
Chapter 2

Duality and minors

In this chapter, we introduce two concepts for matroids that have their counter-
parts in graph theory. The first one is the concept of dual matroids, generalizing
the concept of dual graphs for graphs drawn in the plane, and the second one is
the concept of minors.

2.1 Dual matroids

Let M = (E, I) be a matroid and let B be the family of bases of M. Let B∗

the family of the complements of the members of B, i.e., X ∈ B∗ if and only if
E \X ∈ B. We show that B∗ is a family of bases of a matroid.

Theorem 2.1. Let M = (E, I) be a matroid and let B be the family of bases of
M. The family B∗ is a family of bases of a matroid on E.

Proof. We first prove that the family B has the following property:

(B2)’ for every B1, B2 ∈ B and e ∈ B2 \B1, there is an element f ∈ B1 \B2 such
that (B1 − f) + e ∈ B.

Note the difference between (B2) and (B2)’ in the quantification of e and f .
Since B1 is a base, the property (C3) implies that B1 + e contains a unique

circuit C containing e. Since C is dependent and B2 is independent, C \ B2 is
non-empty and thus there exists f ∈ C\B2. Clearly, f ∈ B1\B2. Moreover, since
(B1 − f)+x does not contain the circuit C and C is the unique circuit in B1 + e,
the set (B1 − f) + e must be independent. Finally, the fact |(B1 − f) + e| = |B1|
implies that (B1 − f) + e is a base.

We can now prove the theorem. As B(M) is non-empty, B∗(M) is non-empty,
i.e., (B1) holds for B∗(M). Consider two members B∗

1 and B∗
2 of the family B∗

and an element x ∈ B∗
1 \ B∗

2 . For i = 1, 2, let Bi = E \ B∗
i . Observe that

B∗
1 \ B∗

2 = B2 \ B1 and thus e ∈ B2 \ B1. By (B2)’, there exists an element
f ∈ B1 \ B2 = B∗

2 \ B∗
1 such that (B1 − f) + e is a base of M. Consequently,
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20 CHAPTER 2. DUALITY AND MINORS

and E \ ((B1 − f) + e) = (B∗
1 − e) + f is in the family B∗. We conclude that the

family B∗ satisfies both (B1) and (B2).

The matroid described in Theorem 2.1 is the dual of M and is denoted by M∗.
Observe that B(M∗) = B∗(M). The definition of the notion of dual matroids
directly yields that

Proposition 2.2. The dual of the dual of a matroid M is the matroid M itself,
i.e., (M∗)∗ = M.

As an example, let us consider a uniform matroid Um,n. Its bases are all of the
m-element subsets of E(Um,n) and hence the bases of U∗

m,n are all (n−m)-element
subsets of the ground set, i.e. U∗

m,n = Un−m,n. We have now seen that the class
of uniform matroids is closed under taking duals.

The rank function of the dual matroid is usually denoted by r∗ and r∗(M∗)
denotes the rank of the dual matroid. The function r∗ is also referred as to the
corank function of M. Using the definition of bases of the dual matroid and the
fact that matroid and its dual are both on the same ground set, one can observe.

Proposition 2.3. r(M) + r∗(M∗) = |E(M)| = |E(M∗)|.

In fact, we can generalize this observation to obtain an explicit formula for
the corank function.

Proposition 2.4. For every subset X of the ground set E of a matroid M, it
holds that

r∗(X) = |X| − r(M) + r(E −X) .

Proof. Let I∗ be an inclusion-wise maximal independent subset of X in M∗

and let I be an inclusion-wise maximal subset of E \ X independent in M,
i.e., r∗(X) = |I∗| and r(E \ X) = |I|. Further, let B be an inclusion-wise
maximal independent subset of E \ I∗ that contains I. Since r(B) = r(E \ I∗)
and r(E \ I∗) = r(M), B is a base of M.

Let B∗ = E \ B; since B is a base of M, B∗ is a base of M∗. Clearly,
I∗ ⊆ B∗ and B∗ ∩X = I∗. Similarly, I ⊆ B and B ∩ (E \X) = I. In particular,
|B ∩X| = |B| − |I| and thus

|X| = |X ∩ B| + |X ∩ B∗| = |B| − |I| + |I∗| = r(M) − r(E −X) + r∗(X) .

Loops of M∗ are called coloops. Observe that an element of M is a coloop if
and only if it is contained in every base of M. The family of circuits of the dual
matroids C(M∗) is denoted by C∗(M) and the members of this family are called
cocircuits of M. We characterize subsets of the ground sets that are cocircuits
in the next lemma.
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Lemma 2.5. Let M be a matroid on a set E. A subset C∗ of E is a cocircuit of
M if and only if E \ C∗ is a hyperplane of M.

Proof. Let C∗ be a cocircuit of M. We apply Proposition 2.4 and the definition
of the dual matroid to obtain that

r(E \ C∗) = |E \ C∗| − r∗(M) + r∗(C∗)

= |E| − |C∗| − r∗(M) + |C∗| − 1

= r(M) − 1 .

Since C∗ is an inclusion-wise minimal set with r∗(C∗) = |C∗| − 1, the set E −C∗

is an inclusion-wise maximal subset of E with rank r(M) − 1 and thus it is a
hyperplane of M. The opposite direction can be proved along the same lines.

We next see that a circuit and a cocircuit cannot intersect at exactly one
element.

Proposition 2.6. If C is a circuit and C∗ is a cocircuit of the matroid M, then
|C ∩ C∗| 6= 1.

Proof. Assume that there exists a circuit C and a cocircuit C∗ such that C∩C∗ =
{e}. By Lemma 2.5, H = E \ C∗ is a hyperplane of M and e 6∈ H by the choice
of C and C∗. This however contradicts the submodularity of the rank function:

r(C) + r(M) = r(C − e) + r(H + e) = r(C ∩H) + r(C ∪H) ≤ r(C) + r(H)

which is impossible since the rank of H is r(M) − 1.

We finish this section with an observation on the dual of a union of two
matroids.

Proposition 2.7. Let M1 and M2 be two matroids with disjoint ground sets.
The dual of M1 ⊕M2 is equal to M∗

1 ⊕M∗
2.

Proof. Let Ei be the ground set of Mi, i = 1, 2, and let E = E1 ∪ E2. In order
to prove the statement of the proposition, we show that the families of bases of
(M1 ⊕M2)

∗ and M∗
1 ⊕M∗

2 coincide. To this end, we apply Proposition 1.21.

B((M1 ⊕M2)
∗) = {B∗ | E \B∗ ∈ B(M1 ⊕M2)}

= {E \B | B ∈ B(M1 ⊕M2)}

= {E \ (B1 ∪B2) | B1 ∈ B(M1), B2 ∈ B(M2)}

= {(E1 \B1) ∪ (E2 \B2) | B1 ∈ B(M1), B2 ∈ B(M2)}

= {B∗
1 ∪B

∗
2 | B∗

1 ∈ B(M∗
1), B

∗
2 ∈ B(M∗

2)}

= B(M∗
1 ⊕M∗

2) .
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2.2 Matroid minors

Minors of matroids are defined using two basic operations, a deletion and a
contraction of elements and their sets. Let M be a matroid on a ground set E
and let T be a subset of the ground set E. The matroid obtained by deleting
the subset T is the matroid with the ground set E \ T whose independent sets
are those subsets of E \ T that are independent in M. The matroid obtained by
deleting T is denoted by M\ T or by M|(E \ T ).

The matroid obtained by contracting of a set T is defined through deleting T
in the dual matroid: the matroid M/T obtained by contracting T is the matroid
(M∗ \ T )∗. Clearly, the ground set of M/T is E \ T . We like to remark that
some authors do not allow deleting sets containing coloops and contracting sets
containing loops. However, we do not observe this restriction here.

Let us now give formulas for the rank function of a matroid obtained by
deleting or contracting a set of elements.

Proposition 2.8. Let M be a matroid on a ground set E. For every subset T
of E and every subset X of E \ T , the following holds:

rM\T (X) = rM(X) and

rM/T (X) = rM(X ∪ T ) − rM(T ) .

Proof. The first equality directly follows from the definition of the deletion. To
prove the second equality, we use the identity r∗(X) = |X|−rM(M)+rM(E \X)
given by Proposition 2.4 for the corank function of a matroid (r∗ will always
denote the corank of M throughout this proof). In particular, the following
equalities hold:

rM/T (X) = |X| + rM∗\T (E \ T \X) − rM∗\T (E \ T )

= |X| + r∗(E \ (T ∪X)) − r∗(E \ T )

= |X| + (|E \ (T ∪X)| + rM(T ∪X) − rM(E))

− (|E \ T | + rM(T ) − rM(E)) =

= rM(T ∪X) − rM(T )

Note that the last equality holds since |X| + |E \ (X ∪ T )| = |E \ T | as X ⊆
E \ T .

We can now characterize independent sets, bases and circuits of a matroid
obtained by contracting of a subset of its ground set.

Proposition 2.9. Let M be a matroid with ground set E and T a subset of E.
For every base BT of a base of M|T , it holds that

I(M/T ) = {I ⊆ E \ T |I ∪BT ∈ I(M)} .



2.2. MATROID MINORS 23

Proof. Let I be a subset of E−T such that (I ∪BT ) ∈ I(M). Since BT is a base
of M|T , it holds that rM(I ∪BT ) = rM(I ∪ T ). Proposition 2.8 now yields that

rM/T (I) = rM(I ∪ T ) − rM(T )

= rM(I ∪ BT ) − rM(BT ) = |I ∪BT | − |BT | = |I| .

On the other hand, if X ∈ I(M/T ), then

|X| = rM/T (X) = rM(X ∪ T ) − rM(T )

= rM(X ∪BT ) − |BT | .

Hence, |X ∪BT | = |X|+ |BT | = rM(X ∪BT ), i.e., X is of the form described in
the statement of the proposition.

Proposition 2.9 also allows us to characterize bases of a matroid obtained by
contracting of a subset of its ground set.

Corollary 2.10. Let M be a matroid with ground set E and T a subset of E.
For every base BT of a base of M|T , the bases of M/T are precisely sets B′ such
that B′ ∪BT are bases of M.

Finally, we characterize circuits of a matroid obtained by contraction.

Proposition 2.11. Let M be a matroid with ground set E and T a subset of
E. A subset of E \ T is a circuit of M/T if and only if it is an inclusion-wise
minimal non-empty member of the family of sets of the form C\T for C ∈ C(M).

Proof. Consider a circuit C1 ∈ C(M/T ). For an arbitrary base BT of M|T , it
holds that C1 ∪ BT 6∈ I(M) but (C1 − e) ∪ BT ∈ I(M) for any e ∈ C1. Hence,
there exists a circuit D of M such that C1 ⊆ D ⊆ C1∪BT and we get C1 = D−T .

Now suppose that C2 \ T is an inclusion-wise minimal non-empty member of
the family of sets C \ T , C ∈ C(M). Clearly, C2 ∩ T & C2 and thus C2 ∩ T ∈
I(M). In particular, there exists a base BT of M|T such that C2 ∩ T ⊆ BT . As
C2 ∪ BT contains C2, the set C2 ∪ BT 6∈ I(M) and thus C2 \ T 6∈ I(M/T ). If
C2 \ T 6∈ C(M/T ), there would exist C3 ∈ C(M/T ) and C3 & C2 \ T . By the
already established reverse implication, C3 is equal to D \ T for some circuit D
of M which contradicts the choice of C2.

We next focus on the mutual relation of the deletion and contraction opera-
tion, in particular, we show that these operations commute.

Lemma 2.12. Let T1 and T2 be two disjoint subsets of the ground set E of
a matroid M. The following holds:

(i) (M\ T1) \ T2 = M\ (T1 ∪ T2) = (M\ T2) \ T1
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(ii) (M/T1)/T2 = M/(T1 ∪ T2) = (M/T2)/T1

(iii) (M/T1) \ T2 = (M\ T2)/T1.

Proof. The part (i) directly follows from the definition of the deletion and the
part (ii) is a consequence of the part (i) through considering the dual matroids.
To prove (iii), we show that (M/T1) \ T2 and (M\ T2)/T1 have the same rank
function. If X ⊆ E − (T1 ∪ T2), then

r(M/T1)\T2
(X) = rM/T1

(X)

= rM(X ∪ T1) − rM(T1)

= rM\T2
(X ∪ T1) − rM\T2

(T1)

= r(M\T2)/T1
(X) .

Lemma 2.12 implies that any sequence of deletions and contraction can be
expressed as one contraction and one deletion, i.e., in the form M\X/Y for some
pair of disjoint subsets of the ground set. A matroid obtained from a matroid M
that has this form is called a minor of M. If X ∪Y is non-empty, then the minor
M \ X/Y is called proper. Matroid minors are closely related to graph minors
as we shall see in Section 2.4. Let us finish this section with the following simple
observation.

Proposition 2.13. A matroid N is a minor of a matroid M if and only if N ∗

is a minor of M∗.

Proof. The statement immediately follows from the fact that N = M\X/Y if
and only if N ∗ = M∗/X \ Y for some disjoint subsets X and Y of the ground
set of M.

2.3 Duality and minors for representable ma-

troids

We now want to investigate how to obtain a representation of the dual of a
matroid or a minor of it from its representation. Let us start with dual matroids.

Theorem 2.14. Let M be a matroid and [Ir|D] one of its standard represen-
tations. The matrix

[

DT |In−r

]

is one of the representations of M∗ where the
correspondence of the columns to the elements of the ground set in the two rep-
resentations (given by their order) is the same (see Figure 2.1).
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e1 . . . er er+1 . . . en


 Ir D





e1 . . . er er+1 . . . en


 DT In−r





Figure 2.1: Representations of a matroid and its dual.

Proof. We show that the sets of n − r linearly independent column vectors in
[

DT |In−r

]

are precisely bases of M∗. Let B be an arbitrary set of r linearly
independent columns of M[Ir|D], i.e., a base of M. By permuting the columns if
necessary, we may assume that B = {e1, . . . , es, er+1, . . . , er+(r−s)} for some s ≤ r.
Split now the two matrices as follows:

[

Is 0 D11 D12

0 Ir−s D21 D22

]

−→

[

DT
11 DT

21 Ir−s 0
DT

12 DT
22 0 In−2r+s

]

Since B is a base, the rank of D21 is r− s and thus the rank of DT
21 is also r− s.

Hence, the submatrix of the latter matrix given by columns not in B has rank
(r − s) + (n − 2r + s) = n − r. In particular, this submatrix has full rank and
thus its column vectors form a base of M∗.

The presented argument can be reversed along the completely same lines to
show that if n − r column vectors are linearly independent in

[

DT |In−r

]

, then
the complementary r column vectors are linearly independent in [Ir|D]. Hence,
the complement of a base B of M is independent in the matroid represented
by
[

DT |In−r

]

and the complement of every inclusion-wise maximal independent
set in the matroid represented by

[

DT |In−r

]

is a base of M. We conclude that
[

DT |In−r

]

is a representation of M∗.

An immediate corollary of Theorem 2.14 is the following:

Corollary 2.15. If a matroid M is representable over a field F, then the dual
matroid M∗ is also representable over F.

Example: Consider the vector matroid of the following representation








1 0 0 0 0 1 1 2
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 2 1 1 0









over GF(3). The dual matroid M∗ is the vector matroid represented by the
matrix









1 0 0 0 0 1 1 2
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 2 1 1 0









.
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Observe that this particular matroid, which is usually denoted by P8, has
the property that its dual is isomorphic to the matroid itself. Such matroids are
called self-dual.

Let M be a matroid represented by a matrix A. If T is a set of columns of
A, which corresponds to a subset of the ground set of M, then A \T denotes the
matrix obtained from A by removing the columns corresponding to T . Clearly,
the definition of the deletion operation and representations of matroids yield the
following:

Lemma 2.16. Let M be a matroid represented by a matrix A and T a set of
columns of A which we identify with a subset of the ground set of M. The matrix
A \ T is a representation of the matroid M\ T .

Describing, the representation of a matroid obtained by a contraction of an
element is more tricky.

Lemma 2.17. Let M be a matroid and [Ir|D] its standard representation. For
every 1 ≤ i ≤ r, the matrix obtained from [Ir|D] by removing its i-th row is a
representation of the matroid obtained from M by contracting its element corre-
sponding to the i-th column of [Ir|D].

Proof. The lemma immediately follows from Lemma 2.16 and Theorem 2.14.

Theorem 2.14 together with Lemmas 2.16 and 2.17 yields the following:

Corollary 2.18. Every minor of an F-representable matroid is F-representable.

In particular, the class of F-representable matroids for a fixed field F is closed
under taking minors by Corollary 2.18.

2.4 Duality and minors for graphic matroids

In this section, we investigate how minors of matroids are related to minors
of graphs as well as duals of graphic matroids. Recall that M(G) denotes the
graphic matroid corresponding to G. We start with matroids obtained by deleting
or contracting some of the elements. Recall that G \ T is a graph obtained by
removing edges contained in T and G/T is the graph obtained by contracting
edges contained in T (we do not remove arising loops and parallel edges).

Proposition 2.19. Let G be a graph. The following holds for all subsets T of
the edges of G:

M(G) \ T = M(G \ T )

and
M(G)/T = M(G/T ) .
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Proof. It is enough to prove the statement for a single-element set T = {e}. The
definitions of deletions of edges in graphs and elements in matroids directly yield
that M(G) \ e = M(G \ e). Contracting elements is more difficult. If e is a loop
of G, then G/e = G \ e and M(G)/e = M(G) \ e. Hence, we may assume that e
is not a loop in G. A subset I of E(G)− e is acyclic in G/e if and only if I ∪ e is
acyclic in G. Hence, I(M(G)/e) = I(M(G/e)) and the proposition follows.

An immediate corollary of Proposition 2.19 is the following which implies that
the class of graphic matroids is closed under taking minors.

Corollary 2.20. Every minor of a graphic matroid is graphic.

Let us turn our attention to duality of matroids and graphs. For a plane
graph G, G∗ denotes its geometric dual, i.e., the graph whose vertices are the
faces of G and two of them are joined by an edge if they share an edge in G. In
this way, the edges of G and G∗ naturally one-to-one correspond. In particular,
loops of G are bridges of G∗ and bridges of G are loops of G∗.

Dual matroids of graphic matroid for plane graphs can be easily described as
follows.

Lemma 2.21. Let G be a plane connected graph. The matroid M(G∗) of the
dual of G is isomorphic to the dual matroid M∗(G) of the graphic matroid M(G)
corresponding to G.

Proof. Through the natural one-to-one correspondence of the edge of G and G∗,
we identify the elements of M(G∗) and M∗(G). Since (G∗)∗ = G, it is enough
to prove that for every spanning tree T of G, the edges not contained in T form
a spanning tree of G∗.

Let B ⊆ E be a subset of the edges of G forming a spanning tree in G. We
first prove that E \ B forms an acyclic subgraph of G∗. Assume that E \ B
contains a circuit, i.e., there is at least one vertex u of G inside this circuit and
at least one vertex v of G outside. Clearly, any path connecting u and v in G
have to intersect the considered circuit of G∗ and thus it has to contain an edge
of E \B. Since B is a spanning tree of G, B must contain at least one such edge
which is impossible. Hence, the edges of E \B form an acyclic subgraph of G∗.

We now apply Euler’s formula that the edges of E \B forms a spanning tree
of G∗. First, the number of vertices of G∗ is the number of faces of G which
is 2 + |E| − |V (G)|. Since |B| = |V (G)| − 1 as the edges of B correspond to
a spanning tree of G, |E \ B| = |E| − |B| = |E| − |V (G)| + 1 = |V (G∗)| − 1.
Since the edges E \ B form an acyclic subgraph of G∗, this subgraph must be
connected.

Lemma 2.21 yields the following:

Theorem 2.22. If G is a planar graph, then the dual of the matroid M(G) is
graphic.
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We now prove that the circuits of the dual matroid of a graphic matroid
corresponds to edge-cuts in a graph. Recall that edge-cut of a graph G is a set F
of all edges such that the vertices of G can be partitioned into two sets A and A′

such that each edge of F has exactly one end-vertex in A and one end-vertex in
A′. Note that we use M∗(G) to denote the dual of the graphic matroid M(G)
as we have already used in Lemma 2.21.

Lemma 2.23. Let G be a graph. A subset F of the ground set of M∗(G) is a
circuit in the dual matroid M∗(G) if and only if the edges of G corresponding to
the elements of F form an inclusion-wise minimal edge-cut of G.

Proof. Without loss of generality, we can assume that G is connected (identifying
vertices of different components of G does not change M(G)). We first show that
the elements corresponding to an inclusion-wise minimal edge-cut of G form a
circuit of M∗(G). Let A and B be a partition of the vertices of G and let F be
the set of edges between A and B which we identify with elements of M(G) and
thus of M∗(G). Assume that the edge-cut F is an inclusion-wise minimal, i.e.,
both the subgraph G[A] of G induced by A and the subgraph G[B] of G induced
by B are connected. Every base of M(G) corresponds to a spanning tree of G
and thus must include at least one edge from F , i.e., F is not independent in
M∗(G). On the other hand, adding any edge f of F to G[A] and G[B] results
in a connected graph and a spanning tree of this graph corresponds to a base of
M(G). In particular, F − f is contained in a complement of a base of M(G) for
every f ∈ F and thus the set F − f is independent. We conclude that F is a
circuit of M(G).

Let us now prove the other direction. Let F be a circuit of M∗(G). Since F is
circuit of M∗(G), the graph G \ F cannot be connected: otherwise, there would
be a spanning tree of G avoiding all edges of F and F would be independent
in M∗(G). Hence, F contains an edge-cut. Since every inclusion-wise minimal
edge-cut is dependent (as we have already proven), F must be an inclusion-wise
minimal edge-cut of G since F is an inclusion-wise minimal dependent set of
M∗(G).

We now show that in general, it is not true that the class of graphic matroids
is closed under taking duals, i.e., there are graphic matroids whose dual is not
graphic. This leads us to the definition of a cographic matroid: a matroid M is
cographic if M is the dual of a graphic matroid.

Proposition 2.24. Neither the matroid M∗(K5) nor the matroid M∗(K3,3) is
graphic.

Proof. Let M∗(K5) be isomorphic to a graphic matroid M(G) for a graph G.
We may assume that G is connected (identifying vertices of different components
will not change the structure of the cycles in G). Since M(K5) has 10 elements
and rank 4, G has 7 vertices and 10 edges and the average degree of G is less
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than 3. Let v be a vertex of degree at most 2 in G. The edges incident with
v form an edge-cut of size at most two in G. It follows from Lemma 2.23 that
M∗(G) = M(K5) has circuit of size 1 or 2 which is impossible. Hence, M∗(K5)
cannot be a graphic matroid.

Similarly, if M∗(K3,3) is isomorphic to a graphic matroid M(G), then G has
5 vertices and 9 edges. In particular, G has a vertex of degree at most three and
M(K3,3) must contain a circuit formed by at most three elements.


