Practicals for Introduction to Approximation and Randomized Algorithms

WS2324 - 7. practical

1

Let us have a function $F:\{0,\ldots,n-1\}\to\{0,\ldots,m-1\}.$

We are told that $F((x+y) \mod n) = (F(x) + F(y)) \mod m$ holds for any $x, y \in \{0, \dots, n-1\}$.

The only way for us to evaluate F is by using a lookup table, in which the values of F are stored. However, 1/5 of all values in this table are wrong and we don't know which.

Describe a simple randomized alorithm, which, for any given value of z, returns F(z) with probability at least 1/2.

Suppose that you are then allowed to run this algorithm three times for a given z. You will thus get three (not necessarily different) values, which should be F(z). With what probability can you determine F(z) now?

$\mathbf{2}$

Show that $var(X) \le 1/4$ holds for any discrete random variable X that only has values in the interval [0,1].

3

We have seen in the lecture that, for any $p \ge n$ (where p is a prime) the family of hash functions

$$\mathcal{H} = \{ h_{a,b} \mid 1 \le a \le p - 1, 1 \le b \le p \}$$

where

$$h_{a,b}(x) = ((ax+b) \mod p) \mod n$$

is 2-universal.

Now consider a family of hash functions

$$\mathcal{H}' = \{ h_a \mid 1 \le a \le p - 1 \}$$

where

$$h_a(x) = (ax \mod p) \mod n.$$

Show that this family is not 2-universal.

Then show that it is almost 2-universal in the sense that, for any $x, y \in \{0, \dots, p-1\}$ and for a uniformly randomly selected $h \in \mathcal{H}'$ we get $\Pr(h(x) = h(y)) \le 2/n$.