
Chapter 5

Connectivity and separation

In this chapter, we develop notions analogous to graph connectivity and cuts.

5.1 Connectivity, separation and unions

We have already seen that the matroid M(G) associated with a graph G remains
the same when permuting blocks of G. Recall that a graph G is k-connected if
it has at least k + 1 vertices and it stays connected after removing any at most
k− 1 vertices and a block of a graph G is an inclusion-wise maximal 2-connected
subgraph of G or an edge contained in no 2-connected subgraph. Hence, there is
no chance to determine whether G is connected from its graphic matroid and it
seems natural to continue with G being 2-connected. Before we further explore
this, let us state an auxiliary proposition on 2-connected graphs.

Proposition 5.1. Let G be a loopless graph. The graph G is 2-connected if and
only if every two edges e and f of G lie on a common cycle C of G.

Proposition 5.1 suggest a possible way of generalizing the notion of connec-
tivity to matroids. Let M be a matroid with a ground set E. We define a binary
relation γM on E as follows: (e, f) ∈ γM if e = f or there exists a circuit C in M
such that {e, f} ⊆ C. We will show that the relation γM is an equivalence rela-
tion. In order to do so, we will need the following lemma on circuits of matroid
which is known as the strong circuit elimination axiom.

Lemma 5.2. Let C be a family of circuits of a matroid M. Then, the following
holds:

(C3)’ if C1, C2 ∈ C, e ∈ C1 ∩ C2 and f ∈ C1 \ C2 then there is C ∈ C such that
f ∈ C ⊆ (C1 ∪ C2) − e.

Proof. Assume that (C3)’ fails and choose two C1 and C2 violating (C3)’ such that
the size |C1 ∪C2| is as small as possible. By the property (C3) from Lemma 1.1,
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there exists a circuit C3 ⊂ (C1 ∪ C2) − e but f 6∈ C3. Clearly e ∈ C2 \ C3 and
since C3 6⊆ C1 there is g ∈ C2 ∩C3. Moreover, C2 ∪C3 ⊆ (C1 ∪C2)− f and thus
|C2 ∪ C3| < |C1 ∪ C2|. In particular, (C3)’ holds for C2, C3 and g ∈ C2 ∩ C3 and
e ∈ C2 \ C3, i.e., there exists a circuit C4 with e ∈ C4 ⊆ (C2 ∪ C3) − g. Again,
C1 ∪ C4 ⊆ (C1 ∪ C2) − g and |C1 ∪ C4| < |C1 ∪ C2|. Hence, we can apply (C3)’
for C1 and C4 with e ∈ C1 ∩ C4 and f ∈ C1 − C4 and find a circuit C such that
f ∈ C ⊆ (C1 ∪ C4) − e ⊆ (C1 ∪ C2) − e which is a contradiction.

We are now ready to show that the relation γM is an equivalence relation.

Lemma 5.3. The relation γM is an equivalence relation for every matroid M.

Proof. The relation γM is clearly reflexive and symmetric. In order to prove its
transitivity, let (e, f) ∈ γ and (f, g) ∈ γ where e, f, g are distinct elements of
E. By the definition of γM, there exist circuits C1 and C2 such that e ∈ C1,
g ∈ C2 and C1 ∩ C2 6= ∅. Choose such circuits C1 and C2 with the size |C1 ∪ C2|
as small as possible. Assume that there is no circuit of M containing both e
and g. Let h ∈ C1 ∩ C2, by Lemma 5.2, there exists a circuit C3 such that
e ∈ C3 ⊆ (C1 ∪ C2) − h. Moreover, g 6∈ C3.

Since C3 cannot be a subset of C1, there exists i ∈ C2−C1 and i ∈ C3. We now
use Lemma 5.2 for circuits C2 and C3 to obtain a circuit C4 such that g ∈ C4 ⊆
(C2 ∪C3)− i. Since C4 cannot be a subset of C2, it holds that C4 ∩ (C3 \C2) 6= ∅.
Since C3 \ C2 ⊆ C1, we also get C1 ∩ C4 6= ∅. But C1 ∪ C4 ⊆ (C1 ∪ C2) − i and
|C1 ∪ C4| < |C1 ∪ C2|. This contradicts the choice of C1 and C2.

The equivalence classes of γM are called connectivity components of M. A
matroid M is connected if the equivalence relation γM has a single equivalence
class. The definition of the relation of γM immediately implies the following:

Proposition 5.4. A matroid M is connected if and only if every two elements
of M lie in a common circuit of M.

Propositions 5.1 and 5.4 combine to the following:

Proposition 5.5. Let G be a loopless graph with at least 3 vertices. The graph
G is 2-connected if and only if the matroid M(G) is connected.

Proof. If G is 2-connected, then any two edges are contained in a common cycle
of G and thus in a common circuit of M(G). Similarly, if M(G) is connected,
then any two edges of G are contained in a common circuit of M(G) and thus a
common cycle of G. The statement easily follows.

A subset X of the ground set E(M) of a matroid M is called a separator if it
is a union of connected components of M. The next lemma immediately follows
from the definition of connectivity components.
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Lemma 5.6. Let M be a matroid with a ground set E. A subset X ⊆ E is a
separator if and only if every circuit C of M is contained entirely in X or in
E \X.

Separators of matroids can also be characterized using the rank function.

Proposition 5.7. Let M be a matroid with a ground set E. A subset X ⊆ E is
a separator if and only if r(X) + r(E \X) = r(M).

Proof. The submodularity of the rank function of a matroid implies that r(X)+
r(E \X) ≥ r(M) for any X ⊆ E.

Let BX and BE\X be the maximal independent sets of X and E \X, respec-
tively, and B = BX ∪ BE\X . If X is a separator, then B is independent in M
and r(X) + r(E \X) = |BX |+ |BE\X | = |B| ≤ r(M) and the statement follows.

On the other hand, if X is not a separator, there exists a circuit C intersecting
both X and E \X. Consider inclusion-wise maximal subsets B′

X and B′
E\X of X

and E\X, respectively, containing (independent) sets C∩X and C∩(E\X). The
set B′ = B′

X∪B′
E\X contains C and thus it is dependent. Moreover, since B′

X and

B′
E\X are inclusion-wise maximal and r(B′) = r(M). Hence, r(X) + r(E \X) =

|B′
X | + |B′

E\X | = |B′| > r(B′) = r(M) and the equality does not hold.

The rank function of a matroid behaves independently on its separators as we
state in the next lemma.

Lemma 5.8. Let M be a matroid with a ground set E and X a separator of M.
For every subsets F of the ground set E, the following holds:

r(F ) = r(F ∩X) + r(F \X) .

Proof. Choose inclusion-wise maximal independent subsets FX and FE\X of F∩X
and F \X, respectively. Clearly, r(F ∩X) = |F ∩ X| and r(F \X) = |F \X|.
If r(F ) < r(F ∩X) + r(F \X), then the set FX ∪ FE\X is not independent and
thus it contains a circuit C. Clearly, C has a non-empty intersection with both
FX and FE\X . The existence of C contradicts the fact that X is a separator.
On the other hand, the submodularity of the rank function implies that r(F ) ≤
r(F ∩X) + r(F \X) and thus the equality must hold.

We now characterize separators of matroids using the contraction and deletion
operations. Before we do so, we need the following lemma.

Lemma 5.9. Let M be a matroid and X a subset of its ground set. The matroids
M\X and M/X are the same if and only if r(X) + r(E \X) = r(M).

Proof. Assume that M\X = M/X and let B be a base of M\X = M/X. If
BX is a base of M|X, then B ∪ BX is a base of M and r(M) = |B| + |BX | =
r(M\X) + r(M|X) = r(E\) + r(X).
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In the other direction, assume that the equality hold. First, observe that
I(M/X) ⊆ I(M \ X). In order to prove the opposite inclusion, consider I ∈
I(M\X) and a base B of M\X containing I. Clearly, B can be completed to
a base B ∪ B′ of M. The equality r(M) = |B| + |B′| = r(E \X) + |B′| implies
that |B′| = r(X) and B′ is a base of M|X. Hence, B is a base of M/X and
I ∈ I(M/X). We conclude that I(M/X) = I(M\X).

Proposition 5.7 and Lemma 5.9 yield a characterization of matroid separators
using the contraction and deletion operations.

Lemma 5.10. Let M be a matroid and X a subset of its ground set. The subset
X is a separator of M if and only if the matroids M \ X and M/X are the
same.

Propositions 2.4 and 5.7 combine together to the following:

Proposition 5.11. Let M be a matroid and X a subset of its ground set. X is
a separator if and only if r(X) + r∗(X) − |X| = 0.

Since the formula from Proposition 5.11 is self-dual, we obtain the following.

Lemma 5.12. A matroid M is connected if and only if its dual M∗ is connected.

We now focus on matroids that are not connected. We give the description
how to “build” them from connected pieces. Proposition 5.7 and Lemma 5.8 yield
the following.

Proposition 5.13. Let M be a matroid with a ground set E. The matroid M
is not connected if and only if there exists a proper subset X of E such that

I(M) = {I1 ∪ I2 | I1 ∈ I(M|X), I2 ∈ I(M\X)} .

Propositions 1.21 and 5.13 allows to break down a matroid into its connected
pieces using the notion of the union of two matroids.

Theorem 5.14. Let M be a matroid with connectivity components X1, X2, . . .,
Xk. The matroid M is equal the matroid union

M1 ⊕M2 ⊕ . . .⊕Mk

where Mi = M|Xi. Moreover, if M is isomorphic to

N1 ⊕N2 ⊕ . . .⊕Nl

where all matroids Ni, i = 1 . . . , l, are connected, then k = l and there exists a
permutation σ of {1, 2, . . . , k} such that the matroids Ni and Mσ(i) are isomor-
phic.
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Proof. We first prove that M is equal to the union of Mi, i = 1, . . . , k. Since Xk

is a separator, M = (M\ Xk) ⊕ (M|Xk) by Proposition 1.21 and Lemma 5.8.
By the induction, it holds that M\Xk = M1 ⊕M2 ⊕ . . .⊕Mk−1.

Assume now that M is isomorphic to the matroid union N1 ⊕N2 ⊕ . . .⊕Nl

as described in the statement of the theorem. Clearly, the ground set of each of
the matroids Ni, i = 1, . . . , l, is an equivalence class of γM. The correspondence
between the equivalence classes yields the permutation σ and the isomorphism
between Ni and Mσ(i) is then obtained as a restriction of the isomorphism be-
tween N1 ⊕N2 ⊕ . . .⊕Nl and the matroid M.

We finish this section by a proposition asserting that several classes of ma-
troids being closed under unions.

Proposition 5.15. The classes of F-representable, graphic and cographic ma-
troids are closed under the matroid union.

Proof. Let M1 and M2 be two matroids represented over a field F. Let Ai be a

representation of Mi, i = 1, 2. It is easy to verify that the matrix

(

A1 0
0 A2

)

is

a representation of M1⊕M2 over F. Hence, the class of F-representable matroids
is closed under matroid unions.

Let M1 and M2 be two graphic matroids corresponding to graphs G1 and
G2, respectively. The matroid M1⊕M2 is then a graphic matroid corresponding
to the graph obtained by a disjoint union of G1 and G2. This shows that the
class of graphic matroids is closed under matroid unions. By Proposition 2.7, the
union of two cographic matroids is also cographic.

Proposition 5.15 also implies that the class of regular matroids, which is de-
fined in Section 6.3, is closed under the matroid union.

5.2 Tutte, essential and cyclic connectivity

In this section, we develop analogoues of several notions of connectivity for ma-
troids and show their counterparts for graphs. Let us start with the following
proposition as a motivation for our definitions.

Proposition 5.16. Let G be a connected graph and let (X, Y ) be a partition of its
edge set. Let GX and GY be the subgraphs of G formed by the edges contained in
X and Y , respectively, and the vertices incident with these edges. The following
holds:

rM(G)(X) + rM(G)(Y ) − rM(G)(M(G)) ≤ |V (GX) ∩ V (GY )| − 1 .

Moreover, if both the subgraphs GX and GY are connected, then the inequality is
an equality.
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Proof. Let nX and nY be the number of vertices of GX and GY , respectively, and
let c(GX) and c(GY ) be the numbers of their components. Since rM(G)(X) =
nX − cX and rM(G)(Y ) = nY − rY , we obtain the following:

rM(G)(X) + rM(G)(Y ) − rM(G)(X ∪ Y ) + 1

= nX − cX + nY − cY − (|V (G)| − 1) + 1

≤ nX − 1 + nY − 1 − (|V (G)| − 1) + 1

= |V (GX) ∩ V (GY )| .

Clearly, the inequality becomes an equality if and only if cX = cY = 1, i.e., both
GX and GY are connected.

We now introduce, inspired by Proposition 5.16, a notion of a k-separation.
Let M be a matroid with a ground set E. A partition (X, Y ) of E is called a
separation. A separation (X, Y ) is a k-separation if

r(X) + r(Y ) − r(E) ≤ k − 1 .

A separation (X, Y ) is a Tutte k-separation if it is a k-separation and

min{|X|, |Y |} ≥ k .

A separation (X, Y ) is a cyclic k-separation if it is a k-separation and

r(X) < |X| and r(Y ) < |Y | .

A separation (X, Y ) is a essential k-separation if it is a k-separation and

min{r(X), r(Y )} ≥ k .

Observe that every essential k-separation is also a Tutte k-separation.
The (Tutte) connectivity of a matroid M is the minimum k such that M has

a Tutte k-separation and is denoted by λ(M). If M has no Tutte k-separation,
then λ(M) is set to be equal to ∞. Observe that a matroid M is connected if
and only if λ(M) ≥ 2. In general, we define a matroid M to be k-connected,
k ≥ 2, if λ(M) ≥ k.

Similarly, the cyclic connectivity of a matroid M is the minimum k such that
M has a cyclic k-separation and is denoted by γ(M) and M is cyclically k-
connected, if γ(M) ≥ k. Finally, the essential connectivity of a matroid M is the
minimum k such that M has an essential k-separation and is denoted by κ(M)
and M is essentially k-connected, if κ(M) ≥ k. For summary, see Table 5.1.

We will first address several basic properties of the just defined notions and
we then relate them to the analogous notions for graphs. Let us start with the
relation between the connectivity of a matroid and its dual.



5.2. TUTTE, ESSENTIAL AND CYCLIC CONNECTIVITY 55

Type of k-separation (X, Y ) Condition
Tutte min{|X|, |Y |} ≥ k
Cyclic r(X) < |X| and r(Y ) < |Y |
Essential min{r(X), r(Y )} ≥ k

Table 5.1: An overview of different kind of separations in matroids.

Proposition 5.17. The connectivity of a matroid M and its dual M∗ is the
same.

Proof. By Proposition 2.4, it holds for every subset X ⊆ E(M) that

r(X) + r(E \X) − r(E) = r(X) + r∗(X) − |X|

= r∗(X) + r∗(E \X) − r∗(E) .

In particular, (X,E \X) is a Tutte k-separation of M if and only if it is a Tutte
k-separation of M∗.

Let us now look at the other two connectivity parameters.

Proposition 5.18. Let M be a matroid. The essential connectivity of the ma-
troid M is equal to the cyclic connectivity of the dual matroid M∗.

Proof. Let (X, Y ) be an essential k-separation of M. As in the proof of Propo-
sition 5.17, we can argue that (X, Y ) is a k-separation of M∗. Since (X, Y ) is
essential, r(X) ≥ k which implies, using the fact that (X, Y ) is a k-separation,
that r(Y ) ≤ r(M) − 1. Hence, X contains a circuit of M∗. Symmetrically, Y
contains a circuit of M∗. We conclude that (X, Y ) is a cyclic k-separation of
M∗.

In the other direction, if (X, Y ) is a cyclic k-separation of M∗ for k as small
as possible, then r(Y ) ≤ r(M)−1 and r(X) ≥ k. Similarly, r(Y ) ≥ k and (X, Y )
an essential k-separation of M.

The cyclic connectivity of a matroid M is sometimes denoted by κ∗(M)
(instead of γ(M)) inspired by the equality stated in Proposition 5.18 which can
then be written as κ∗(M) = κ(M∗).

We next show that k-connected matroids are free of small circuits and cocir-
cuits.

Proposition 5.19. If M is an k-connected matroid with at least 2(k − 1) ele-
ments, then all circuits and all cocircuits of M have at least k elements.

Proof. Let C be a circuit of M with k′ < k elements. Observe that |E \ C| ≥ k′

where E is the ground set of M. Since r(C) + r(E \ C) ≤ r(E) + k′ − 1, the
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partition (C,E \ C) is a k′-separation of M contradicting the fact that M is
k-connected.

We now show that M has no cocircuits with less than k elements. By Proposi-
tion 5.17, M∗ is k-connected and the already established part of the proposition
implies that M∗ has no circuits with less than k elements. Hence, M has no
cocircuits with less than k elements.

An argument from the proof of Proposition 5.19 also implies the following.

Proposition 5.20. If a matroid M is k-connected and has at least 2k − 1 ele-
ments, then M has no k-element subset that is both a circuit and a cocircuit.

It is easy to see that the connectivity of a k-connected matroid with less than
2k elements is infinite. This and Proposition 5.19 allows us to determine the
connectivity of uniform matroids and show that they are the only matroids with
infinite connectivity:

Proposition 5.21. The connectivity of a uniform matroid Ur,n is given by the
following formula:

λ(Ur,n) =







r + 1 if n ≥ 2r + 2 ,
n− r + 1 if n ≤ 2r − 2 ,
∞ otherwise.

Moreover, if the connectivity of a matroid M is infinite, then M is uniform.

Proof. By Proposition 5.17, we can assume that 2r ≤ n. Let (X, Y ) be a Tutte
k-separation of Ur,n. By symmetry, we can assume that |X| ≤ |Y |. In particular,
r(Y ) = r. Hence, if r(X) + r(Y ) − r(X ∪ Y ) = r(X) ≤ k − 1 and |X| ≥ k,
then k − 1 ≥ r. This implies that the connectivity of Ur,n is at least r + 1, i.e.,
Ur,n is (r + 1)-connected. Since Ur,n contains a circuit with r + 1 elements, the
connectivity of Ur,n is equal to r+1 by Proposition 5.19 if n ≥ 2r+2. Otherwise,
the assumption 2r ≤ n implies that n ∈ {2r, 2r+ 1}. It is easy to verify that the
connectivity of matroids Ur,2r and Ur,2r+1 is infinite.

Assume now that M is a matroid with infinite connectivity and let n be the
number of its elements. We can assume that the rank of M is at most n/2 by
Proposition 5.17. Assume that n is even. By Proposition 5.19, every circuit of
M has at least n/2+1 elements, i.e., all subsets of the ground set of M with less
than n/2 + 1 elements are independent. Since the rank of M is at most n/2, M
is isomorphic to Un/2,n. If n is odd, we conclude that every circuit has at least
n/2 + 1/2 elements and thus M must be isomorphic to Un/2−1/2,n.

We now relate the connectivity of a matroid to its essential and cyclic con-
nectivity.
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Proposition 5.22. Let M be a matroid with finite connectivity and let k be an
integer. The matroid M is k-connected if and only if it is both essentially and
cyclically k-connected.

Proof. Since the connectivity of M is finite, λ(M) ≤ |E(M)|/2. Since every
essential k-separation is also a Tutte k-separation, if M is k-connected, then M
is also essentially k-connected. If (X, Y ) is a cyclic k-separation, then (X, Y ) is a
Tutte k-separation unless |X| < k or |Y | < k. In the latter case, if |X| < k, then
M has a circuit C with at most k − 1 elements and (C,E(M) \ C) is a Tutte
k′-separation with k′ ≤ k − 1. In both cases, M contains a Tutte k′-separation
for some k′ < k. This shows that if M is k-connected, then M is also cyclically
k-connected.

Assume now that M is both essentially and cyclically k-connected though it
has a Tutte k′-separation (X, Y ) with k′ < k. Choose such a Tutte k′-separation
with k′ as small as possible. In particular, r(X) + r(Y ) − r(M) = k′ − 1 which
implies that both r(X) and r(Y ) are at least k′ − 1.

Since (X, Y ) is not a cyclic k′-separation, at least one of the sets X and Y
is independent, say X. In particular, k′ ≤ |X| = r(X). Since (X, Y ) is not an
essential k′-separation, r(Y ) < k′ which implies r(Y ) = k′ − 1. By moving some
elements from Y to X, we can assume that Y is a circuit with k′ elements. If X
was not an independent set after adding these elements, we would obtain a cyclic
k′-separation.

Consider an arbitrary element x of X. Let X ′ = X − x and Y ′ = Y + x. By
the minimality of k′, (X ′, Y ′) is not a Tutte (k′ − 1)-separation and

k′ − 1 ≤ r(X ′) + r(Y ′) − r(M) = |X| − 1 + r(Y ′) − r(M) ≤ r(Y ) = k′ − 1 .

Comparing the left-hand and right-hand sides yields that all the inequalities
are equalities and thus r(Y ′) = r(Y ) + 1 = k′. The rank of X ′ is equal to
|X| − 1 = |E(M)| − k′ − 1 which is at least k′ since k′ < k ≤ |E(M)|/2. This
implies (X ′, Y ′) is an essential k-separation. So, we can conclude that M has no
Tutte k′-separation with k′ < k, i.e., M is k-connected.

We now turn to relating connectivity of graphic matroids to connectivity
of associated graphs. We start with essential connectivity of graphic matroids.
Recall that a graph G is k-connected if it has at least k + 1 vertices and it stays
connected after removing any at most k − 1 vertices.

Theorem 5.23. Let G be a connected graph with at least k + 1 vertices, k ≥ 2.
The graph G is k-connected if and only if the matroid M(G) is essentially k-
connected.

Proof. Assume that G is not k-connected, i.e., there exists a subset S, |S| < k,
of its vertices such that G becomes disconnected after removing the vertices of
S. Choose such an inclusion-wise minimal set S. Let A be the vertex set of
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one of the components of G \ S and let B = V (G) \ (A ∪ S). Observe that
the subgraph GA with vertex set A ∪ S that contains all the edges with both
end-vertices in A ∪ S and the subgraph GB with vertex B ∪ S that contains all
the edges incident with a vertex of B are connected (otherwise, there would be a
proper subset S ′ of S such that G\S ′ is not connected). Since A 6= ∅ and B 6= ∅,
the rank of each of E(GA) and E(GB) in M is at least |S|. By Proposition 5.16,
(E(GA), E(GB)) is a |S|-separation and since |E(GA)| ≥ |S| and |E(GB)| ≥ |S|,
it is an essential |S|-separation. This shows that if M is essentially k-connected,
then G is k-connected.

Suppose that G is k-connected but M has an essential k′-separation (E1, E2)
for some k′ < k. Let Gi be the spanning subgraph of G formed by edges of Ei,
i = 1, 2. Assume that there exist vertices u and v lying in different components
of G1 as well as different components of G2. Since G is k-connected, Menger’s
theorem implies that there exist internally vertex-disjoint paths P1, P2, . . . , Pk

connecting u and v. Let Ai denote Ei ∩ (∪n
j=1E(Pj)), i = 1, 2. Clearly, neither

A1 nor A2 contains a circuit of M (otherwise, it would correspond to a cycle of
G containing both u and v contradicting that u and v lie in different components
of Gi, i = 1, 2). Hence, both A1 and A2 are independent and it holds that

r(A1) + r(A2) − r(A1 ∪ A2) = |A1| + |A2| − (|A1 ∪A2| − k + 1) = k − 1 ≥ k′ .

When adding one edge of E \ (A1 ∪ A2) after another, we observe that the left-
hand side of the above inequality either does not change or increases by one. In
particular, it holds that

r(E1) + r(E2) − r(E) ≥ r(A1) + r(A2) − r(A) ≥ k′

which is impossible since (E1, E2) is a k′-separation.
We have just shown that any pair of vertices is contained in the same com-

ponent in at least one of the graphs G1 or G2 which implies that at least one of
the graphs G1 or G2 is connected, say G1. Since G1 is connected and spanning,
we obtain that r(E1) = r(E) where E is the ground set of M. Since (E1, E2) is
a k′-separation, it holds that r(E1) + r(E2) − r(E) ≤ k′ − 1, but since it is an
essential k′-separation, it holds that r(E1) + r(E2) − r(E) = r(E2) ≥ k′ which is
impossible. This finishes the proof of the theorem.

We next address cyclic connectivity of matroids. Let us recall the notion of
cyclic connectivity for graphs: let G be a graph and E1 and E2 a partition of
its edge set. We say that (E1, E2) is a cyclic k-cut if there are only k vertices
incident with edges both from E1 and E2 and G contains a cycle formed by edges
of each of E1 and E2. A graph G is cyclically k-connected if it has no cyclic k′-cut
for k′ < k.

Theorem 5.24. Let G be a connected graph and let k ≥ 2. The graph G is
cyclically k-connected if and only if M(G) is cyclically k-connected.
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Proof. Any cyclic k′-cut of G, k′ < k, corresponds to a cyclic k′-separation of
M(G) by Proposition 5.16. In particular, if M(G) is cyclically k-connected, then
G is also cyclically k-connected. Assume now that G is cyclically k-connected
but M(G) has a cyclic k′-separation (E1, E2) for k′ < k. Let Gi, i = 1, 2, be the
subgraph of G formed by edges of Ei and vertices incident with them. Among
all cyclic k′-separations (E1, E2) with k′ < k choose such that the total number
of components of G1 and G2 is as small as possible.

If both G1 and G2 are connected, then (E1, E2) is a cyclic k′-cut of G by
Proposition 5.16. Hence, at least one of the graphs G1 and G2 is not connected,
say G2. Let H be a component of G2 that does not contain all cycles of G2. Set
E ′

1 = E1 ∪E(H) and E ′
2 = E2 \E(H). Clearly, both E ′

1 and E ′
2 contain a circuit

of M(G). Since H is a component of G2, we obtain that

r(E ′
1) + r(E ′

2) ≤ (r(E1) + |V (H)| − 1) + (r(E2) − |V (H)| + 1)

= r(E1) + r(E2) ≤ r(E) + k − 1

which implies that (E ′
1, E

′
2) is a cyclic k′-separation of M. Since H was a com-

ponent of G2, the subgraphs G′
1 and G′

2 corresponding to (E ′
1, E

′
2) have a smaller

number of components than G1 and G2 which contradicts their choice.

It remains to consider an analogue of Tutte connectivity. Let us define the
analogous notion for graphs: A partition (E1, E2) of the edge set of a graph G
is a Tutte k-cut if there are only k vertices incident with edges both from E1

and E2 and both E1 and E2 contain at least k edges each. A graph G is Tutte
k-connected if it has no Tutte k′-cut for k′ < k.

Theorem 5.25. Let G be a connected graph and let k ≥ 2. The graph G is Tutte
k-connected if and only if the matroid M(G) is k-connected.

Proof. As in the proof Theorem 5.24, it can be shown that Proposition 5.16 im-
plies that any Tutte k′-cut of G, k′ < k, corresponds to a Tutte k′-separation of
M(G). In particular, if M(G) is k-connected, then G is also Tutte k-connected.
Suppose now that G is Tutte k-connected. This implies that G is k-connected
which implies that M(G) is essentially k-connected by Theorem 5.23. If M(G)
is not k-connected, then M(G) has a cyclic k′-separation, k′ < k, by Proposi-
tion 5.22. Since such a cyclic k′-separation is not essential, M(G) must contain
a circuit of size k′ (and we can assume k′ ≤ |E(G)|/2 by considering the part of
the k′-separation with smaller rank). However, such a circuit corresponds to a
cycle C of G of length k′ and (E(C), E(G) \ E(C)) is a Tutte k′-cut of G since
|E(G)| ≥ 2k′.

Inspired by the notion of the girth of a graph, which is the length of its shortest
cycle, we define the girth g(M) of a matroid M to be the number of elements
of its smallest circuit. If M has no circuits, we set g(M) = ∞. We relate the
connectivity of a matroid to its essential connectivity and its girth.
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Theorem 5.26. Let M be a matroid that is not isomorphic to any uniform
matroid Ur,n with n ≥ 2r − 1. The connectivity of M is then given by

λ(M) = min{κ(M), g(M)} .

Proof. By Proposition 5.21, λ(M) is finite. The definition of the connectivity
of a matroid yields that M has at least 2λ(M) elements which implies that
the girth of M is at least λ(M) by Proposition 5.19. Proposition 5.22 yields
that the essential connectivity of M is at least λ(M). This establishes that
λ(M) ≤ min{κ(M), g(M)}.

To prove the other direction, let (X, Y ) be a Tutte k-separation for k = λ(M).
If (X, Y ) is an essential k-separation, then the equality holds. Hence, we assume
that (X, Y ) is not essential, i.e., r(X) ≤ k−1 which implies that M has a circuit
with at most k elements, i.e., g(M) ≤ k. Again, the inequality is an equality.

We now translate Theorem 5.26 to graphs.

Corollary 5.27. Let G be a connected graph with at least 3 vertices that is not
isomorphic to K3. The connectivity of M(G) is equal to the minimum of the
connectivity and the girth of G.

Proof. As G is connected and |V (G)| ≥ 3, we have r(M(G)) ≥ 2. Since U2,4

is not graphic and the class of graphic matroids is closed under taking minors,
Ur,n is not graphic if both r and n − r exceed 1. If M(G) is isomorphic to Ur,n,
then either r = 1 and G is a tree or n = r + 1 and G is a cycle of length n.
Clearly, the statement holds unless G is isomorphic K3 which is forbidden by the
assumptions. The corollary now follows from Theorem 5.23 and Theorem 5.26
unless G is a complete graph (in which case Theorem 5.23 cannot be applied). In
such case, both the connectivity of M(G) and the girth of G are equal to three
unless G is a complete graph with four vertices.

Corollary 5.27 readily yields the following.

Corollary 5.28. Let G be a simple graph with at least three vertices that has no
isolated vertices and is not isomorphic to a complete graph of order three. The
matroid M(G) is 3-connected if and only if G is 3-connected and simple.

5.3 Computing minimal separations

A natural question from the algorithmic point of view is how efficiently we can
find a small separation splitting two given sets of elements of a matroid. To be
more precise, for two sets F1 and F2 of elements of a matroid M, a partition
(E1, E2) of the ground set of M to two sets E1 and E2 is an (F1, F2)-separation if
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Fi ⊆ Ei, i ∈ {1, 2}. We show that a minimal (F1, F2)-separation can be computed
in polynomial time. The presented algorithm will also play a crucial role when
constructing optimal branch-decompositions in Chapter 8.

Theorem 5.29. There is an algorithm running in time O(r2nτ) that determines
for an oracle-given matroid M and two disjoint sets F1 and F2 of its elements
whether there is an (F1, F2)-separation that is k-separation, where r is the rank
M, n is the number of elements of M and τ is the oracle query time. Moreover,
such an (F1, F2)-separation for the smallest possible value k can be found within
the same time estimate.

Proof. The goal is to find a minimal integer k such that there exists a partition
(E1, E2) of the ground set E of M satisfying

rM(E1) + rM(E2) = rM(E) + k

with Fi ⊆ Ei, i ∈ {1, 2}. This formula resembles the right hand side of the
equality in Theorem 3.4 but we have to find suitable matroids to apply the
Matroid Intersection Theorem in our setting.

Let Mi be the matroid obtained from M by contracting the elements of Fi

and then removing the elements of the other set F3−i. The matroids M1 and
M2 have the same ground set E0 which is E \ (F1 ∪ F2). Using the definition of
matroid contraction, we obtain the following:

min
E1∪E2=E0

rM1
(E1) + rM2

(E2) =

(

min
E1∪E2=E0

rM(E1 ∪ F1) + rM(E2 ∪ F2)

)

− rM(F1) − rM(F2) . (5.1)

By the Matroid Intersection Theorem and (5.1), the minimum k such that there
is a (F1, F2)-separation that is also a k-separation is equal to K + rM(F1) +
rM(F2)− rM(E)+1 where K is the maximum size of a subset of E0 independent
both in M1 and M2. By Corollary 3.5, this k can be determined in time claimed
in the statement of the theorem. Moreover, a partition (E1, E2) of E0 for which
the minimum in (5.1) is attained can also be found in time O(r2nτ). A partition
(E1 ∪F1, E2 ∪F2) is an (F1, F2)-separation of M that is a k-separation of M for
the smallest possible value of k.


