
11
TH

TUTORIAL ON RANDOMIZED ALGORITHMS
Streaming and sketching

1. The k Minimum Values (KMV) sketch. We look at a di�erent approach for counting distinct
elements (quite popular in practice): Let h : [N ] → [0, 1] be a hash function1. For a parameter k,
store the k smallest hash values of the distinct stream elements, i.e., we store k pairs (item j, h(j));
note that the sketch is not updated if any stream item arrives again. When queried for cardinality,
return (k − 1)/vk, where vk is the k-th smallest hash value (the largest one stored).

Analyze the algorithm and prove that for k ≥ c/ε2 (where c is a large enough constant) the algorithm
gives an ε-approximation of F0 = the number of distinct elements.

a) Show that the probability of (k−1)/vk > (1+ε) ·F0 is an arbitrarily small constant (depending
on c). For now, assume a fully random hash function (i.e., all items hashed into [0, 1] uniformly
and independently). A similar analysis applies to the other inequality, that is, bounding the
probability of (k − 1)/vk < (1− ε) · F0.

b) What is wrong with h being fully random? What kind of hash functions would be su�cient for
the analysis?

c) How to get a (1 + ε)-approximation with probability 1− δ for any δ > 0? How does the space
complexity depend on δ?

d) New: Let's explore other useful properties of KMV: How to estimate the size of the union or
intersection of two streams, each processed separately using one instance of KMV but both
using the same hash function? What is the error?

2. Count-Min sketch for frequency estimation. Similarly to CountSketch, our aim is to estimate
frequencies under both insertions and deletions but with a di�erent guarantee and assuming all
frequencies are non-negative at the end. We use the following sketch for estimating frequencies fi":

Algorithm 1 Count�Min Sketch
Initialize:

1: C[1 . . . t][1 . . . k]← 0⃗, where k ← 2
ε and t←

⌈
log

(
1/δ

)⌉
2: Choose t independent hash functions h1, . . . , ht : [n]→ [k], each from a universal family

Process (token (j, c)):

1: for i← 1 to t do
2: C[i][hi(j)]← C[i][hi(j)] + c
3: end for

Output (query a):

1: report f̂a = min
1≤i≤t

C[i][hi(a)]

a) Using the assumption that all frequencies are non-negative at the end, derive lower and upper
bounds on the estimator of a single row. That is, for any a ∈ [n] and row i ∈ [t] show that

0 ≤ C[i][hi(a)]− fa ≤ ε · ∥f∥1 . (1)

with a constant probability.

1We are hashing into a real interval [0, 1] for simplicity of the analysis. Instead, when implemented, we would hash

into integers {0, . . . , R} for large enough R = poly(N); you may try to �gure out how this changes the analysis.



b) Show a high probability bound for the �nal estimator âj for frequency fa.

c) Compare CountSketch (from the lecture) and Count-Min sketch, both in terms of their descrip-
tion and their properties.

d) Bonus: Can you derive a more re�ned bound on the error of Count-Min? That is, replace ∥f∥1
by a smaller quantity in (1). (Hint: show that, say, k/8 most frequent items do not collide with
a in row i with constant probability.)

3. Bonus: linear sketching. You have seen several sketches: the Tug-of-War sketch for estimating
the second frequency moment F2 and CountSketch and Count-Min sketch for estimating frequencies.
In fact, these are linear sketches, that is, they can be viewed as linear maps of the frequency vector
f to a much smaller dimension.

a) Here's a practically very useful property: Suppose we have a massive dataset distributed over
many machines. How to e�ciently obtain a linear sketch (say, a CountSketch) of the whole
dataset, using as little communication among the machines as possible?

b) Take any of these sketches and describe the matrix of the corresponding linear map (dimensions
and entries). How do we store this matrix?

c) How to get an estimate of the Euclidean distance between high-dimensional vectors u and v,
where u and v are described by point-wise updates to their coordinates? What error guarantee
can we get? (That is, the input is a sequence of triples (u/v, j, c), where the �rst entry determines
whether we update u or v, the second one speci�es the coordinate, and the last one is the increase
of the value of coordinate j, which may be negative.)

d) How to estimate the inner product between two vectors u and v (speci�ed as above)? What
error guarantee can we get?


