
8TH TUTORIAL ON RANDOMIZED ALGORITHMS
Eigenvalues of adjacency matrices III. + DNF counting.

1. Graph powers and eigenvalues. Let G be an undirected graph. For k ≥ 1, consider
the k-th power of G, denoted G(k), defined as having the same set of vertices and an
edge for every walk of length exactly k in G (the graph will have loops and parallel
edges). Express the eigenvalues of G(k) in terms of the eigenvalues of G.

2. Monte Carlo estimation of π. Consider a circle of diameter 1 enclosed within a
square with sides of length 1. We will sample N points (uniformly and independently)
from the square and set the indicator variable Xt = 1 if the t-th point is inside the
circle, and set Xt = 0 otherwise. It is clear that E[X] = N · π/4, where X is the sum
of N of these indicator variables.
Give an upper bound on the value of N for which 4X/N gives an estimator of π that
is accurate to d digits, with probability at least 1− δ.

3. Naïve sampling for DNF counting. Suppose we have a class of instances of the
DNF satisfiability problem, i.e., for each n, a formula with n variables, such that there
are α(n) satisfying truth assignments for some polynomial α. Suppose we apply the
naïve approach of sampling assignments and checking whether they satisfy the formula.
Show that, after sampling 2n/2 assignments, the probability of finding even a single
satisfying assignment for a given instance is exponentially small in n.

4. Consider the following variant of the Coverage algorithm for approximating the
DNF counting problem. For t = 1, . . . , N ,

• select a clause Ct at random with probability proportional to the number of
satisfying truth assignments (recall how to count these numbers),

• select a satisfying truth assignment a for Ct uniformly at random (how?), and
• define random variable Xt = 1/|cov(a)|, where cov(a) denotes the set of clauses

that are satisfied by a (there’s always at least one).
Our estimator for #F (the number of satisfying assignments for the DNF formula) is

Y =
σ

N
·

N∑
t=1

Xt ,

where σ is the sum of the sizes of the coverage sets cov(a) over all satisfying assign-
ments a (how to calculate σ?). Prove that Y is an (ε, δ)-approximation for #F for a
sufficiently large N .



Chernoff Bounds

Theorem 1 (Multiplicative Chernoff Bound – Upper Tail). Let X1, X2, . . . , Xn be
independent Bernoulli random variables (i.e., Xi ∈ {0, 1}). Let X =

∑n
i=1Xi and let

µ = E[X] =
∑n

i=1 E[Xi]. Then, for any δ > 0,

Pr
[
X ≥ (1 + δ)µ

]
≤ exp

(
−δ2µ

3

)
.

Theorem 2 (Multiplicative Chernoff Bound – Lower Tail). Under the same assumpti-
ons as Theorem 1, for 0 < δ < 1,

Pr
[
X ≤ (1− δ)µ

]
≤ exp

(
−δ2µ

2

)
.

Theorem 3 (Additive Chernoff/Hoeffding Bound). Let X1, X2, . . . , Xn be independent
random variables taking values in [0, 1]. Let X =

∑n
i=1Xi and let µ = E[X]. Then

for any t > 0,
Pr

[
X − µ ≥ t

]
≤ exp

(
−2t2/n

)
,

and similarly
Pr

[
X − µ ≤ −t

]
≤ exp

(
−2t2/n

)
.

Hoeffding Bound (General Form)

Although the name “Hoeffding bound” is sometimes used interchangeably with the
additive Chernoff bound above, the more general Hoeffding bound is as follows:

Theorem 4 (Hoeffding’s Inequality). Let Y1, Y2, . . . , Yn be independent random va-
riables where Yi takes values in an interval of length Ri. Suppose E[Yi] = µi. Let
S =

∑n
i=1 Yi and E[S] =

∑n
i=1 µi. Then, for any t > 0,

Pr
[
|S − E[S]| ≥ t

]
≤ 2 exp

(
− 2t2∑n

i=1 R
2
i

)
.
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