, Kurkofka 2023, vague version)

If we cut at all totally nested nontrivial tri-separations
simultaneously all pieces are essentially angry graphs.

Tri-separator theorem (C, Kurkofka 2023, version from paper)

Let G be a 3-connected graph and let N denote its set of
totally-nested nontrivial tri-separations. Each torso τ of N is a
minor of G and satisfies one of the following:

τ is quasi 4-connected;

τ is a wheel;

τ is a thickened K3,m or G = K3,m with m ≥ 0.
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Application 1

λ-connectivity augmentation problem

Input:

numbers n, k, graph G on n vertices and set F of edges outside G.

Decide:

is there X ⊆ F with |X| ≤ k such that G+X is λ-connected?

Theorem (C, Sridharan 2023+)

For every λ ≤ 4, λ-connectivity augmentation can be decided in
time f(k) · nO(1), for some function f .
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Application 2

Second example: replace vertices by triangles!

A graph G is almost 4-connected if it is 3-connected, and the
removal of every 3-separator leaves exactly two components and
one component with at most three vertices.

Corollary

A 3-connected vertex-transitive graph is a complete graph, K3,3 or
almost 4-connected graph.

(stronger version in the paper)
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Question

Is there a decomposition theorem that works for all k?

Yes: Robertson Seymour Graph Minor structure theorem

Structure theorem → existence results via a coarse topological
structure
Tutte’s theorem → excluded minors for series-parallel graphs
Tri-separator theorem → excluded minors for planar graphs
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Question

Is there an angry theorem for 4-connected graphs?

Question

Is there an angry theorem for 3-connected matroids?

Question

Is there an angry theorem for 3-connected graphs G via
bipartitions of G of rank at most two?
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