8™ TUTORIAL ON RANDOMIZED ALGORITHMS

Eigenvalues of adjacency matrices III. + DNF counting.

1. Graph powers and eigenvalues. Let G be an undirected graph. For k > 1, consider
the k-th power of G, denoted G®, defined as having the same set of vertices and an
edge for every walk of length exactly k& in G (the graph will have loops and parallel
edges). Express the eigenvalues of G*) in terms of the eigenvalues of G.

2. Monte Carlo estimation of m. Consider a circle of diameter 1 enclosed within a
square with sides of length 1. We will sample N points (uniformly and independently)
from the square and set the indicator variable X; = 1 if the t-th point is inside the
circle, and set X; = 0 otherwise. It is clear that E[X]| = N - 7/4, where X is the sum
of N of these indicator variables.

Give an upper bound on the value of N for which 4X /N gives an estimator of 7 that
is accurate to d digits, with probability at least 1 — 9.

3. Naive sampling for DNF counting. Suppose we have a class of instances of the
DNF satisfiability problem, i.e., for each n, a formula with n variables, such that there
are a(n) satisfying truth assignments for some polynomial . Suppose we apply the
naive approach of sampling assignments and checking whether they satisfy the formula.
Show that, after sampling 22 assignments, the probability of finding even a single
satisfying assignment for a given instance is exponentially small in n.

4. Consider the following variant of the Coverage algorithm for approximating the
DNF counting problem. Fort =1,..., N,

e select a clause C} at random with probability proportional to the number of
satisfying truth assignments (recall how to count these numbers),

e select a satisfying truth assignment a for C; uniformly at random (how?), and

e define random variable X; = 1/|cov(a)|, where cov(a) denotes the set of clauses
that are satisfied by a (there’s always at least one).

Our estimator for #F (the number of satisfying assignments for the DNF formula) is

o N
Yy ==.3"X,,
N;t

where o is the sum of the sizes of the coverage sets cov(a) over all satisfying assign-
ments a (how to calculate o?). Prove that Y is an (e, d)-approximation for #F for a
sufficiently large N.



Chernoff Bounds

Theorem 1 (Multiplicative Chernoff Bound — Upper Tail). Let X3, Xo,..., X, be
independent Bernoulli random variables (i.e., X; € {0,1}). Let X =>"" | X; and let
p=E[X]=>" E[X;]. Then, for any 6 >0,

PrX > (1+0)u] < exp(—%).

Theorem 2 (Multiplicative Chernoff Bound — Lower Tail). Under the same assumpti-
ons as Theorem[1], for 0 < 6 < 1,

PriX <(1-od)u] < exp(—%i).

Theorem 3 (Additive Chernoff/Hoeffding Bound). Let X1, Xs, ..., X,, be independent
random variables taking values in [0,1]. Let X = > " | X; and let p = E[X]. Then
for any t > 0,

Pr [X — > t] < exp(—2t2/n>,

and similarly
Pr(X —pu<—t] < exp(—2t2/n).

Hoeffding Bound (General Form)

Although the name “Hoeffding bound” is sometimes used interchangeably with the
additive Chernoff bound above, the more general Hoeffding bound is as follows:

Theorem 4 (Hoeffding’s Inequality). Let Y1,Y5, ..., Y, be independent random va-
riables where Y; takes values in an interval of length R;. Suppose E[Y;] = p;. Let
S=>" Y and E[S] =", wi. Then, for anyt >0,

i=1""
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