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TUTORIAL ON RANDOMIZED ALGORITHMS
Streaming algorithms

Notation:

� Input: sequence of items a1, a2, . . . , am, where ai ∈ [N ]
� Goal: process the stream in one pass with low memory, ideally poly(log(N+m)),
and estimate desired statistics of the stream.

Let fj be the frequency of j ∈ [N ], i.e., the number of times j appears in the streams.

1. Strict majority in constant space. Design a streaming algorithm using as small
space as possible that �nds the majority element if there is one, i.e., an element j
with frequency fj > m/2. If there is no majority element, the output can be arbitrary.
(Alternatively, you may use the second pass over the input to verify that the output
element indeed achieves majority.)

2. Finding heavy hitters deterministically.

a) Generalize the previous algorithm so that for a parameter k ∈ N, it returns all
elements j with fj > m/k, the so-called �heavy hitters�, and possibly some other
elements.

b) The algorithm can also return an estimate of fj for any given j ∈ [N ]. What kind
of guarantee do we get from it?

c) The algorithm returns all heavy hitters but possibly also elements that may be
far from heavy hitters (in extreme cases occurring just once in the stream). How
to modify the algorithm so that all of the returned elements are close to being
heavy hitters, say, having frequency at least m/(2k) while we still return all of
the true heavy hitters.

3. Back to randomization: The k Minimum Values (KMV) sketch. As in the lecture,
we would like to count the number of distinct elements, i.e., estimate set cardinality.
We look at a di�erent approach which is actually quite popular in practice: For a
parameter k and a hash function h : [N ] → [0, 1], store the k smallest hash values of
the distinct stream elements, i.e., we store k pairs (item j, h(j)); note that the sketch
is not updated if any stream item arrives again. When queried for cardinality, return
(k − 1)/vk, where vk is the k-th smallest hash value (the largest one stored).

Analyze the algorithm and prove that for k ≥ c/ε2 (where c is a large enough constant)
the algorithm gives an ε-approximation of F0 = the number of distinct elements.

a) Show that the probability of (k−1)/vk > (1+ε)·F0 is an arbitrarily small constant
(depending on c). For now, assume a fully random hash function (i.e., all items
hashed into [0, 1] uniformly and independently). A similar analysis applies to the
other inequality, that is, bounding the probability of (k − 1)/vk < (1− ε) · F0.



b) What is wrong with h being fully random? What kind of hash functions would
be su�cient for the analysis?

c) How to get a (1 + ε)-approximation with probability 1 − δ for any δ > 0? How
does the space complexity depend on δ?

4. Median estimation. We would like to �nd the median, i.e., the ⌈m/2⌉-th largest
element of the stream, assuming items are from a totally ordered domain U (e.g., U
can be integers or �oating point numbers). This task provably requires Ω(m) memory
(i.e., storing essentially all of the input items). To get a more space-e�cient streaming
algorithm, we relax the requirement to return the exact median. More precisely, for a
parameter ε > 0, we would like to get an ε-approximate median with high probability,
i.e., an element a of the stream that is the k-th largest for k = (0.5± ε) ·m.

Consider the following simple sampling algorithm: Draw s uniform samples from the
stream (with replacement).

a) How to implement the sampling as a streaming algorithm? The stream length m

should be unknown in advance.

b) Given the s uniform samples, what should the algorithm return?

c) How large s do we need to get an ε-approximate median with probability at least
1− δ for a given δ > 0?

Bonus: try the same algorithm but sampling without replacement.


