Tutorials: NDMI025 - Randomized Algorithms

Karel Král

April 15, 2021

This text is a work in progress, do not distribute. All errors in this text are on purpose. Please report them to my email kralka@iuuk.mff.cuni....

Contents

1 Exercises 5
1.1 Tutorial 1. 5
1.2 Tutorial 2. 7
1.3 Tutorial 3. 7
1.4 Tutorial 4. 8
1.5 Tutorial 5. 8
1.6 Tutorial 6. 10
2 Theory 13
$2.1 \quad$ Probability 101 13
2.2 Markov Chain 13
3 Solutions 15
3.1 Tutorial 1. 15
3.2 Tutorial 2. 24
3.3 Tutorial 3. 30
3.4 Tutorial 4. 35
3.5 Tutorial 5. 38
3.6 Tutorial 6. 45

Chapter 1

Exercises

1.1 Tutorial

1. Can you all hear me?

- If you are uncomfortable asking a question in English, just ask in Czech/Slovak and I will translate.
- Have you all taken:
(a) a probability course (discrete probability, random variables, expected value, variance, Markov, Chernoff)
(b) a linear algebra course (matrix operations, linear maps, eigenvectors and eivenvalues, discriminant)
(c) a graph theory course (what a combinatorial graph is, bipartite, complete, coloring)
(d) a combinatorics course (factorial, binomial coefficients)
(e) an algorithms / programming course (big-O notation, possibly understanding Python based on the other question)
- This class is heavy on theory. Are you interested in computer simulations and or implementations? If so:
(a) Python
(b) R
(c) $\mathrm{C}++$

Solution: 1
2. You are presented with two sealed envelopes. There are $k \$$ in one of those and $\ell \$$ in the other $(k, \ell \in \mathbb{N}$ but you do not know k, ℓ in advance). You may open an envelope and (based on what you see) decide to take this one or the other (without looking into both).
(a) Is there a way how to walk away with the larger amoung of money with probability strictly larger than 0.5 ?
(b) What is the expected value you walk away with (in terms of k, ℓ)?
(c) Simulate.

Solution: 2
3. Graph isomorphism. You have seen an interactive proof of graph non-isomorphism on the class. Can you come up with an interactive proof of graph isomorphism?

Solution: 3
4. We will focus on random walks and their properties a lot.
(a) Random walks are useful when analysing algorithms - "two coloring without monochromatic triangle" of three-colorable graph.
(b) Random numbers in the computer are often expensive to generate, can we reduce number of used random bits (expanders)? Or even get a deterministic algorithm?
(c) To sample from extremely large spaces.

Let $n \in \mathbb{N}$, say $n=30$. Let us the following problem we start with $X_{0}=\lfloor n / 2\rfloor$ and do the following process:

- if $X_{i} \in\{0, n\}$ we stop
- we set $X_{i+1}=X_{i}+\delta$ where δ is picked uniformly at random from $\{-1,1\}$
(a) Is this a Markov chain (Definition 2.2)? If so can you write it's matrix?
(b) What is the expected number of steps until stopping?

Solution: 4
5. Think of some example MCs.
(a) Create a MC that is irreducible.
(b) Create a MC that is not irreducible.
(c) Create a MC that is periodic.
(d) Create a MC that is not periodic.
(e) Compute a stationary distribution of the following MC:

$$
\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

(f) Create a MC that has more stationary distributions.

Solution: 5
6. We are collectors and we want to collect all n kinds of coupons. Coupons are sold in packages which all look the same. Thus when we buy an coupon, we buy one of n kinds uniformly at random. This is known as the coupon collector problem.
(a) What is the expected number of coupons we need to buy to get all kinds?
(b) How many coupons do we need to buy to have probability at least $1-q$ of collecting all kinds?
(c) What is the Markov chain? Is this similar to a random walk on some graph?
(d) Simulate.

Solution: 6

1.2 Tutorial

1. Find a family of oriented graphs of constant in-degree and constant out-degree and as large hitting time as possible.

Note that similar situation could happen on undirected graphs where the probabilities of traversing edge one way and the other way would not be the same. Which is in principle almost an oriented graph.

Solution: 1
2. Let $A \in \mathbb{R}^{n \times n}$ be a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Show that the matrix $A+d I_{n}$ has eigenvalues $d+\lambda_{1}, \ldots, d+\lambda_{n}$.
Solution: 2
3. Show Courant-Fisher: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $\left(A^{T}=A\right)$. Let $\lambda_{1} \geq \lambda_{2} \geq$ $\ldots \geq \lambda_{n}$ be its eigenvalues. Show
(a) $\lambda_{1}=\max _{x \in \mathbb{R}^{n},\|x\|=1} x^{T} A x$
(b) $\lambda_{n}=\min _{x \in \mathbb{R}^{n},\|x\|=1} x^{T} A x$
(c) The eigenvalue λ_{2} can be computed similarly $\lambda_{2}=\max _{x \in \mathbb{R}^{n},\|x\|=1, x^{T} u_{1}=0} x^{T} A x$ (where u_{1} is the eigenvector corresponding to λ_{1}). We can get other eigenvalues in a similar manner. Moreover we could use this to prove the interlacing theorem. See https: //en.wikipedia.org/wiki/Min-max_theorem
Solution: 3
4. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its adjacency matrix is $-d$.

Solution: 4
5. Compute the eigenvalues and eigenvectors of the following graphs:
(a) K_{n}, the complete graph on n vertices.
(b) $K_{n, n}$, the complete bipartite graph with partites of size n each.
(c) C_{n}, the cycle on n vertices.

Solution: 5

1.3 Tutorial

1. You are given two coins. One is fair and the other one has $\operatorname{Pr}[\operatorname{tails}]=1 / 4$. We use the following algorithm to distinguish those:

- Pick a coin and toss it n times.
- Let \hat{p} be the probability of getting a tails (number of tails over n).
- If $\hat{p} \geq 3 / 8$ we say this coin is fair.

Show that if $n \geq 32 \ln (2 / \delta)$ then our algorithm answers correctly with probability at least $1-\delta$.

Solution: 1
2. You have seen that $\mathrm{ZPP}=\mathrm{RP} \cap$ co-RP.
(a) Recall definitions of:

- RP
- ZPP
- co-RP
- BPP
- NP
(b) Show that $R P \subseteq N P$ (and thus co-RP \subset co-NP).
(c) Decide if $\mathrm{BPP}=\mathrm{co}-\mathrm{BPP}$.
(d) Show that if $\mathrm{NP} \subseteq \mathrm{BPP}$ then $\mathrm{NP}=\mathrm{RP}$.

Solution: 2
3. How to simulate a fair coin using a tipped coin and wice versa.
(a) We are given a fair coin $\operatorname{Pr}[t a i l s]=0.5$. Show how to generate a random bit with $\operatorname{Pr}[1]=p$ for a given $p \in(0,1)$ (both $p=0$ and $p=1$ are a bit boring).
(b) We are given a tipped coin - we do not even know $p=\operatorname{Pr}[t a i l s]$. We are sure that $\operatorname{Pr}[$ tails $] \in(0,1)$. Generate a fair coin toss.

Solution: 3
4. Show that the expected number of comparisons a quick-sort algorithm does is roughly $n \ln (n)$. Show that probability of it making at least $32 n \ln (n)$ comporisons is at most $1 / n^{3}$.
Solution: 4

1.4 Tutorial

1. We have k servers that are supposed to handle $n \gg k$ jobs. But the jobs come online and there is no single computer that knows the loads of servers (otherwise we would have a lot of communication). How do we distribute the jobs? We distribute the jobs each independently uniformly at random. How to bound the maximum load?

Solution: 1
2. Distributed discrete logarithm algorithm (Breaking the Circuit Size Barrier for Secure Computation Under DDH, Boyle, Gilboa, Ishai linked on the website).

Solution: 2
3. Let A, B be two disjoint sets of vertices where $|A|=|B|=n$. Let $d \geq 5$ be a constant. We choose d uniformly at random edges from each vertex from A. We show that with constant positive probability each set $S \subseteq A$ of size $|S| \leq n / d$ has at least $\beta|S|$ neighbors where $\beta=d / 4$.

Solution: 3

1.5 Tutorial

1. Let us define the edge expansion for a given graph G by:

$$
h(G)=\min _{|S| \leq n / 2} \frac{e(S, V \backslash S)}{|S|}
$$

For any $S \subseteq V(G)$ we denote

$$
e(S)=E(G) \cap S \times S=\text { number of edges inside } S
$$

$e(S, V(G) \backslash S)=E(G) \cap(S \times(V(G) \backslash S))=$ number of edges going from S to the complement

Let us show that if λ_{2} is the second largest eigenvalue of the adjacency matrix of a d-regular graph G then:

$$
h(G) \geq \frac{d-\lambda_{2}}{2}
$$

Solution: 1
2. Show that for any $v \in \mathbb{R}^{n}$ it holds that

$$
\frac{1}{\sqrt{n}}\|v\|_{1} \leq\|v\|_{2} \leq\|v\|_{1}
$$

Solution: 2
3. Let μ be a probability distribution, that is $\|\mu\|_{1}=1$ and $\mu_{j} \geq 0$ (for each $j \in \Omega$). Let us define $d(\mu, \nu)$ the distance of two probability distributions as:

$$
d(\mu, \nu)=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)|
$$

Show that:

$$
d(\mu, \nu)=\max _{A \subseteq \Omega} \mu(A)-\nu(A)
$$

where $\mu(A)=\sum_{x \in A} \mu(x)$.
Solution: 3
4. Let M be a Markov chain on the set of states S. We say that a Markov chain $Z_{t}=\left(X_{t}, Y_{t}\right)$ on the set of states $S \times S$ is a coupling iff

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t+1}=x^{\prime} \mid Z_{t}=(x, y)\right]= \operatorname{Pr}\left[M_{t+1}=x^{\prime} \mid M_{t}=x\right] \\
& \text { (where } X_{t+1} \text { is the first coordinate of } Z_{t+1} \text {) } \\
& \operatorname{Pr}\left[Y_{t+1}=y^{\prime} \mid Z_{t}=(x, y)\right]=\operatorname{Pr}\left[M_{t+1}=y^{\prime} \mid M_{t}=y\right] \\
& \text { (where } Y_{t+1} \text { is the second coordinate of } Z_{t+1} \text {) }
\end{aligned}
$$

So one can imagine a coupling as a Markov chain, that in both coordinates behaves in the same way as the original Markov chain (but the coordinates might be dependent on each other).
Let $Z_{t}=\left(X_{t}, Y_{t}\right)$ be a coupling of a Markov chain M on the state space S. Suppose there is a T such that:

$$
\operatorname{Pr}\left[X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon \quad \text { (for all } x, y \in S \text {) }
$$

then

$$
\tau(\varepsilon) \leq T
$$

Where formally the mixing time $\tau(\varepsilon)$ is defined as

$$
p_{x}^{t}=\text { the distribution when starting at } x \text { and doing } t \text { steps }
$$

$$
\tau(\varepsilon)=\max _{x \in S} \min \left\{t \mid d\left(p_{x}^{t}, \pi\right) \leq \varepsilon\right\}
$$

Notice that when we prove that $\operatorname{Pr}\left[X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon$ for all $x, y \in S$, we know that we are close to the stationary distribution (without even knowing the stationary distribution).

Solution: 4
5. We define the hypercube graph of dimension d as follows: the vertices are binary strings of length d and two vertices are connected by an edge iff they differ in exactly one coordinate. For instance $d=2$ the graph is

$$
(\{00,01,10,11\},\{(00,01),(00,10),(11,01),(11,10)\})
$$

(the edges are not oriented).
We start at O^{d} and do the following random walk:

- With probability $1 / 2$ we stay at the current vertex.
- With probability $1 / 2$ we choose uniformly at random and index $j \in[d]$ and change the corresponding bit.

The Markov chain is nice (it converges to a single stacionary distribution, namely the uniform distribution on all vertices). Our question is how many steps do we need to take until we are "close enough" to the uniform distribution. Show that the random walk has $\tau(\varepsilon) \leq d \ln (d / \varepsilon)$.

Solution: 5

1.6 Tutorial

1. Definition: a random variable - our estimate $A>0$ is an $\varepsilon-\delta$ approximation of a value $g>0$ if

$$
\operatorname{Pr}[(1-\varepsilon) g \leq A \leq(1+\varepsilon) g] \geq 1-\delta
$$

Prove the Estimator Theorem: Let U be a finite set and $G \subseteq U$ its subset. We know $|U|$ and wish to estimate $|G|$. If we take n uniformly random and independent samples from U where

$$
\begin{aligned}
n & \geq \frac{3}{\varepsilon^{2} \frac{G}{U \mid}} \ln (2 / \delta) \\
X & =\text { number of samples inside of } G
\end{aligned}
$$

and output $A=X \frac{|U|}{n}$ then A is $\varepsilon-\delta$ approximation of $|G|$.
Solution: 1
2. We say that \hat{x} is an ε-aproximation of x iff

$$
(1-\varepsilon) x \leq \hat{x} \leq(1+\varepsilon) x
$$

Show that for $\varepsilon<1 / 2$ if we have ε-aproximation \hat{s} of a number s and ε-aproximation \hat{t} of a number t then \hat{s} / \hat{t} is an 4ε-aproximation of s / t.

Solution: 2
3. Let $\varepsilon>0$ be fixed. Find a suitable choice of $\bar{\varepsilon}$ such that if we take $\left(\hat{a_{i}}\right)_{i=1}^{n}$ of numbers $\left(a_{i}\right)_{i=1}^{n}$ then $\prod_{i=1}^{n} \hat{a_{i}}$ is an ε-aproximation of $\prod_{i=1}^{n} a_{i}$.
Solution: 3
4. Show an algorithm that given a bipartite graph G (partites consisting of the same number of vertices) determines if the number of perfect matchings is even or odd.
Solution: 4
5. Let $A \in\{0,1\}^{n \times n}$ be a matrix. Let $\varepsilon_{i, j}$ be independent random ± 1 variables. Let $B \in$ $\{-1,0,1\}^{n \times n}$ be a matrix such that $B_{i, j}=\varepsilon_{i, j} A_{i, j}$ (uniformly randomly independently assign signs to entries of A).
(a) Show that $\mathbb{E}[\operatorname{det}(B)]=0$
(b) Show that $\mathbb{E}\left[\operatorname{det}(B)^{2}\right]=\operatorname{perm}(A)($ permanent of $A)$

Solution: 5
6. Let $G=(U \cup V, E)$ be a bipartite graph such that $|U|=|V|=n$ and $\delta(G)>n / 2$ (the least degree). Show that for any matching of size at most $n-1$ there is an augmenting path of length at most 3 .
Solution: 6
7. Let $G=(U \cup V, E)$ be a bipartite graph such that $|U|=|V|=n$ and $\delta(G)>n / 2$ (the least degree). Show that for any $2 \leq k \leq n$ and a matching m of size k there are at most n^{2} matchings m^{\prime} of size $k-1$ such that we can get from m^{\prime} to m using an augmenting path of length at most 3 .

Solution: 7

Chapter 2

Theory

2.1 Probability 101

Probability 101

2.2 Markov Chain

Definition. A discrete-time Markov chain is a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ with the Markov property:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{n+1}=x \mid X_{0}=\right. & \left.x_{0}, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]=\operatorname{Pr}\left[X_{n+1}=x \mid X_{n}=x_{n}\right] \\
& \text { (if both are defined, i.e., } \left.\operatorname{Pr}\left[X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]>0\right)
\end{aligned}
$$

and the possible values of X_{i} form a countable set called the state space of the Markov chain.
The Markov property states that the process has no memory - the next state depends only on the current state. We will deal with a special case where the state space of each random variable will be the same and finite. Moreover we will deal with time-homogenous Markov chains, that is $\operatorname{Pr}\left[X_{n+1} \mid X_{n}\right]=\operatorname{Pr}\left[X_{n} \mid X_{n-1}\right]$ (the transition probabilities are time independent). Thus we will represent Markov chains by their transition matrices - if a Markov chain has n states its transition matrix is $P \in[0,1]^{n \times n}$ such that $P_{i, j}=\operatorname{Pr}\left[X_{n+1}=i \mid X_{n}=j\right]$ (thus column sums are equal to one).

If we take a probability distribution $\pi \in[0,1]^{n}$ and multiply it by the transition matrix we get the probability distribution after one step $P \pi$.
There are several interesting properties of Markov chains:

- We say that a MC is irreducible iff for each pair of states $i, j \in[n]$ there is a time $k \in \mathbb{N}$ such that $\left(P^{k}\right)_{i, j}>0$ (we can get from any state to any state).
- We say that a MC is periodic iff there is a state $i \in[n]$ and a period $p \in \mathbb{N}, p>1$ such that for each time $k \in \mathbb{N}$ we have $\left(P^{k}\right)_{i, i}>0 \Rightarrow p \mid k$ that is probability of staying at state i is positive only for multiples of the period.
- We say that $\pi \in[0,1]^{n}$ is a stationary distribution of a given MC iff $P \pi=\pi$ (the distribution is the same after one step).

Theorem 1. If a MC is aperiodic and irreducible it has a unique stationary distribution π. Moreover for all pairs of states $i, j \in[n]$ the we know that

$$
\lim _{t \rightarrow \infty}\left(P^{t}\right)_{i, j}=\pi_{i}
$$

Chapter 3

Solutions

3.1 Tutorial

1.

- Can you all hear me?
- If you are uncomfortable asking a question in English, just ask in Czech/Slovak and I will translate.
- Have you all taken:
(a) a probability course (discrete probability, random variables, expected value, variance, Markov, Chernoff)
(b) a linear algebra course (matrix operations, linear maps, eigenvectors and eivenvalues, discriminant)
(c) a graph theory course (what a combinatorial graph is, bipartite, complete, coloring)
(d) a combinatorics course (factorial, binomial coefficients)
(e) an algorithms / programming course (big-O notation, possibly understanding Python based on the other question)
- This class is heavy on theory. Are you interested in computer simulations and or implementations? If so:
(a) Python
(b) R
(c) $\mathrm{C}++$

2. You are presented with two sealed envelopes. There are $k \$$ in one of those and $\ell \$$ in the other ($k, \ell \in \mathbb{N}$ but you do not know k, ℓ in advance). You may open an envelope and (based on what you see) decide to take this one or the other (without looking into both).
(a) Is there a way how to walk away with the larger amoung of money with probability strictly larger than 0.5 ?
Solution: Pick an envelope uniformly at random. If you see $m \$$ toss a fair coin until you get Tails. If the number of tosses was strictly less than m keep the envelope, otherwise take the other. If $k<\ell$ then the probability of keeping the envelope with $k \$$ is strictly less than the probability of keeping the envelope with $\ell \$$.
(b) What is the expected value you walk away with (in terms of k, ℓ)?

Solution: Let us recall the sum of geometric series:

$$
\begin{aligned}
S & =\sum_{j=0}^{n} q^{j} \\
& =1+q+q^{2}+\ldots+q^{n} \\
& =1+q\left(1+q+q^{2}+\ldots+q^{n-1}\right) \\
& =1+q\left(S-q^{n}\right)
\end{aligned}
$$

thus

$$
\begin{aligned}
S & =1+q\left(S-q^{n}\right) \\
S-q S & =1-q^{n+1} \\
S & =\frac{1-q^{n+1}}{1-q}
\end{aligned}
$$

$($ pokud $q \neq 1)$
and for the infinite case:

$$
\begin{aligned}
\sum_{j=0}^{\infty} q^{j} & =\lim _{n \rightarrow \infty} \sum_{j=0}^{n} q^{j} \\
& =\lim _{n \rightarrow \infty} \frac{1-q^{n+1}}{1-q}
\end{aligned}
$$

$$
=\frac{1}{1-q} \quad(\text { pokud }|q|<1)
$$

Thus exactly n tosses have probability for the general case where Tails has probability p and Heads has probability $1-p$:

$$
\operatorname{Pr}[n \text { tosses }]=(1-p)^{n-1} p
$$

Probability of at most n tosses:

$$
\begin{aligned}
\operatorname{Pr}[1,2, \ldots, n \text { tosses }] & =\sum_{j=1}^{n} p(1-p)^{j-1} \\
& =p \sum_{j=1}^{n}(1-p)^{j-1} \\
& =p \frac{1-(1-p)^{n}}{1-(1-p)}
\end{aligned}
$$

$$
=1-(1-p)^{n}
$$

Probability that we keep $k \$$ (fair coin):

$$
\begin{aligned}
\operatorname{Pr}[\text { tosses }<k] & =\sum_{j=1}^{k-1} 0.5^{j} \\
& =1-0.5^{k-1}
\end{aligned}
$$

Thus probability of walking away with $k \$$ is

$$
\begin{aligned}
\operatorname{Pr}[\text { winning } k \$] & =\frac{1}{2}\left(1-0.5^{k-1}\right)+\frac{1}{2} 0.5^{\ell-1} \\
& =\frac{1}{2}-0.5^{k}+0.5^{\ell} \\
& =\frac{1}{2}+\left(0.5^{\ell}-0.5^{k}\right)
\end{aligned}
$$

Thus the expected win is

$$
\mathbb{E}[\operatorname{win}]=k\left(\frac{1}{2}+\left(0.5^{\ell}-0.5^{k}\right)\right)+\ell\left(\frac{1}{2}+\left(0.5^{k}-0.5^{\ell}\right)\right)
$$

(c) Simulate.

Solution:

```
# https://docs.python.org/3/library/random.html
# Do not use for cryptography!
from random import randint
from random import random
def geometric(pr: float = 0.5) -> int:
    """pr is success probability, return the number of tosses until
    the first success."""
    assert pr > 0
    sample = 1
    fail_pr = 1 - pr
    while random() < fail_pr:
        sample += 1
    return sample
# Our unknown amounts.
envelopes = [5, 10]
N = 1000000 # Number of samples.
total_amount = 0 # Total sum that we got during all samples.
got_larger = 0 # Number of times we walked away with the larger sum.
for _ in range(N):
    # Pick the first envelope at random.
    chosen = randint(0, 1)
```

```
    if geometric() < envelopes[chosen]:
        # Keep this one.
        pass
    else:
        # Choose the other.
    chosen = 1 - chosen
    if envelopes[chosen] >= envelopes[1 - chosen]:
    got_larger += 1
    total_amount += envelopes[chosen]
k = envelopes[0]
l = envelopes[1]
pr_larger = 0.5 + abs(0.5**k - 0.5**l)
e_win = k * (0.5 + (0.5**l - 0.5**k)) + l * (0.5 + (0.5**k - 0.5**l))
print(f'Pr[selected larger] = {got_larger / N} (={pr_larger})')
print(f'E[win] = {total_amount / N} (={e_win})')
# Possible outcome:
# Pr[selected larger] = 0.529865 (=0.5302734375)
# E[win] = 7.649325 (=7.6513671875)
```

3. Graph isomorphism. You have seen an interactive proof of graph non-isomorphism on the class. Can you come up with an interactive proof of graph isomorphism?

Solution:

- Both the prover P and the verifier V know two graphs G_{1}, G_{2}.
- The prover knows an isomorphism π such that $\pi\left(G_{1}\right)=G_{2}$. Formally $\pi: V\left(G_{1}\right) \rightarrow$ $V\left(G_{2}\right)$ such that

$$
(u, v) \in E\left(G_{1}\right) \Leftrightarrow(\pi(u), \pi(v)) \in E\left(G_{2}\right)
$$

And by $\pi\left(G_{1}\right)$ we mean the graph $\left(\pi\left(V\left(G_{1}\right)\right),\left\{(\pi(u), \pi(v)) \mid(u, v) \in E\left(G_{1}\right)\right\}\right)$.

- For ease of presentation we set $V\left(G_{1}\right)=V\left(G_{2}\right)=[n]=\{1,2,3, \ldots, n\}$.
- The prover picks uniformly random permutation $\sigma \in S_{n}$ and sends the graph $G=$ $\sigma\left(G_{1}\right)$.
- The verifier picks uniformly random number $i \in\{1,2\}$ and asks verifier to present a permutation τ such that $\tau(G)=G_{i}$.
- If $i=1$ then the prover sends $\tau=\sigma^{-1}$. If $i=2$ then the prover sends $\tau=(\sigma \circ \pi)^{-1}$.

This is indeed an interactive proof:

- If the prover knows the isomorphism π, then all answers are correct.
- If G_{1}, G_{2} are not isomorphic, then the verifier will pick a graph (either G_{1} or G_{2}) which is not isomorphic with G with probability $1 / 2$.

Again the prover learns nothing about the isomorphism. If you find these interactive proofs interesting, take a look at "Zero Knowledge Proofs".

Also note that our prover can be implemented efficiently as opposed to the case of graph non-isomorphism. In fact in some sense the prover proves that it knows the isomorphism (this can be made formal, see "Zero Knowledge Proofs of Knowledge").
It is natural to repeat this protocol more times in order to boost the probabilities. This is called probability amplification. We will investigate this much more during the semester.
4. We will focus on random walks and their properties a lot.
(a) Random walks are useful when analysing algorithms - "two coloring without monochromatic triangle" of three-colorable graph.
(b) Random numbers in the computer are often expensive to generate, can we reduce number of used random bits (expanders)? Or even get a deterministic algorithm?
(c) To sample from extremely large spaces.

Let $n \in \mathbb{N}$, say $n=30$. Let us the following problem we start with $X_{0}=\lfloor n / 2\rfloor$ and do the following process:

- if $X_{i} \in\{0, n\}$ we stop
- we set $X_{i+1}=X_{i}+\delta$ where δ is picked uniformly at random from $\{-1,1\}$
(a) Is this a Markov chain (Definition 2.2)? If so can you write it's matrix?

Solution: Yes (see the lecture video).
(b) What is the expected number of steps until stopping?

Solution: Let us set

$$
S_{k}=\mathbb{E}[\text { number of steps untill stopping, when starting at } k]
$$

We know the following:

$$
\begin{array}{ll}
S_{0}=S_{n}=0 \\
S_{k} & =1+\frac{1}{2}\left(S_{k-1}+S_{k+1}\right) \quad \text { (by linearity of expectation) }
\end{array}
$$

The above is so-called difference equation. It is not terribly complicated, but not super easy to solve (hint try to consider equations for $d(k)=S_{k}-S_{k-1}$ to get rid of the " $1+$ " term). You may look at https://en.wikipedia.org/wiki/Recurrence_relation Luckily when dealing with asymptotics thus we do not need exact estimates. And you will see some nice theoretical results tomorrow.

But it can be shown that

$$
S_{k}=k(n-k)
$$

which we can easily check that this is indeed a solution (note that we would also need that this is a unique solution, see solution methods on Wikipedia for this part):

$$
\begin{aligned}
& S_{k}=1+\frac{1}{2}\left(S_{k-1}+S_{k+1}\right) \\
& S_{k}=1+\frac{1}{2}((k-1)(n-(k-1))+(k+1)(n-(k+1))) \\
& S_{k}=1+\frac{1}{2}\left((k-1) n-(k-1)^{2}+(k+1) n-(k+1)^{2}\right) \\
& S_{k}=1+\frac{1}{2}\left(2 k n-(k-1)^{2}-(k+1)^{2}\right) \\
& S_{k}=1+\frac{1}{2}\left(2 k n-2 k^{2}-2\right) \\
& S_{k}=k(n-k)
\end{aligned}
$$

5. Think of some example MCs.
(a) Create a MC that is irreducible.

Solution: Two states:

$$
\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

(with probability $1 / 2$ stay at the current state, with probability $1 / 2$ switch to the other state).
(b) Create a MC that is not irreducible.

Solution: Two states:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

(always stay at the first state or immediatelly go there).
(c) Create a MC that is periodic.

Solution: Three states:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

(from the first state go always to the third, from the second always to the first and from the third always to the second).
(d) Create a MC that is not periodic.

Solution: Two states:

$$
\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

(with probability $1 / 2$ stay at the current state, with probability $1 / 2$ switch to the other state).
(e) Compute a stationary distribution of the following MC:

$$
\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

Solution: One eigenvalue is 1 , the only stationary distribution $(1 / 2,1 / 2)^{T}$. The other eigenvalue is 0 with the corresponding eigenvector $(1,-1)^{T}$ (this is not a distribution).
(f) Create a MC that has more stationary distributions.

Solution: Two states:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(always stay where we are).
6. We are collectors and we want to collect all n kinds of coupons. Coupons are sold in packages which all look the same. Thus when we buy an coupon, we buy one of n kinds uniformly at random. This is known as the coupon collector problem.
(a) What is the expected number of coupons we need to buy to get all kinds?

Solution: Let t_{i} be the time to collect the i-th coupon kind after we have collected $i-1$ coupons. The probability of buying the i-th coupon is

$$
\operatorname{Pr}[\text { getting } i \text {-th coupon when already having } i-1 \text { coupons }]=\frac{n-(i-1)}{n}
$$

Thus t_{i} has geometric distribution (we are tossing the same probability and waiting for the first success). The expected value of t_{i} is:

$$
\mathbb{E}\left[t_{i}\right]=\frac{n}{n-(i-1)}
$$

By linearity of expectation:

$$
\begin{aligned}
\mathbb{E}[\text { collecting }] & =\mathbb{E}\left[t_{1}+t_{2}+\ldots+t_{n}\right] \\
& =\mathbb{E}\left[t_{1}\right]+\mathbb{E}\left[t_{2}\right]+\ldots+\mathbb{E}\left[t_{n}\right] \\
& =\frac{n}{n}+\frac{n}{n-1}+\frac{n}{n-2}+\ldots+\frac{n}{n-(n-1)} \\
& =n H_{n} \\
& =n \log (n)+n \cdot 0.577 \ldots+1 / 2+\mathcal{O}(1 / n) \quad \text { (source Wikipedia) }
\end{aligned}
$$

(b) How many coupons do we need to buy to have probability at least $1-q$ of collecting all kinds?

Solution: We can use Markov inequality $\operatorname{Pr}\left[T>n H_{n} / q\right] \leq q$ (here T is the random variable telling us how many tosses are necessary).
(c) What is the Markov chain? Is this similar to a random walk on some graph?

Solution: There might be more Markov chains corresponding to this problem. The states could be all subsets of $[n]=\{1,2,3, \ldots, n\}$ (too big - not that nice to work with) or how many coupons have we collected so far (much smaller).
This corresponds to the cover time of a complete graph (when we have loops in each vertes).
(d) Simulate.

Solution:

```
import matplotlib.pyplot as plt
from collections import Counter
from random import randint
def catch_them_all(n: int = 50) -> int:
    coupons = [False] * n
    coupons_collected = 0
    coupons_bought = 0
    while coupons_collected < len(coupons):
        new_coupon = randint(0, len(coupons) - 1)
```

```
            coupons_bought += 1
            if not coupons[new_coupon]:
                        coupons[new_coupon] = True
                        coupons_collected += 1
                return coupons_bought
            cnt = Counter(catch_them_all(50) for _ in range(10000))
plt.bar(cnt.keys(), cnt.values())
plt.xlabel("Steps untill collecting all 50 coupons")
plt.ylabel("How many times did we take this many steps")
# plt.show()
plt.savefig('coupon_collector.pdf')
```


Figure 3.1: A histogram of how many steps were necessary (say 200 steps was necessary around 80 times).

3.2 Tutorial

1. Find a family of oriented graphs of constant in-degree and constant out-degree and as large hitting time as possible.
Solution: Let us first do constant out-degree and unbounded in-degree. We will later use a tree to achieve constant in-degree.

Figure 3.2: Oriented path with backwards arcs (oriented edges).
The expected hitting time from

$$
\begin{gathered}
h_{n, n}=0 \\
h_{n-1, n}=1+0.5 h_{1, n} \\
h_{n-2, n}=1+0.5\left(h_{1, n}+h_{n-1, n}\right) \\
=1+0.5\left(h_{1, n}+\left(1+0.5 h_{1, n}\right)\right) \\
=1.5+0.75 h_{1, n} \\
h_{n-3, n}=1+0.5\left(h_{1, n}+\left(1+0.5\left(h_{1, n}+\left(1+0.5 h_{1, n}\right)\right)\right)\right) \\
h_{n-k, n}=\left(\sum_{j=0}^{k-1} 0.5^{j}\right)+\left(h_{1, n} \sum_{j=1}^{k} 0.5^{j}\right) \\
=2-2^{1-k}+h_{1, n}\left(1-2^{-k}\right)
\end{gathered}
$$

Thus in particular when $k=n-1$:

$$
\begin{aligned}
h_{1, n} & =2-2^{1-(n-1)}+h_{1, n}\left(1-2^{-(n-1)}\right) \\
2^{-(n-1)} h_{1, n} & =2-2^{1-(n-1)} \\
h_{1, n} & =2^{n-1}\left(2-2^{1-(n-1)}\right) \\
& =2^{n}-2
\end{aligned}
$$

Note that similar situation could happen on undirected graphs where the probabilities of traversing edge one way and the other way would not be the same. Which is in principle almost an oriented graph.
2. Let $A \in \mathbb{R}^{n \times n}$ be a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Show that the matrix $A+d I_{n}$ has eigenvalues $d+\lambda_{1}, \ldots, d+\lambda_{n}$.
Solution: Eigenvalues and eigenvectors recap:

- We are interested in the limit of a Markov chain. When π_{0} is the initial distribution, then $P^{n} \pi_{0}$ is the distribution after n steps.
- When we are iteratively multiplying a vector by a matrix from left, the simplest form we can hope for are eigenvectors, which satisfy

$$
A x=\lambda x
$$

Where A is a square matrix, λ is a real number called the eigenvalue, x is called the eigenvector. Then

$$
A^{n} x=A\left(A^{n-1} x\right)=\lambda^{n} x
$$

- For small matrices we usually use the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=0
$$

the roots of this polynomial are the eigenvalues and we find the corresponding eigenvectors as:

$$
A-\lambda I=\overrightarrow{0}
$$

- For an eigenvalue λ we define its algebraic multiplicity to be the multiplicity of λ as the root of the characteristic polynomial.
- For an eigenvalue λ we define its geometric multiplicity to be the dimension of

$$
\operatorname{Ker}(A-\lambda I)
$$

- We know that for any eigenvalue algebraic multiplicity is at least the geometric multiplicity.
- For each eigenvalue there is at least one eigenvector.
- It is usually infeasible to find roots of the characteristic polynomial when the matrix A is large. There are however computationally efficient methods of computing eigenvalues and eigenvectors (usually iterative multiplication converges to the eigenvector).

We use the definition, let λ be an eigenvalue in question and x its corresponding eigenvector:

$$
\begin{aligned}
A x & =\lambda x \\
(A+d I) x & =A x+d I x \\
& =\lambda x+d x \\
& =(\lambda+d) x
\end{aligned}
$$

Note that this can be rather useful when computing eigenvalues of a given matrix.
3. Show Courant-Fisher: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $\left(A^{T}=A\right)$. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be its eigenvalues. Show
(a) $\lambda_{1}=\max _{x \in \mathbb{R}^{n},\|x\|=1} x^{T} A x$

Solution: Since A is Hermitian, we know that it is diagonalizable and we can choose an ortonormal basis of eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$. That is for any j we have $u_{j}^{T} u_{j}=1$ and $A u_{j}=\lambda_{j} u_{j}$, and for any $i \neq j$ we have $u_{j}^{T} u_{i}=0$.
We show two inequalities:

$$
\begin{aligned}
\max _{x \in \mathbb{R}^{n},\|x\|=1} x^{T} A x & \geq u_{j}^{T} A u_{j} \\
& =u_{j}^{T} \lambda_{j} u_{j} \\
& =\lambda_{j}
\end{aligned}
$$

On the other hand we may write $x=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n}$ and thus get

$$
\begin{aligned}
\max _{x \in \mathbb{R}^{n},\|x\|=1} x^{T} A x & =\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n}\right)^{T} A\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n}\right) \\
& =\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n}\right)^{T}\left(\lambda_{1} \alpha_{1} u_{1}+\lambda_{2} \alpha_{2} u_{2}+\ldots+\lambda_{n} \alpha_{n} u_{n}\right) \\
& \left.=\lambda_{1} \alpha_{1}^{2}+\lambda_{2} \alpha_{2}^{2}+\ldots+\lambda_{n} \alpha_{n}^{2} \quad \text { (since } u_{j}^{T} u_{i}=0 \text { and } u_{j}^{T} u_{j}=1\right) \\
& \leq \lambda_{1}
\end{aligned}
$$

Where the last equation follows from the fact that if Q is ortogonal matrix ($Q^{T} Q=I$) then $\|x\|=\|Q x\|$ since $\|x\|=x^{T} x$ and $\|Q x\|=x^{T} Q^{T} Q x$.
(b) $\lambda_{n}=\min _{x \in \mathbb{R}^{n},\|x\|=1} x^{T} A x$

Solution: Consider $-A$ and use the previous result.
(c) The eigenvalue λ_{2} can be computed similarly $\lambda_{2}=\max _{x \in \mathbb{R}^{n},\|x\|=1, x^{T} u_{1}=0} x^{T} A x$ (where u_{1} is the eigenvector corresponding to λ_{1}). We can get other eigenvalues in a similar manner. Moreover we could use this to prove the interlacing theorem. See https://en.wikipedia.org/wiki/Min-max_theorem
4. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its adjacency matrix is $-d$.
Solution: We know that the largest eigenvalue of the adjacency matrix of a d-regular graph is d and there is a corresponding eigenvector $(1,1, \ldots, 1)^{T}$.
If the graph is bipartite (that is $V(G)=A \cup B$ and $E(G) \subseteq A \times B$), we may use the vector defined as follows:

$$
x_{v}= \begin{cases}-1 & \text { if } v \in A \\ 1 & \text { if } v \in B\end{cases}
$$

Then x is an eigenvector corresponding to $-d$.
Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be the eigenvector corresponding to $-d$. Thus

$$
-d x_{i}=\sum_{j \in N(i)} x_{j}
$$

Let $M=\max _{i}\left|x_{i}\right|$ and $P=\left\{i \mid x_{i}=M\right\}$ and $N=\left\{i \mid x_{i}=-M\right\}$. Without loss of generality let P be non-empty. For any $i \in P$ we have

$$
-d M=\sum_{j \in N(i)} x_{j}
$$

thus $x_{j}=-M$ for each $j \in N(i)$ (since each $\left.\left|x_{k}\right| \leq M\right)$.
Since the graph is connected we eventually get that for any i it holds that $\left|x_{i}\right|=M$.
Eigenvalues of the graph of neurons in human brain have been considered in epilepsy - they studied "how much" is the brain bipartite, which can be expressed by the difference between the smalles eigenvalue and the negative degree.
5. Compute the eigenvalues and eigenvectors of the following graphs:
(a) K_{n}, the complete graph on n vertices.

Solution: It will be easier to determine eigenvalues and eigenvectors of a complete graph with selfloops (we add unit matrix). We may subtract ones if we mind the selfloops.
The adjacency matrix of a complete graph with selfloops is:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

By the observation from the lecture we know that this is a regular graph and the matrix above has eigenvalue n with eigenvector $(1,1,1,1,1)^{T}$. By Hamiltonicity we know that all other eigenvectors are perpendicular to the one above. Thus all their entries sum up to zero.

We guess other eigenvectors (we need to guess $n-1$ of them).

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Thus geometric (and thus also the algebraic) multiplicity of eigenvalue 0 is $n-1$.
(b) $K_{n, n}$, the complete bipartite graph with partites of size n each.

Solution: Here we are happy with no selfloops (otherwise the graph would not even be bipartite).

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

The graph is bipartite and regular, thus we know that the largest eigenvalue is n with the eigenvector $(1,1,1,1,1,1)^{T}$ the smallest eigenvalue is $-n$ with the eigenvector $(-1,-1,-1,1,1,1)^{T}$. As with the complete graph with selfloops it is easy to show that the rest is zero eigenvalues with corresponding vectors.
(c) C_{n}, the cycle on n vertices.

Solution: If we knew circular matrices we could use their properties. We will write the adjacency matrix as a sum of two simpler matrices:

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)+\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Observe that moreover the two matrices are inverse to each other, thus their eigenvalues are inverses as:

$$
\begin{aligned}
A x & =\lambda x \\
x & =I x \\
& =A^{-1} A x \\
& =\lambda A^{-1} x
\end{aligned}
$$

Let $\omega \in \mathbb{C}$ be the primitive n-th root of unity. Thus $\omega=e^{2 i \pi / n}$.

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\omega^{0} \\
\omega^{1} \\
\omega^{2} \\
\omega^{3} \\
\omega^{4} \\
\omega^{5}
\end{array}\right)=\left(\begin{array}{c}
\omega^{5} \\
\omega^{0} \\
\omega^{1} \\
\omega^{2} \\
\omega^{3} \\
\omega^{4}
\end{array}\right)=\omega^{5}\left(\begin{array}{c}
\omega^{0} \\
\omega^{1} \\
\omega^{2} \\
\omega^{3} \\
\omega^{4} \\
\omega^{5}
\end{array}\right)
$$

Similarly for the even powers

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\omega^{0} \\
\omega^{2} \\
\omega^{4} \\
\omega^{0} \\
\omega^{2} \\
\omega^{4}
\end{array}\right)=\left(\begin{array}{c}
\omega^{4} \\
\omega^{0} \\
\omega^{2} \\
\omega^{4} \\
\omega^{0} \\
\omega^{2}
\end{array}\right)=\omega^{4}\left(\begin{array}{c}
\omega^{0} \\
\omega^{2} \\
\omega^{4} \\
\omega^{0} \\
\omega^{2} \\
\omega^{4}
\end{array}\right)
$$

And so on. A particular eigenvector is an eigenvector of the eigenvalue ω^{j} with respect to this matrix and of eigenvalue ω^{-j} with respect to the inverse matrix. Thus when we sum the two matrices we get that the eigenvalue is $\omega^{j}+\omega^{-j}$. Observe that $\omega^{j}+\omega^{-j} \in \mathbb{R}$.

3.3 Tutorial

1. You are given two coins. One is fair and the other one has $\operatorname{Pr}[$ tails $]=1 / 4$. We use the following algorithm to distinguish those:

- Pick a coin and toss it n times.
- Let \hat{p} be the probability of getting a tails (number of tails over n).
- If $\hat{p} \geq 3 / 8$ we say this coin is fair.

Show that if $n \geq 32 \ln (2 / \delta)$ then our algorithm answers correctly with probability at least $1-\delta$.

Solution: Each coin is independent 0,1 random variable. We could have used the statement to get a similar bound:

$$
\begin{aligned}
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\delta^{2} \mu / 2} \\
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}
\end{aligned}
$$

but the following is a bit more convenient for us here:

$$
\begin{aligned}
& \operatorname{Pr}[X \geq \mu+\delta n] \leq e^{-2 n \delta^{2}} \\
& \operatorname{Pr}[X \leq \mu-\delta n] \leq e^{-2 n \delta^{2}}
\end{aligned}
$$

- If we were tossing the fair coin the probability of failure is

$$
\begin{aligned}
\mu & =n / 2 \\
\delta & =1 / 8 \\
\operatorname{Pr}[X \leq n / 2-n / 8] & \leq e^{-2 \cdot 32 \ln (2 / \delta)(1 / 8)^{2}} \\
\operatorname{Pr}[X \leq 3 n / 8] & \leq e^{-\ln (2 / \delta)} \\
& \leq \delta / 2
\end{aligned}
$$

- If we were tossing the tipped coin the probability of failure is

$$
\begin{aligned}
\mu & =n / 4 \\
\delta & =1 / 8 \\
\operatorname{Pr}[X \geq n / 4+n / 8] & \leq e^{-2 \cdot 32 \ln (2 / \delta)(1 / 8)^{2}} \\
\operatorname{Pr}[X \geq 3 n / 8] & \leq e^{-\ln (2 / \delta)} \\
& \leq \delta / 2
\end{aligned}
$$

2. You have seen that $Z P P=R P \cap c o-R P$.
(a) Recall definitions of:

- RP

Solution: A language $L \subseteq\{0,1\}^{*}$ is in $\mathrm{RP}(L \in R P)$ iff there is a probabilistic Turing machine A such that:

- A works in polynomial time in the input length (that is $A(x)$ works in time $|x|$ for any $\left.x \in\{0,1\}^{*}\right)$.
- If $x \notin L$ then $A(x)=0$ always.
- If $x \in L$ then $\operatorname{Pr}[A(x)=1] \geq 1 / 2$ (the randomness is over the random bits of A).

- ZPP

Solution: A language $L \subseteq\{0,1\}^{*}$ is in $\mathrm{RP}(L \in R P)$ iff there is a probabilistic Turing machine A such that:
$-A(x)=1$ if and only if $x \in L$

- A works in expected polynomial time (expectation is over the random bits of A).
- co-RP

Solution: L is in co-RP iff $\{0,1\}^{*} \backslash L$ is in RP.

- BPP

Solution: L is in BPP iff there is a probabilistic Turing machine A such that:

- A works in polynomial time
- If $x \in L$ then $\operatorname{Pr}[A(x)=1] \geq 3 / 4$.
- If $x \notin L$ then $\operatorname{Pr}[A(x)=0] \geq 3 / 4$.
- NP

Solution: L is in NP if there is a deterministic Turing machine A such that:

- A works in polynomial time in the input length (sum of input length and certificate length).
- If $x \in L$ then there is $c \in\{0,1\}^{*}$ such that $|c|$ is polynomial in $|x|$ and $A(x, c)=$ 1.
- If $x \notin L$ then for any $c \in\{0,1\}^{*}$ we have $A(x, c)=0$.
(b) Show that $\mathbf{R P} \subseteq \mathbf{N P}$ (and thus co-RP \subset co-NP).

Solution: The random bits can serve as the certificate.
(c) Decide if BPP $=$ co-BPP.

Solution: Yes, we can create B that on any x answers $1-A(x)$.
(d) Show that if NP \subseteq BPP then NP $=$ RP.

Solution: We already know that RP \subseteq NP (unconditionally), we thus need the other inclusion.

We know that 3SAT is NP-complete (if we can solve 3SAT, we can solve anything in NP). Thus it is enough to show that given A which is the BPP Turing machine for 3SAT we can do the following:

- If A rejects, reject.
- If A accepts, we hope the given formula is satisfiable and try to find an assignment:
- Say the given formula φ has n variables.
- If φ is satisfiable even if we set $x_{1}=$ True, we set it to True (otherwise to False).
- We continue with $x_{2}, x_{3}, \ldots, x_{n}$.
- Return $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

We need to be certain-enough when deciding the variables. Thus we run A multiple times $-\mathcal{O}(\log (n))$ times and take the majority answer to get probability $1-1 / 100 n$ of correct answer. By union bound we get that probability of an error in any fixing of $x_{1}, x_{2}, \ldots, x_{n}$ is at most $1 / 100$.
Determine the constant before the $\log (n)$ using a Chernoff bound.
3. How to simulate a fair coin using a tipped coin and wice versa.
(a) We are given a fair coin $\operatorname{Pr}[t a i l s]=0.5$. Show how to generate a random bit with $\operatorname{Pr}[1]=p$ for a given $p \in(0,1)$ (both $p=0$ and $p=1$ are a bit boring).

Solution: Note that if the given p does not have finite binary representation there is no number T such that it would be enough to do at most T tosses. If at most T tosses would suffice, then imagine a tree of toss results. Any leaf is at depth at most T. In any leaf we output either 1 or 0 . Probability of getting to a leaf is a multiple of 2^{-T} (not all leafs might be at the same depth).

Say that $p=0 . p_{1} p_{2} p_{3} \ldots$ where p_{j} are binary digits. We treat the fair coin tosses as digits of a random number q. We toss until $q>p$ in which case we output 0 or we are sure that $q \leq p$ no matter the following tosses in which case we output 1 .

After each toss the probability of outputting is one half. Thus the expected number of tosses is constant.
(b) We are given a tipped coin - we do not even know $p=\operatorname{Pr}[t a i l s]$. We are sure that $\operatorname{Pr}[$ tails $] \in(0,1)$. Generate a fair coin toss.
Solution: Algorithm:

- We toss twice.
- If the outcome was Heads, Tails we output 0.
- If the outcome was Tails, Heads we output 1.
- If the outcome was Heads, Heads or Tails, Tails we repeat.

We know that:

- Probability of outputting 0 is $p(1-p)$.
- Probability of outputting 1 is $(1-p) p=p(1-p)$.
- Probability of outputting is $2 p(1-p)>0$. Thus the expected number of rounds is $\frac{1}{2 p(1-p)}$, which is finite for any $p \in(0,1)$.

4. Show that the expected number of comparisons a quick-sort algorithm does is roughly $n \ln (n)$. Show that probability of it making at least $32 n \ln (n)$ comporisons is at most $1 / n^{3}$.

Solution: Our plan is to:

- Observe that if the total depth of recursion is k then the number of comparisons is upper bounded by $k n$ (since each level of recursion causes at most n comparisons).
- Compute the probability that a fixed element is present in $>32 \ln (n)$ levels of recursion.
- Use union bound to bound the probability there is an element which is present in $>32 \ln (n)$ levels of recursion.

Let us do the second item.

- Let us fix an element s.
- Let $S_{1}=n, S_{j}$ be the size of the array containing s on the j-th level of recursion. Observe that at the end of recursion $S_{k}=1$.
- We say that the j-th recursion is "lucky" if $S_{j+1} \leq(3 / 4) S_{j}$.
- Let us define an indicator variable X_{j} to denote if the j-th recursion is "lucky." Observe that $\operatorname{Pr}\left[X_{j}\right]=1 / 2$ and X_{i}, X_{j} are independent for any $i \neq j$.
- After r lucky recursions in the first k levels we know that $S_{k} \leq(3 / 4)^{r} n$.
- So after $4 \ln (n) \geq \log _{3 / 4}(n)$ lucky recursions the element s is contained in an array of length one (and thus the recursion stops).
- Number of lucky rounds is equal to $X=\sum_{j=1}^{32 \ln (n)} X_{j}$. The expected number of lucky rounds is $\mu=16 \ln (n)$. Let us set $\delta=3 / 4$ and use Chernoff bound (independent indicator variables):

$$
\begin{aligned}
\operatorname{Pr}[X \leq(1-\delta) \mu] & \leq e^{-\delta^{2} \mu / 2} \\
\operatorname{Pr}[X \leq 4 \ln (n)] & \leq e^{-(3 / 4)^{2} 16 \ln (n) / 2} \\
& \leq e^{-9 \ln (n) / 2} \\
& \leq n^{-4}
\end{aligned}
$$

(the form we are using)

3.4 Tutorial

1. We have k servers that are supposed to handle $n \gg k$ jobs. But the jobs come online and there is no single computer that knows the loads of servers (otherwise we would have a lot of communication). How do we distribute the jobs? We distribute the jobs each independently uniformly at random. How to bound the maximum load?

Solution:

- Let X_{i} be the load of the i-th server.
- We know that $X_{i}=\sum_{\ell=1}^{n} X_{i, \ell}$ where $X_{i, \ell}$ indicates if the ℓ-th job lands on the i-th server. And $X_{i, 1}, X_{i, 2}, \ldots, X_{i, n}$ are independent for each i (that does not hold for X_{i}).
- $\operatorname{Pr}\left[X_{i, \ell}\right]=1 / k$
- $\mathbb{E}\left[X_{i}\right]=n / k$
- We use Chernoff bound:

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}
$$

We set $\delta=3 \sqrt{k \ln (k) / n}$.

$$
\begin{aligned}
\left.\operatorname{Pr}\left[X_{i} \geq n / k+3 \sqrt{n \ln (k) / k}\right)\right] & =\operatorname{Pr}\left[X_{i} \geq(1+3 \sqrt{k \ln (k) / n}) n / k\right] \\
& \leq e^{-(3 \sqrt{k \ln (k) / n})^{2} n / 3 k} \quad \text { (Chernoff bound) } \\
& \leq e^{-3 \ln (k)} \\
& =k^{-3}
\end{aligned}
$$

- We use the union bound to bound the probability that there exists a server with that load:

$$
\left.\operatorname{Pr}\left[\text { exists } i \in[k]: X_{i} \geq n / k+3 \sqrt{n \ln (k) / k}\right)\right]=k^{-2}
$$

- To be concrete:

$$
\begin{aligned}
k & =1000 \\
n & =1000000 \\
n / k & =1000
\end{aligned}
$$

$\operatorname{Pr}[$ exists a server with at least $n / k+3 \sqrt{n \ln (k) / k}$ jobs $] \leq k^{-2}$
$\operatorname{Pr}[$ exists a server with at least 1250 jobs $] \leq 1 / 1000000$
2. Distributed discrete logarithm algorithm (Breaking the Circuit Size Barrier for Secure Computation Under DDH, Boyle, Gilboa, Ishai linked on the website).

Solution: We say that a group \mathbb{G} is cyclic iff any of its element can be generated using a single generator. Say we have the group $\left(\mathbb{Z}_{5}^{*}, \cdot\right)$ with its generator 3:

$$
\begin{aligned}
\mathbb{Z}_{5}^{*} & =\{1,2,3,4\} \\
3^{0} & =1 \\
3^{1} & =3 \\
3^{2} & =4 \\
3^{3} & =2
\end{aligned}
$$

When we fix a group \mathbb{G} and its generator g we may ask what is the discrete logarithm of a given group element:

$$
D \log _{\mathbb{G}, g}(x)=\min _{n \in \mathbb{N}} g^{n}=x
$$

So for instance $D \log _{\mathbb{Z}_{5}^{*}, 3}(4)=2$.
3. Let A, B be two disjoint sets of vertices where $|A|=|B|=n$. Let $d \geq 5$ be a constant. We choose d uniformly at random edges from each vertex from A. We show that with constant positive probability each set $S \subseteq A$ of size $|S| \leq n / d$ has at least $\beta|S|$ neighbors where $\beta=d / 4$.

Solution:

- For each $S \subseteq A$ and for each $T \subseteq B$ we denote $X_{S, T}$ the indicator variable that is equal to one iff all the neighbors of S are contained in \mathscr{T}.
-

$$
\operatorname{Pr}\left[X_{S, T}=1\right]=\left(\frac{|T|}{n}\right)^{d|S|}
$$

- We use the estimate that $\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k}$.

$$
\begin{aligned}
& \operatorname{Pr}\left[\exists S \subseteq A, T \subseteq B:|S| \leq n / d,|T| \leq \beta|S|, X_{S, T}\right] \leq \sum_{s=1}^{n / d}\binom{n}{s}\binom{n}{\beta s}\left(\frac{\beta s}{n}\right)^{d s} \\
& \leq \sum_{s=1}^{n / d}\binom{n}{\beta s}^{2}\left(\frac{\beta s}{n}\right)^{d s} \\
&\left(\text { as }\binom{n}{s} \leq\binom{ n}{\beta s}\right) \\
& \leq \sum_{s=1}^{n / d}\left(\frac{n e}{\beta s}\right)^{2 \beta s}\left(\frac{\beta s}{n}\right)^{d s} \\
&=\sum_{s=1}^{n / d}\left(\frac{4 n e}{d s}\right)^{d s / 2}\left(\frac{d s}{4 n}\right)^{d s} \\
&=\sum_{s=1}^{n / d}\left(\frac{e d s}{4 n}\right)^{d s / 2} \\
&\left.\leq \sum_{s=1}^{n / d}\left(\frac{e}{4}\right)^{d s / 2} \quad \quad \text { (as } d s \leq n\right) \\
& \leq \frac{(e / 4)^{d / 2}}{1-(e / 4)^{d / 2}} \quad \text { (geometric series) } \\
&<1
\end{aligned}
$$

- What would happen if the graph was a union of d perfect matchings?

3.5 Tutorial

1. Let us define the edge expansion for a given graph G by:

$$
h(G)=\min _{|S| \leq n / 2} \frac{e(S, V \backslash S)}{|S|}
$$

For any $S \subseteq V(G)$ we denote

$$
e(S)=E(G) \cap S \times S=\text { number of edges inside } S
$$

$e(S, V(G) \backslash S)=E(G) \cap(S \times(V(G) \backslash S))=$ number of edges going from S to the complement

Let us show that if λ_{2} is the second largest eigenvalue of the adjacency matrix of a d-regular graph G then:

$$
h(G) \geq \frac{d-\lambda_{2}}{2}
$$

Solution:

- The idea is to use Courant-Fisher of Problem 3 from the second tutorial. If u_{1} is the eigenvector corresponding to the first eigenvalue λ_{1}, we have:

$$
\lambda_{2}=\max _{x \in \mathbb{R}^{m}, x^{T} u_{1}=0} \frac{x^{T} A x}{x^{T} x}
$$

- Recall that $u_{1}=(1,1,1, \ldots, 1)^{T}$ and our vector x should be orthogonal to it so that we can use the Courant-Fisher $\left(\left\langle x \mid u_{1}\right\rangle=0\right)$. Moreover it should correspond to our set S.
- Let $S \subseteq V(G)$ of size $s=|S| \leq n / 2$. Let us define the vector

$$
x_{v}= \begin{cases}n-s & v \in S \\ -s & v \notin S\end{cases}
$$

- Let us determine the norm squared of x :

$$
\begin{aligned}
x^{T} x & =x^{T} x \\
& =(n-s)^{2} s+s^{2}(n-s) \\
& =s(n-s) n
\end{aligned}
$$

- Let us determine the nominator from Courant-Fischer for our vector x as defined above:

$$
\begin{aligned}
x^{T} A x & =2 \sum_{(u, v) \in E(G)} x_{u} x_{v} \\
& =2(n-s)^{2} e(S)-2 s(n-s) e(S, V(G) \backslash S)+2 s^{2} e(V(G) \backslash S)
\end{aligned}
$$

Note that:

$$
\begin{aligned}
d s & =2 e(S)+e(S, V(G) \backslash S) \\
d(n-s) & =2 e(V(G) \backslash S)+e(S, V(G) \backslash S)
\end{aligned}
$$

we plug that into the above:

$$
\begin{aligned}
x^{T} A x & =2 \sum_{(u, v) \in E(G)} x_{u} x_{v} \\
& =2(n-s)^{2} e(S)-2 s(n-s) e(S, V(G) \backslash S)+2 s^{2} e(V(G) \backslash S) \\
& =(n-s)^{2}(d s-e(S, V(G) \backslash S))-2 s(n-s) e(S, V(G) \backslash S)+s^{2}(d(n-s)-e(S, V(G) \backslash S)) \\
& =e(S, V(G) \backslash S)\left(-(n-s)^{2}-2 s(n-s)-s^{2}\right)+d s\left((n-s)^{2}+s(n-s)\right) \\
& =-n^{2} e(S, V(G) \backslash S)+d s n(n-s)
\end{aligned}
$$

and we plug our vector x into the Courant-Fisher:

$$
\begin{aligned}
\lambda_{2} & \geq \frac{x^{T} A x}{x^{T} x} \\
& =\frac{-n^{2} e(S, V(G) \backslash S)+d s n(n-s)}{s(n-s) n} \\
& =d-e(S, V(G) \backslash S) \frac{n}{s(n-s)}
\end{aligned}
$$

Finally we use that $s \leq n / 2$ and thus $\frac{n-s}{n} \geq 1 / 2$ and rearrange the former inequality:

$$
\begin{aligned}
\frac{e(S, V(G) \backslash S)}{|S|} & \geq \frac{n-s}{n}\left(d-\lambda_{2}\right) \\
& \geq \frac{d-\lambda_{2}}{2}
\end{aligned}
$$

2. Show that for any $v \in \mathbb{R}^{n}$ it holds that

$$
\frac{1}{\sqrt{n}}\|v\|_{1} \leq\|v\|_{2} \leq\|v\|_{1}
$$

Solution: We use the Cauchy-Schwarz inequality:

$$
\langle u \mid v\rangle \leq\|u\|_{2}\|v\|_{2} \quad\left(\text { for any } u, v \text { and norm }\|v\|_{2}=\sqrt{\langle v \mid v\rangle}\right)
$$

The first inequality can be done by a clever choice of u :

$$
\begin{aligned}
u_{i} & = \begin{cases}1 & \text { if } v_{i} \geq 0 \\
-1 & \text { if } v_{i}<0\end{cases} \\
\|v\|_{2} & \geq \frac{\langle u \mid v\rangle}{\|u\|_{2}} \\
& =\frac{\sum_{i=1}^{n}\left|v_{i}\right|}{\sqrt{\sum_{i=1}^{n} u_{i}^{2}}} \\
& =\frac{\|v\|_{1}}{\sqrt{n}}
\end{aligned}
$$

The second inequality can be proven as follows:

$$
\begin{aligned}
\|v\|_{1}^{2} & =\left(\sum_{i=1}^{n}\left|v_{i}\right|\right)\left(\sum_{i=1}^{n}\left|v_{i}\right|\right) \\
& =\left(\sum_{i=1}^{n}\left|v_{i}\right|^{2}\right)+\left(\sum_{i=1}^{n} \sum_{j \neq i}\left|v_{i}\right|\left|v_{j}\right|\right) \\
& \geq\left(\sum_{i=1}^{n}\left|v_{i}\right|^{2}\right) \\
& =\|v\|_{2}^{2}
\end{aligned}
$$

Let us just note that inequalities with norms are very useful and there are many of those. One well known is for instance the Hölder inequality: https://en.wikipedia.org/wiki/ H\%C3\%B61der\%27s_inequality
3. Let μ be a probability distribution, that is $\|\mu\|_{1}=1$ and $\mu_{j} \geq 0$ (for each $j \in \Omega$). Let us define $d(\mu, \nu)$ the distance of two probability distributions as:

$$
d(\mu, \nu)=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)|
$$

Show that:

$$
d(\mu, \nu)=\max _{A \subseteq \Omega} \mu(A)-\nu(A)
$$

where $\mu(A)=\sum_{x \in A} \mu(x)$.
Solution: Set the set $A=\{x \in \Omega \mid \mu(x) \geq \nu(x)\}$ and we get:

$$
\begin{aligned}
\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)| & =\frac{1}{2}\left(\sum_{x \in A}|\mu(x)-\nu(x)|\right)+\frac{1}{2}\left(\sum_{x \in \Omega \backslash A}|\mu(x)-\nu(x)|\right) \\
& =\frac{1}{2}\left(\sum_{x \in A} \mu(x)-\nu(x)\right)+\frac{1}{2}\left(\sum_{x \in \Omega \backslash A} \nu(x)-\mu(x)\right) \\
& =\frac{1}{2}(\mu(A)-\nu(A))+\frac{1}{2}(\nu(\Omega \backslash A)-\mu(\Omega \backslash A)) \\
& =\frac{1}{2}(\mu(A)-\nu(A))+\frac{1}{2}((1-\nu(A))-(1-\mu(A))) \\
& =\mu(A)-\nu(A) \\
& \leq \max _{A \subseteq \Omega} \mu(A)-\nu(A)
\end{aligned}
$$

We are left to realize that our set A maximizes the right hand side.
4. Let M be a Markov chain on the set of states S. We say that a Markov chain $Z_{t}=\left(X_{t}, Y_{t}\right)$ on the set of states $S \times S$ is a coupling iff

$$
\begin{aligned}
\operatorname{Pr}\left[X_{t+1}=x^{\prime} \mid Z_{t}=(x, y)\right]= & \operatorname{Pr}\left[M_{t+1}=x^{\prime} \mid M_{t}=x\right] \\
& \left.\quad \text { (where } X_{t+1} \text { is the first coordinate of } Z_{t+1}\right) \\
\operatorname{Pr}\left[Y_{t+1}=y^{\prime} \mid Z_{t}=(x, y)\right]= & \operatorname{Pr}\left[M_{t+1}=y^{\prime} \mid M_{t}=y\right] \\
& \text { (where } Y_{t+1} \text { is the second coordinate of } Z_{t+1} \text {) }
\end{aligned}
$$

So one can imagine a coupling as a Markov chain, that in both coordinates behaves in the same way as the original Markov chain (but the coordinates might be dependent on each other).
Let $Z_{t}=\left(X_{t}, Y_{t}\right)$ be a coupling of a Markov chain M on the state space S. Suppose there is a T such that:

$$
\operatorname{Pr}\left[X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon \quad(\text { for all } x, y \in S)
$$

then

$$
\tau(\varepsilon) \leq T
$$

Where formally the mixing time $\tau(\varepsilon)$ is defined as

$$
\begin{aligned}
p_{x}^{t} & =\text { the distribution when starting at } x \text { and doing } t \text { steps } \\
\tau(\varepsilon) & =\max _{x \in S} \min \left\{t \mid d\left(p_{x}^{t}, \pi\right) \leq \varepsilon\right\}
\end{aligned}
$$

Notice that when we prove that $\operatorname{Pr}\left[X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon$ for all $x, y \in S$, we know that we are close to the stationary distribution (without even knowing the stationary distribution).

Solution: Pick any set of states $A \subseteq S$ and try to bound the probability that after T steps X_{T} is in A and let Y_{0} be selected accoding to the stationary distribution π :

$$
\begin{array}{rlr}
\operatorname{Pr}\left[X_{T} \in A\right] & \geq \operatorname{Pr}\left[X_{T} \in A \wedge X_{T}=Y_{T}\right] & \\
& =\operatorname{Pr}\left[X_{T}=Y_{T} \wedge Y_{T} \in A\right] & \\
& =1-\operatorname{Pr}\left[X_{T} \neq Y_{T} \vee Y_{T} \notin A\right] & \text { (probability of complement) } \\
& \geq 1-\operatorname{Pr}\left[X_{T} \neq Y_{T}\right]-\operatorname{Pr}\left[Y_{T} \notin A\right] & \\
& =\left(1-\operatorname{Pr}\left[Y_{T} \notin A\right]\right)-\operatorname{Pr}\left[X_{T} \neq Y_{T}\right] & \\
& \geq\left(1-\operatorname{Pr}\left[Y_{T} \notin A\right]\right)-\varepsilon & \\
& =\operatorname{Pr}\left[Y_{T} \in A\right]-\varepsilon & \text { (assumpon bound) } \\
& =\pi(A)-\varepsilon &
\end{array}
$$

So for any $A \subseteq S$ we have

$$
\operatorname{Pr}\left[X_{T} \in A\right] \geq \pi(A)-\varepsilon
$$

and the same argument for $S \backslash A$ gives us

$$
\operatorname{Pr}\left[X_{T} \notin A\right] \geq \pi(S \backslash A)-\varepsilon
$$

So

$$
\begin{aligned}
\operatorname{Pr}\left[X_{T} \notin A\right] & \geq \pi(S \backslash A)-\varepsilon \\
1-\operatorname{Pr}\left[X_{T} \in A\right] & \geq 1-\pi(A)-\varepsilon \\
-\operatorname{Pr}\left[X_{T} \in A\right] & \geq-\pi(A)-\varepsilon
\end{aligned}
$$

$$
\operatorname{Pr}\left[X_{T} \in A\right] \leq \pi(A)+\varepsilon
$$

Thus together we have:

$$
\pi(A)-\varepsilon \leq \operatorname{Pr}\left[X_{T} \in A\right] \leq \pi(A)+\varepsilon
$$

SO

$$
\max _{x \in S} d\left(p_{x}^{T}, \pi\right)=\max _{x \in S, A \subseteq S}\left|p_{x}^{T}(A)-\pi(A)\right| \leq \varepsilon
$$

5. We define the hypercube graph of dimension d as follows: the vertices are binary strings of length d and two vertices are connected by an edge iff they differ in exactly one coordinate. For instance $d=2$ the graph is

$$
(\{00,01,10,11\},\{(00,01),(00,10),(11,01),(11,10)\})
$$

(the edges are not oriented).
We start at O^{d} and do the following random walk:

- With probability $1 / 2$ we stay at the current vertex.
- With probability $1 / 2$ we choose uniformly at random and index $j \in[d]$ and change the corresponding bit.

The Markov chain is nice (it converges to a single stacionary distribution, namely the uniform distribution on all vertices). Our question is how many steps do we need to take until we are "close enough" to the uniform distribution. Show that the random walk has $\tau(\varepsilon) \leq d \ln (d / \varepsilon)$.

Solution: We do coupling $\left(X_{t}, Y_{t}\right)$ where

- $X_{0}=O^{d}$
- Y_{0} is chosen according to the uniform distribution (that is the stationary distribution)
- $Z_{t}=\left(X_{t}, Y_{t}\right)$ where the moves are as follows, let $X_{t}=x \in\{0,1\}^{d}$ and $Y_{t}=y \in\{0,1\}^{d}$ (that is $\left.Z_{t}=(x, y)\right)$:
- Pick uniformly at random a coordinate $i \in[d]$ (the same for both)
- If $x_{i}=y_{i}$ then with probability $1 / 2$ we keep the i-th bit the same $Z_{t+1}=$ $\left(X_{t+1}, Y_{t+1}\right)=(x, y)$ and with probability $1 / 2$ we change it $Z_{t+1}=\left(x \oplus e_{i}, y \oplus e_{i}\right)$.
- If $x_{i} \neq y_{i}$ then with probability $1 / 2$ we keep the i-th bit of x the same and change the i-th bit of $y Z_{t+1}=\left(X_{t+1}, Y_{t+1}\right)=\left(x, y \oplus e_{i}\right)$ and with probability $1 / 2$ we change the i-th bit of x and keep the i-th bit of $y Z_{t+1}=\left(x \oplus e_{i}, y\right)$.
Thus after picking the coordinate j we know for sure that $\left(X_{t}\right)_{j}=\left(Y_{t}\right)_{j}$ and it stays the same (the j-th bit is the same from that point on). Thus we have coupon collector problem. Probability of not picking all coordinates after $d \ln (d / \varepsilon)$ can be bounded by:
$\operatorname{Pr}[$ there is a coordinate that has not been picked $] \leq d \cdot \operatorname{Pr}[$ coordinate d has not been picked]
(union bound)

$$
\begin{aligned}
& \leq d(1-1 / d)^{d \ln (d / \varepsilon)} \\
& \leq d e^{-\ln (d / \varepsilon)} \\
& \leq \varepsilon
\end{aligned} \quad\left(1-x \leq e^{-x}\right)
$$

$$
\begin{aligned}
& 3 \leq \pi \leq 4 \\
& \quad m_{n}>n \text { can be deolueed }
\end{aligned}
$$

GIVEN: |UI... umally thin
ε, δ... parameters of the output
$Q:|G|_{3.6 .1 \text { TUTORIAL } 6 \text {. anally guess } ?}$ we can $|G| \leq$?

3.6 Tutorial

1. Definition: a random variable - our estimate $A>0$ is an $\varepsilon-\delta$ approximation of a value $g>0$ if
$|U|=\ldots$
$|G|=2$

$$
\operatorname{Pr}[(1-\varepsilon) g \leq A \leq(1+\varepsilon) g] \geq 1-\delta
$$

Prove the Estimator Theorem: Let U be a finite set and $G \subseteq U$ its subset. We know $|U|$ and wish to estimate $|G|$. If we take n uniformly random and independent samples from U where
$\therefore A=X$ Un $n \geq \frac{3}{\varepsilon^{2}\left(\frac{G}{U}\right)} \ln (2 / \delta)$ and output $A=X \frac{|U|}{n}$ then A is $\varepsilon-\delta$ approximation of $|G| . \quad \mathbb{E}[X]=$?
Solution: We will use a Chernoff bound.

- Observe that $\mathbb{E}[X / n]=|G| /|U|$ as

(X_{j} is the indicator if j-th sample was in G)

$$
X=\sum_{j=1}^{m} X_{j} \quad 0 \leqslant X_{j} \leqslant 1
$$

- All of X_{j} are independent and $0 \leq X_{j} \leq 1$.
- We may use Chernoff bounds, we use the following form:

$$
\begin{aligned}
\operatorname{Pr}[X \geq(1+\delta) \mu] & \leq e^{-\delta^{2} \mu / 3} \\
\operatorname{Pr}[X \leq(1-\delta) \mu] & \leq e^{-\delta^{2} \mu / 2} \leq e^{-\delta^{2} \mu / 3} \\
\operatorname{Pr}[X \geq(1+\delta) \mu \text { or } X \leq(1-\delta) \mu] & \leq 2 e^{-\delta^{2} \mu / 3}
\end{aligned}
$$

- Plugging all of the above:

$$
\begin{aligned}
& \leq 2 e^{-(\beta \ln (2 / \delta)) / \beta} \\
& =\delta
\end{aligned}
$$

2. We say that \hat{x} is an ε-approximation of x^{1} iff

Show that for $\varepsilon<1 / 2$ if we have ε-approximation \hat{s} of a number s and ε-approximation
\hat{t} of a number t then \hat{s} / \hat{t} is an 4ε-approximation of s / t.
Solution: We have

$$
\frac{(1-\varepsilon) s \leq \hat{s} \leq(1+\varepsilon) s}{\lfloor\sim \downarrow \leqslant \wedge-k \cdot 1}
$$

thus

$$
\frac{\hat{s}}{\hat{t}} \leq \frac{(1+\varepsilon) s}{(1-\varepsilon) t}
$$

and we need the following inequality to hold
which holds for any $\varepsilon \in(0,1 / 2)$.

$$
\begin{aligned}
\frac{1+\varepsilon}{1-\varepsilon} & \leq 1+4 \varepsilon \\
1+\varepsilon & \leq(1+4 \varepsilon)(1-\varepsilon) \\
1+\varepsilon & \leq 1+3 \varepsilon-4 \varepsilon^{2} \\
0 & \leq 2 \varepsilon-4 \varepsilon^{2} \quad \text { nook }
\end{aligned}
$$

$$
\varepsilon<\frac{1}{2}
$$

$$
(1-\varepsilon>0)
$$

$$
0, \frac{1}{2}
$$

The other inequality follows the same way:

$$
\begin{aligned}
\frac{1-\varepsilon}{1+\varepsilon} & \geq 1-4 \varepsilon \\
1-\varepsilon & \geq(1-4 \varepsilon)(1+\varepsilon) \\
1-\varepsilon & \geq 1-3 \varepsilon-4 \varepsilon^{2} \\
0 & \geq-2 \varepsilon-4 \varepsilon^{2}
\end{aligned}
$$

$$
(1+\varepsilon>0)
$$

which holds for any $\varepsilon \in(0,1 / 2)$.
3.6. TUTORIAL 6 .

$$
a_{j}>0
$$

3. Let $\varepsilon>0$ be fixed. Find a suitable choice of $\bar{\varepsilon}$ such that if we take $\left(\hat{a_{i}}\right)_{i=1}^{n}$ of numbers $\left(a_{i}\right)_{i=1}^{n}$ then $\prod_{i=1}^{n} \hat{a_{i}}$ is an ε-approximation of $\prod_{i=1}^{n} a_{i}$.
Solution: We know that

$$
\begin{aligned}
& \begin{aligned}
\prod_{i=1}^{n} \hat{a_{i}} & \leq \prod_{i=1}^{n}(1+\bar{\varepsilon}) a_{i}
\end{aligned} \\
& \quad \leq\left(\prod_{i=1}^{n}(1+\bar{\varepsilon})\right)\left(\prod_{i=1}^{n} a_{i}\right) \\
& \text { vulsul } \\
& \leq(1+\varepsilon)\left(\prod_{i=1}^{n} a_{i}\right)
\end{aligned}
$$

Thus we want

$$
\begin{aligned}
(1+\bar{\varepsilon})^{n} & \leq 1+\varepsilon \\
1+\bar{\varepsilon} & \leq \sqrt[n]{1+\varepsilon} \\
\bar{\varepsilon} & \leq \sqrt[n]{1+\varepsilon}-1
\end{aligned}
$$

The same way we want from below

$$
\begin{aligned}
(1-\bar{\varepsilon})^{n} & \geq 1-\varepsilon \\
1-\bar{\varepsilon} & \geq \sqrt[n]{1-\varepsilon} \\
-1+\bar{\varepsilon} & \leq-\sqrt[n]{1-\varepsilon} \\
\bar{\varepsilon} & \leq 1-\sqrt[n]{1-\varepsilon}
\end{aligned}
$$

$M \subseteq E(G)$ is a madohing if ecol vortex $f V(G)$
has ≤ 1 edge from M

$$
\begin{aligned}
& M \text { is perfect if }|M|=\frac{|V(G)|}{2} \\
& (o n=1 \text { edge from } M)^{2}
\end{aligned}
$$

4. Show an algorithm that given a bipartite graph G (partites consisting of the same number of vertices) determines if the number of perfect matchings is even or odd.

Solution: Let us recall the definitions:

$$
v \longrightarrow 0
$$

If A is the part of the adjacency matrix of G corresponding to the different partites (thus rows of A correspond to one partite and columns to the other and $A_{u, v}=1$ iff u belongs to one partite, v to the other one and are connected together by an edge) and a permutation π determines a perfect matching (that is $(j, \pi(j)) \in E(G))$ then the product is equal to one (and to zero otherwise). Thus perm (A) is the number of perfect matchings. But remember that over \mathbb{Z}_{2} we have $1=-1$, thus specially $\operatorname{det}(A)=\operatorname{perm}(A)$ over \mathbb{Z}_{2}.

We know how to compute determinant in polynomial time. Permanent is thought to be hard to compute, but its parity is easy.

$$
\mathbb{Z}_{2}=\{0,1\} \quad 1+1 \equiv_{2} 0 \quad 1 \equiv_{2}-1
$$

physics cares about \# of mouthing expecialts on planer graph 9 toluene is 2 ?
$\rightarrow g$... gus \Rightarrow perm is a linear combination

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{\pi \in S_{n}} \underbrace{\operatorname{sgn}(\pi)}_{\varepsilon=1\}} \prod_{i=1}^{n} A_{i, \pi(i)} \quad \text { poly alg. } \\
& \text { pyalg. O(m<super>n... gayer. }
\end{aligned}
$$

3.6. TUTORIAL 6 .
5. Let $A \in\{0,1\}^{n \times n}$ be a matrix. Let $\varepsilon_{i, j}$ be independent random ± 1 variables. Let $B \in\{-1,0,1\}^{n \times n}$ be a matrix such that $B_{i, j}=\varepsilon_{i, j} A_{i, j}$ (uniformly randomly independently assign signs to entries of A).
(a) Show that $\mathbb{E}[\operatorname{det}(B)]=0$

Solution: Let us remind that

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)} \\
\operatorname{perm}(A) & =\sum_{\pi \in S_{n}} \prod_{i=1}^{n} A_{i, \pi(i)}
\end{aligned}
$$

We use linearity of expectation (it holds even when the variables are dependent):

$$
\begin{aligned}
& \underline{L}[\operatorname{det}(B)]=\mathbb{E}\left[\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} B_{i, \pi(i)}\right] \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \mathbb{E}\left[\prod_{i=1}^{n} B_{i, \pi(i)}\right] \quad \ell \text { linearity } \delta \mathbb{E} \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \mathbb{E}\left[\prod_{i=1}^{n} \varepsilon_{i, \pi(i)} A_{i, \pi(i)}\right]=\sum_{i \in S_{m}} \operatorname{sgn}\left(\frac{\pi}{\pi}\right) \frac{\pi}{i=1} \mathbb{E}\left[\varepsilon_{i \pi(i)} A^{-}\right. \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) 0
\end{aligned}
$$

Here we could have used that for independent variables we have $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$, but I believe the above is clear enough.

We could have probably used the Laplace expansion

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{j=1}^{n}(-1)^{i+j} A_{i, j} M_{i, j} \\
M_{i, j} & =\text { deter minant of the matrix } A \text { without } i \text {-th row and without } j \text {-th column } \\
\operatorname{perm}(A) & =\sum_{j=1}^{n} A_{i, j} N_{i, j} \\
N_{i, j} & =\text { permanent of the matrix } A \text { without } i \text {-th row and without } j \text {-th column }
\end{aligned}
$$

(b) Show that $\mathbb{E}\left[\operatorname{det}(B)^{2}\right]=\operatorname{perm}(A)($ permanent of $A)$

Solution: We could investigate twotirections

$$
F \operatorname{det}(B)^{2}=\operatorname{det}\left(B^{2}\right)
$$

let us go with the first one:

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{det}(B)^{2}\right] & =\mathbb{E}\left[\left(\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} B_{i, \pi(i)}\right)\left(\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} B_{i, \sigma(i)}\right)\right] \\
& =\mathbb{E}\left[\sum_{(\pi, \sigma) \in S_{n} \times S_{n}} \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma) \prod_{i=1}^{n} B_{i, \pi(i)} B_{i, \sigma(i)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}\left[\sum_{\pi \neq \sigma \in S_{n}} \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma) \prod_{i=1}^{n} B_{i, \pi(i)} B_{i, \sigma(i)}\right]+\mathbb{E}\left[\sum_{\pi \in S_{n}}^{\operatorname{sgn}(\pi)^{2}=1} \prod_{i=1}^{n} B_{i, \pi(i)}^{2}\right] \\
& \begin{array}{l}
=\sum_{\pi \neq \sigma \in S_{n}} \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma) \mathbb{E}\left[\prod_{i=1}^{n} B_{i, \pi(i)} B_{i, \sigma(i)}\right]+\mathbb{E}[\sum_{\pi \in S_{n}}^{\prod_{i=1}^{n} \underbrace{A_{i}^{2}}_{i, \pi(i)}]^{2}=\uparrow} \\
=\sum_{\pi \neq \sigma \in S_{n}} \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma) \mathbb{E}\left[\prod_{i=1}^{n} \varepsilon_{i, \pi(i)} \varepsilon_{i, \sigma(i)} A_{i, \pi(i)} A_{i, \sigma(i)}\right]+\operatorname{perm}(A)
\end{array} \\
& =\sum_{\pi \neq \sigma \in S_{n}} \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma) 0+\operatorname{perm}(A) \\
& =\operatorname{perm}(A) \\
& \operatorname{perma}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 \\
n & 1 & 1 \\
& 1 & 1 \\
& 1 & 1
\end{array}\right)=4! \\
& \mathbb{E}\left[\operatorname{det}(B)^{2}\right]^{\wedge n a n}
\end{aligned}
$$

But it is not very concentrated.

fut mo short aug. path! (we have small deg.)

7. Let $G=(U \cup V, E)$ be a bipartite graph such that $|U|=|V|=n$ and $\delta(G)>n / 2$ (the least degree). Show that for any $2 \leq k \leq n$ and a matching m of size k there are at most n^{2} matchings m^{\prime} of size $k-1$ such that we can get from m^{\prime} to m using an augmenting path of length at most 3 .
Solution: There are at most n^{2} edges. We can associate each augmenting path with its middle edge (and an augmenting path uniquely determines both m and m^{\prime}).

