
Tutorials: NDMI025 - Randomized Algorithms

Karel Král

April 1, 2021

2

This text is a work in progress, do not distribute. All errors in this text are on purpose. Please
report them to my email kralka@iuuk.mff.cuni....

Contents

1 Exercises 5

1.1 Tutorial 1. 5

1.2 Tutorial 2. 7

1.3 Tutorial 3. 7

1.4 Tutorial 4. 8

2 Theory 11

2.1 Probability 101 . 11

2.2 Markov Chain . 11

3 Solutions 13

3.1 Tutorial 1. 13

3.2 Tutorial 2. 22

3.3 Tutorial 3. 28

3.4 Tutorial 4. 33

3

4 CONTENTS

Chapter 1

Exercises

1.1 Tutorial

1. • Can you all hear me?

• If you are uncomfortable asking a question in English, just ask in Czech/Slovak and I
will translate.

• Have you all taken:

(a) a probability course (discrete probability, random variables, expected value, vari-
ance, Markov, Chernoff)

(b) a linear algebra course (matrix operations, linear maps, eigenvectors and eivenval-
ues, discriminant)

(c) a graph theory course (what a combinatorial graph is, bipartite, complete, coloring)

(d) a combinatorics course (factorial, binomial coefficients)

(e) an algorithms / programming course (big-O notation, possibly understanding Python
based on the other question)

• This class is heavy on theory. Are you interested in computer simulations and or
implementations? If so:

(a) Python

(b) R

(c) C++

Solution: 1

2. You are presented with two sealed envelopes. There are k$ in one of those and �$ in the
other (k, � ∈ N but you do not know k, � in advance). You may open an envelope and (based
on what you see) decide to take this one or the other (without looking into both).

(a) Is there a way how to walk away with the larger amoung of money with probability
strictly larger than 0.5?

(b) What is the expected value you walk away with (in terms of k, �)?

(c) Simulate.

Solution: 2

5

6 CHAPTER 1. EXERCISES

3. Graph isomorphism. You have seen an interactive proof of graph non-isomorphism on the
class. Can you come up with an interactive proof of graph isomorphism?

Solution: 3

4. We will focus on random walks and their properties a lot.

(a) Random walks are useful when analysing algorithms – “two coloring without monochro-
matic triangle” of three-colorable graph.

(b) Random numbers in the computer are often expensive to generate, can we reduce
number of used random bits (expanders)? Or even get a deterministic algorithm?

(c) To sample from extremely large spaces.

Let n ∈ N, say n = 30. Let us the following problem we start with X0 = �n/2� and do the
following process:

• if Xi ∈ {0, n} we stop

• we set Xi+1 = Xi + δ where δ is picked uniformly at random from {−1, 1}

(a) Is this a Markov chain (Definition 2.2)? If so can you write it’s matrix?

(b) What is the expected number of steps until stopping?

Solution: 4

5. Think of some example MCs.

(a) Create a MC that is irreducible.

(b) Create a MC that is not irreducible.

(c) Create a MC that is periodic.

(d) Create a MC that is not periodic.

(e) Compute a stationary distribution of the following MC:

�
1/2 1/2
1/2 1/2

�

(f) Create a MC that has more stationary distributions.

Solution: 5

6. We are collectors and we want to collect all n kinds of coupons. Coupons are sold in packages
which all look the same. Thus when we buy an coupon, we buy one of n kinds uniformly at
random. This is known as the coupon collector problem.

(a) What is the expected number of coupons we need to buy to get all kinds?

(b) How many coupons do we need to buy to have probability at least 1 − q of collecting
all kinds?

(c) What is the Markov chain? Is this similar to a random walk on some graph?

(d) Simulate.

Solution: 6

1.2. TUTORIAL 2. 7

1.2 Tutorial

1. Find a family of oriented graphs of constant in-degree and constant out-degree and as large
hitting time as possible.

Note that similar situation could happen on undirected graphs where the probabilities of
traversing edge one way and the other way would not be the same. Which is in principle
almost an oriented graph.

Solution: 1

2. Let A ∈ Rn×n be a matrix with eigenvalues λ1, . . . ,λn. Show that the matrix A + dIn has
eigenvalues d+ λ1, . . . , d+ λn.

Solution: 2

3. Show Courant-Fisher: Let A ∈ Rn×n be a symmetric matrix (AT = A). Let λ1 ≥ λ2 ≥
. . . ≥ λn be its eigenvalues. Show

(a) λ1 = maxx∈Rn,�x�=1 x
TAx

(b) λn = minx∈Rn,�x�=1 x
TAx

(c) The eigenvalue λ2 can be computed similarly λ2 = maxx∈Rn,�x�=1,xTu1=0 x
TAx (where

u1 is the eigenvector corresponding to λ1). We can get other eigenvalues in a similar
manner. Moreover we could use this to prove the interlacing theorem. See https:

//en.wikipedia.org/wiki/Min-max_theorem

Solution: 3

4. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its adjacency
matrix is −d.

Solution: 4

5. Compute the eigenvalues and eigenvectors of the following graphs:

(a) Kn, the complete graph on n vertices.

(b) Kn,n, the complete bipartite graph with partites of size n each.

(c) Cn, the cycle on n vertices.

Solution: 5

1.3 Tutorial

1. You are given two coins. One is fair and the other one has Pr[tails] = 1/4. We use the
following algorithm to distinguish those:

• Pick a coin and toss it n times.

• Let p̂ be the probability of getting a tails (number of tails over n).

• If p̂ ≥ 3/8 we say this coin is fair.

Show that if n ≥ 32 ln(2/δ) then our algorithm answers correctly with probability at least
1− δ.

Solution: 1

2. You have seen that ZPP = RP ∩ co-RP.

(a) Recall definitions of:

8 CHAPTER 1. EXERCISES

• RP

• ZPP

• co-RP

• BPP

• NP

(b) Show that RP ⊆ NP (and thus co-RP ⊂ co-NP).

(c) Decide if BPP = co-BPP.

(d) Show that if NP ⊆ BPP then NP=RP.

Solution: 2

3. How to simulate a fair coin using a tipped coin and wice versa.

(a) We are given a fair coin Pr[tails] = 0.5. Show how to generate a random bit with
Pr[1] = p for a given p ∈ (0, 1) (both p = 0 and p = 1 are a bit boring).

(b) We are given a tipped coin – we do not even know p = Pr[tails]. We are sure that
Pr[tails] ∈ (0, 1). Generate a fair coin toss.

Solution: 3

4. Show that the expected number of comparisons a quick-sort algorithm does is roughly n ln(n).
Show that probability of it making at least 32n ln(n) comporisons is at most 1/n3.

Solution: 4

1.4 Tutorial

1. We have k servers that are supposed to handle n � k jobs. But the jobs come online and
there is no single computer that knows the loads of servers (otherwise we would have a lot of
communication). How do we distribute the jobs? We distribute the jobs each independently
uniformly at random. How to bound the maximum load?

Solution: 1

2. Distributed discrete logarithm algorithm (Breaking the Circuit Size Barrier for Secure Com-
putation Under DDH, Boyle, Gilboa, Ishai linked on the website).

Solution: 2

3. Let A,B be two disjoint sets of vertices where |A| = |B| = n. Let d ≥ 5 be a constant. We
choose d uniformly at random edges from each vertex from A. We show that with constant
positive probability each set S ⊆ A of size |S| ≤ n/d has at least β|S| neighbors where
β = d/4.

Solution: 3

4. Let us define the edge expansion for a given graph G by:

h(G) = min
|S|≤n/2

e(S, V \ S)
|S|

For any S ⊆ V (G) we denote

e(S) = E(G) ∩ S × S = number of edges inside S

e(S, V (G) \ S) = E(G) ∩ (S × (V (G) \ S)) = number of edges going from S to the complement

1.4. TUTORIAL 4. 9

Let us show that if λ2 is the second largest eigenvalue of the adjacency matrix of a d-regular
graph G then:

h(G) ≥ d− λ2

2

Solution: 4

10 CHAPTER 1. EXERCISES

Chapter 2

Theory

2.1 Probability 101

Probability 101

2.2 Markov Chain

Definition. A discrete-time Markov chain is a sequence of random variables X0, X1, X2, . . . with
the Markov property:

Pr[Xn+1 = x | X0 = x0, X1 = x1, . . . , Xn = xn] = Pr[Xn+1 = x | Xn = xn]
(if both are defined, i.e., Pr[X0 = x0, X1 = x1, . . . , Xn = xn] > 0)

and the possible values of Xi form a countable set called the state space of the Markov chain.

The Markov property states that the process has no memory – the next state depends only on
the current state. We will deal with a special case where the state space of each random variable
will be the same and finite. Moreover we will deal with time-homogenous Markov chains, that is
Pr[Xn+1 | Xn] = Pr[Xn | Xn−1] (the transition probabilities are time independent). Thus we will
represent Markov chains by their transition matrices – if a Markov chain has n states its transition
matrix is P ∈ [0, 1]n×n such that Pi,j = Pr[Xn+1 = i | Xn = j] (thus column sums are equal to
one).

If we take a probability distribution π ∈ [0, 1]n and multiply it by the transition matrix we get
the probability distribution after one step Pπ.

There are several interesting properties of Markov chains:

• We say that a MC is irreducible iff for each pair of states i, j ∈ [n] there is a time k ∈ N
such that (P k)i,j > 0 (we can get from any state to any state).

• We say that a MC is periodic iff there is a state i ∈ [n] and a period p ∈ N, p > 1 such that
for each time k ∈ N we have (P k)i,i > 0 ⇒ p | k that is probability of staying at state i is
positive only for multiples of the period.

• We say that π ∈ [0, 1]n is a stationary distribution of a given MC iff Pπ = π (the distribution
is the same after one step).

Theorem 1. If a MC is aperiodic and irreducible it has a unique stationary distribution π.
Moreover for all pairs of states i, j ∈ [n] the we know that

lim
t→∞

(P t)i,j = πi

11

12 CHAPTER 2. THEORY

Chapter 3

Solutions

3.1 Tutorial

1.

• Can you all hear me?

• If you are uncomfortable asking a question in English, just ask in Czech/Slo-
vak and I will translate.

• Have you all taken:

(a) a probability course (discrete probability, random variables, expected
value, variance, Markov, Chernoff)

(b) a linear algebra course (matrix operations, linear maps, eigenvectors and
eivenvalues, discriminant)

(c) a graph theory course (what a combinatorial graph is, bipartite, com-
plete, coloring)

(d) a combinatorics course (factorial, binomial coefficients)

(e) an algorithms / programming course (big-O notation, possibly under-
standing Python based on the other question)

• This class is heavy on theory. Are you interested in computer simulations
and or implementations? If so:

(a) Python

(b) R

(c) C++

13

14 CHAPTER 3. SOLUTIONS

2. You are presented with two sealed envelopes. There are k$ in one of those and
�$ in the other (k, � ∈ N but you do not know k, � in advance). You may open
an envelope and (based on what you see) decide to take this one or the other
(without looking into both).

(a) Is there a way how to walk away with the larger amoung of money with
probability strictly larger than 0.5?

Solution: Pick an envelope uniformly at random. If you see m$ toss a fair coin
until you get Tails. If the number of tosses was strictly less than m keep the envelope,
otherwise take the other. If k < � then the probability of keeping the envelope with k$
is strictly less than the probability of keeping the envelope with �$.

(b) What is the expected value you walk away with (in terms of k, �)?

Solution: Let us recall the sum of geometric series:

S =

n�

j=0

qj

= 1 + q + q2 + . . .+ qn

= 1 + q
�
1 + q + q2 + . . .+ qn−1

�

= 1 + q(S − qn)

thus

S = 1 + q(S − qn)

S − qS = 1− qn+1

S =
1− qn+1

1− q
(pokud q �= 1)

and for the infinite case:

∞�

j=0

qj = lim
n→∞

n�

j=0

qj

= lim
n→∞

1− qn+1

1− q

=
1

1− q
(pokud |q| < 1)

Thus exactly n tosses have probability for the general case where Tails has probability
p and Heads has probability 1− p:

Pr[n tosses] = (1− p)n−1p (for any n ∈ N+)

Probability of at most n tosses:

Pr[1, 2, . . . , n tosses] =

n�

j=1

p(1− p)j−1

= p

n�

j=1

(1− p)j−1

= p
1− (1− p)n

1− (1− p)

3.1. TUTORIAL 1. 15

= 1− (1− p)n

Probability that we keep k$ (fair coin):

Pr[tosses < k] =

k−1�

j=1

0.5j

= 1− 0.5k−1

Thus probability of walking away with k$ is

Pr[winning k$] =
1

2
(1− 0.5k−1) +

1

2
0.5�−1

=
1

2
− 0.5k + 0.5�

=
1

2
+ (0.5� − 0.5k)

Thus the expected win is

E[win] = k

�
1

2
+ (0.5� − 0.5k)

�
+ �

�
1

2
+ (0.5k − 0.5�)

�

(c) Simulate.

Solution:

https://docs.python.org/3/library/random.html

Do not use for cryptography!

from random import randint

from random import random

def geometric(pr: float = 0.5) -> int:

"""pr is success probability, return the number of tosses until

the first success."""

assert pr > 0

sample = 1

fail_pr = 1 - pr

while random() < fail_pr:

sample += 1

return sample

Our unknown amounts.

envelopes = [5, 10]

N = 1000000 # Number of samples.

total_amount = 0 # Total sum that we got during all samples.

got_larger = 0 # Number of times we walked away with the larger sum.

for _ in range(N):

Pick the first envelope at random.

chosen = randint(0, 1)

16 CHAPTER 3. SOLUTIONS

if geometric() < envelopes[chosen]:

Keep this one.

pass

else:

Choose the other.

chosen = 1 - chosen

if envelopes[chosen] >= envelopes[1 - chosen]:

got_larger += 1

total_amount += envelopes[chosen]

k = envelopes[0]

l = envelopes[1]

pr_larger = 0.5 + abs(0.5**k - 0.5**l)

e_win = k * (0.5 + (0.5**l - 0.5**k)) + l * (0.5 + (0.5**k - 0.5**l))

print(f'Pr[selected larger] = {got_larger / N} (={pr_larger})')

print(f'E[win] = {total_amount / N} (={e_win})')

Possible outcome:

Pr[selected larger] = 0.529865 (=0.5302734375)

E[win] = 7.649325 (=7.6513671875)

3.1. TUTORIAL 1. 17

3. Graph isomorphism. You have seen an interactive proof of graph non-isomorphism
on the class. Can you come up with an interactive proof of graph isomorphism?

Solution:

• Both the prover P and the verifier V know two graphs G1, G2.

• The prover knows an isomorphism π such that π(G1) = G2. Formally π : V (G1) →
V (G2) such that

(u, v) ∈ E(G1) ⇔ (π(u),π(v)) ∈ E(G2).

And by π(G1) we mean the graph (π(V (G1)), {(π(u),π(v)) | (u, v) ∈ E(G1)}).
• For ease of presentation we set V (G1) = V (G2) = [n] = {1, 2, 3, . . . , n}.
• The prover picks uniformly random permutation σ ∈ Sn and sends the graph G =
σ(G1).

• The verifier picks uniformly random number i ∈ {1, 2} and asks verifier to present a
permutation τ such that τ(G) = Gi.

• If i = 1 then the prover sends τ = σ−1. If i = 2 then the prover sends τ = (σ ◦ π)−1.

This is indeed an interactive proof:

• If the prover knows the isomorphism π, then all answers are correct.

• If G1, G2 are not isomorphic, then the verifier will pick a graph (either G1 or G2) which
is not isomorphic with G with probability 1/2.

Again the prover learns nothing about the isomorphism. If you find these interactive proofs
interesting, take a look at “Zero Knowledge Proofs”.

Also note that our prover can be implemented efficiently as opposed to the case of graph
non-isomorphism. In fact in some sense the prover proves that it knows the isomorphism
(this can be made formal, see “Zero Knowledge Proofs of Knowledge”).

It is natural to repeat this protocol more times in order to boost the probabilities. This is
called probability amplification. We will investigate this much more during the semester.

18 CHAPTER 3. SOLUTIONS

4. We will focus on random walks and their properties a lot.

(a) Random walks are useful when analysing algorithms – “two coloring without
monochromatic triangle” of three-colorable graph.

(b) Random numbers in the computer are often expensive to generate, can we
reduce number of used random bits (expanders)? Or even get a determin-
istic algorithm?

(c) To sample from extremely large spaces.

Let n ∈ N, say n = 30. Let us the following problem we start with X0 = �n/2� and
do the following process:

• if Xi ∈ {0, n} we stop

• we set Xi+1 = Xi + δ where δ is picked uniformly at random from {−1, 1}
(a) Is this a Markov chain (Definition 2.2)? If so can you write it’s matrix?

Solution: Yes (see the lecture video).

(b) What is the expected number of steps until stopping?

Solution: Let us set

Sk = E[number of steps untill stopping, when starting at k]

We know the following:

S0 = Sn = 0

Sk = 1 +
1

2
(Sk−1 + Sk+1) (by linearity of expectation)

The above is so-called difference equation. It is not terribly complicated, but not super
easy to solve (hint try to consider equations for d(k) = Sk−Sk−1 to get rid of the “1+”
term). You may look at https://en.wikipedia.org/wiki/Recurrence_relation.
Luckily when dealing with asymptotics thus we do not need exact estimates. And you
will see some nice theoretical results tomorrow.

But it can be shown that

Sk = k(n− k)

which we can easily check that this is indeed a solution (note that we would also need
that this is a unique solution, see solution methods on Wikipedia for this part):

Sk = 1 +
1

2
(Sk−1 + Sk+1)

Sk = 1 +
1

2
((k − 1)(n− (k − 1)) + (k + 1)(n− (k + 1)))

Sk = 1 +
1

2
((k − 1)n− (k − 1)2 + (k + 1)n− (k + 1)2)

Sk = 1 +
1

2
(2kn− (k − 1)2 − (k + 1)2)

Sk = 1 +
1

2
(2kn− 2k2 − 2)

Sk = k(n− k)

3.1. TUTORIAL 1. 19

5. Think of some example MCs.

(a) Create a MC that is irreducible.

Solution: Two states:
�
1/2 1/2
1/2 1/2

�

(with probability 1/2 stay at the current state, with probability 1/2 switch to the other
state).

(b) Create a MC that is not irreducible.

Solution: Two states:
�
1 1
0 0

�

(always stay at the first state or immediatelly go there).

(c) Create a MC that is periodic.

Solution: Three states:

0 1 0
0 0 1
1 0 0

(from the first state go always to the third, from the second always to the first and
from the third always to the second).

(d) Create a MC that is not periodic.

Solution: Two states:
�
1/2 1/2
1/2 1/2

�

(with probability 1/2 stay at the current state, with probability 1/2 switch to the other
state).

(e) Compute a stationary distribution of the following MC:

�
1/2 1/2
1/2 1/2

�

Solution: One eigenvalue is 1, the only stationary distribution (1/2, 1/2)T . The
other eigenvalue is 0 with the corresponding eigenvector (1,−1)T (this is not a distri-
bution).

(f) Create a MC that has more stationary distributions.

Solution: Two states:
�
1 0
0 1

�

(always stay where we are).

20 CHAPTER 3. SOLUTIONS

6. We are collectors and we want to collect all n kinds of coupons. Coupons are
sold in packages which all look the same. Thus when we buy an coupon, we
buy one of n kinds uniformly at random. This is known as the coupon collector
problem.

(a) What is the expected number of coupons we need to buy to get all kinds?

Solution: Let ti be the time to collect the i-th coupon kind after we have collected
i− 1 coupons. The probability of buying the i-th coupon is

Pr[getting i-th coupon when already having i− 1 coupons] =
n− (i− 1)

n

Thus ti has geometric distribution (we are tossing the same probability and waiting for
the first success). The expected value of ti is:

E[ti] =
n

n− (i− 1)

By linearity of expectation:

E[collecting] = E[t1 + t2 + . . .+ tn]

= E[t1] + E[t2] + . . .+ E[tn]

=
n

n
+

n

n− 1
+

n

n− 2
+ . . .+

n

n− (n− 1)

= nHn

= n log(n) + n · 0.577 . . .+ 1/2 +O(1/n) (source Wikipedia)

(b) How many coupons do we need to buy to have probability at least 1 − q of
collecting all kinds?

Solution: We can use Markov inequality Pr[T > nHn/q] ≤ q (here T is the random
variable telling us how many tosses are necessary).

(c) What is the Markov chain? Is this similar to a random walk on some graph?

Solution: There might be more Markov chains corresponding to this problem. The
states could be all subsets of [n] = {1, 2, 3, . . . , n} (too big – not that nice to work with)
or how many coupons have we collected so far (much smaller).

This corresponds to the cover time of a complete graph (when we have loops in each
vertes).

(d) Simulate.

Solution:

import matplotlib.pyplot as plt

from collections import Counter

from random import randint

def catch_them_all(n: int = 50) -> int:

coupons = [False] * n

coupons_collected = 0

coupons_bought = 0

while coupons_collected < len(coupons):

new_coupon = randint(0, len(coupons) - 1)

3.1. TUTORIAL 1. 21

coupons_bought += 1

if not coupons[new_coupon]:

coupons[new_coupon] = True

coupons_collected += 1

return coupons_bought

cnt = Counter(catch_them_all(50) for _ in range(10000))

plt.bar(cnt.keys(), cnt.values())

plt.xlabel("Steps untill collecting all 50 coupons")

plt.ylabel("How many times did we take this many steps")

plt.show()

plt.savefig('coupon_collector.pdf')

��� ��� ��� ��� ��� ���

��������������������������������������

�

��

��

��

��

���

�
�
�
��

�
�
�
��
��

�
�
��
��
��
�
��
�
�
�
��
�
��
��

�
�
�
��
��
�
�

Figure 3.1: A histogram of how many steps were necessary (say 200 steps was necessary around
80 times).

22 CHAPTER 3. SOLUTIONS

3.2 Tutorial

1. Find a family of oriented graphs of constant in-degree and constant out-degree
and as large hitting time as possible.

Solution: Let us first do constant out-degree and unbounded in-degree. We will later use
a tree to achieve constant in-degree.

1 2 3 4 5 6 7

Figure 3.2: Oriented path with backwards arcs (oriented edges).

The expected hitting time from

hn,n = 0

hn−1,n = 1 + 0.5h1,n

hn−2,n = 1 + 0.5(h1,n + hn−1,n)

= 1 + 0.5(h1,n + (1 + 0.5h1,n))

= 1.5 + 0.75h1,n

hn−3,n = 1 + 0.5(h1,n + (1 + 0.5(h1,n + (1 + 0.5h1,n))))

hn−k,n =

k−1�

j=0

0.5j

+

h1,n

k�

j=1

0.5j

= 2− 21−k + h1,n(1− 2−k)

Thus in particular when k = n− 1:

h1,n = 2− 21−(n−1) + h1,n(1− 2−(n−1))

2−(n−1)h1,n = 2− 21−(n−1)

h1,n = 2n−1(2− 21−(n−1))

= 2n − 2

Note that similar situation could happen on undirected graphs where the prob-
abilities of traversing edge one way and the other way would not be the same.
Which is in principle almost an oriented graph.

3.2. TUTORIAL 2. 23

2. Let A ∈ Rn×n be a matrix with eigenvalues λ1, . . . ,λn. Show that the matrix
A+ dIn has eigenvalues d+ λ1, . . . , d+ λn.

Solution: Eigenvalues and eigenvectors recap:

• We are interested in the limit of a Markov chain. When π0 is the initial distribution,
then Pnπ0 is the distribution after n steps.

• When we are iteratively multiplying a vector by a matrix from left, the simplest form
we can hope for are eigenvectors, which satisfy

Ax = λx

Where A is a square matrix, λ is a real number called the eigenvalue, x is called the
eigenvector. Then

Anx = A
�
An−1x

�
= λnx

• For small matrices we usually use the characteristic polynomial:

det (A− λI) = 0

the roots of this polynomial are the eigenvalues and we find the corresponding eigen-
vectors as:

A− λI = �0

• For an eigenvalue λ we define its algebraic multiplicity to be the multiplicity of λ as
the root of the characteristic polynomial.

• For an eigenvalue λ we define its geometric multiplicity to be the dimension of

Ker(A− λI).

• We know that for any eigenvalue algebraic multiplicity is at least the geometric multi-
plicity.

• For each eigenvalue there is at least one eigenvector.

• It is usually infeasible to find roots of the characteristic polynomial when the matrix A
is large. There are however computationally efficient methods of computing eigenvalues
and eigenvectors (usually iterative multiplication converges to the eigenvector).

We use the definition, let λ be an eigenvalue in question and x its corresponding eigenvector:

Ax = λx

(A+ dI)x = Ax+ dIx

= λx+ dx

= (λ+ d)x

Note that this can be rather useful when computing eigenvalues of a given matrix.

24 CHAPTER 3. SOLUTIONS

3. Show Courant-Fisher: Let A ∈ Rn×n be a symmetric matrix (AT = A). Let
λ1 ≥ λ2 ≥ . . . ≥ λn be its eigenvalues. Show

(a) λ1 = maxx∈Rn,�x�=1 x
TAx

Solution: Since A is Hermitian, we know that it is diagonalizable and we can choose
an ortonormal basis of eigenvectors u1, u2, . . . , un. That is for any j we have uT

j uj = 1

and Auj = λjuj , and for any i �= j we have uT
j ui = 0.

We show two inequalities:

max
x∈Rn,�x�=1

xTAx ≥ uT
j Auj

= uT
j λjuj

= λj

On the other hand we may write x = α1u1 + α2u2 + . . .+ αnun and thus get

max
x∈Rn,�x�=1

xTAx = (α1u1 + α2u2 + . . .+ αnun)
T
A (α1u1 + α2u2 + . . .+ αnun)

= (α1u1 + α2u2 + . . .+ αnun)
T
(λ1α1u1 + λ2α2u2 + . . .+ λnαnun)

= λ1α
2
1 + λ2α

2
2 + . . .+ λnα

2
n (since uT

j ui = 0 and uT
j uj = 1)

≤ λ1

Where the last equation follows from the fact that if Q is ortogonal matrix (QTQ = I)
then �x� = �Qx� since �x� = xTx and �Qx� = xTQTQx.

(b) λn = minx∈Rn,�x�=1 x
TAx

Solution: Consider −A and use the previous result.

(c) The eigenvalue λ2 can be computed similarly λ2 = maxx∈Rn,�x�=1,xTu1=0 x
TAx

(where u1 is the eigenvector corresponding to λ1). We can get other eigenval-
ues in a similar manner. Moreover we could use this to prove the interlacing
theorem. See https://en.wikipedia.org/wiki/Min-max_theorem

3.2. TUTORIAL 2. 25

4. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its
adjacency matrix is −d.

Solution: We know that the largest eigenvalue of the adjacency matrix of a d-regular
graph is d and there is a corresponding eigenvector (1, 1, . . . , 1)T .

If the graph is bipartite (that is V (G) = A ∪B and E(G) ⊆ A×B), we may use the vector
defined as follows:

xv =

�
−1 if v ∈ A

1 if v ∈ B

Then x is an eigenvector corresponding to −d.

Let (x1, x2, . . . , xn)
T be the eigenvector corresponding to −d. Thus

−dxi =
�

j∈N(i)

xj

LetM = maxi |xi| and P = {i | xi = M} andN = {i | xi = −M}. Without loss of generality
let P be non-empty. For any i ∈ P we have

−dM =
�

j∈N(i)

xj

thus xj = −M for each j ∈ N(i) (since each |xk| ≤ M).

Since the graph is connected we eventually get that for any i it holds that |xi| = M .

Eigenvalues of the graph of neurons in human brain have been considered in epilepsy – they
studied “how much” is the brain bipartite, which can be expressed by the difference between
the smalles eigenvalue and the negative degree.

26 CHAPTER 3. SOLUTIONS

5. Compute the eigenvalues and eigenvectors of the following graphs:

(a) Kn, the complete graph on n vertices.

Solution: It will be easier to determine eigenvalues and eigenvectors of a complete
graph with selfloops (we add unit matrix). We may subtract ones if we mind the
selfloops.

The adjacency matrix of a complete graph with selfloops is:

A =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

By the observation from the lecture we know that this is a regular graph and the matrix
above has eigenvalue n with eigenvector (1, 1, 1, 1, 1)T . By Hamiltonicity we know that
all other eigenvectors are perpendicular to the one above. Thus all their entries sum
up to zero.

We guess other eigenvectors (we need to guess n− 1 of them).

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1
−1
0
0
0

=

0
0
0
0
0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1
0
−1
0
0

=

0
0
0
0
0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1
0
0
−1
0

=

0
0
0
0
0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1
0
0
0
−1

=

0
0
0
0
0

Thus geometric (and thus also the algebraic) multiplicity of eigenvalue 0 is n− 1.

(b) Kn,n, the complete bipartite graph with partites of size n each.

Solution: Here we are happy with no selfloops (otherwise the graph would not even
be bipartite).

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

3.2. TUTORIAL 2. 27

The graph is bipartite and regular, thus we know that the largest eigenvalue is n
with the eigenvector (1, 1, 1, 1, 1, 1)T the smallest eigenvalue is −n with the eigenvector
(−1,−1,−1, 1, 1, 1)T . As with the complete graph with selfloops it is easy to show that
the rest is zero eigenvalues with corresponding vectors.

(c) Cn, the cycle on n vertices.

Solution: If we knew circular matrices we could use their properties. We will write
the adjacency matrix as a sum of two simpler matrices:

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

=

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

+

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

Observe that moreover the two matrices are inverse to each other, thus their eigenvalues
are inverses as:

Ax = λx

x = Ix

= A−1Ax

= λA−1x

Let ω ∈ C be the primitive n-th root of unity. Thus ω = e2iπ/n.

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

ω0

ω1

ω2

ω3

ω4

ω5

=

ω5

ω0

ω1

ω2

ω3

ω4

= ω5

ω0

ω1

ω2

ω3

ω4

ω5

Similarly for the even powers

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

ω0

ω2

ω4

ω0

ω2

ω4

=

ω4

ω0

ω2

ω4

ω0

ω2

= ω4

ω0

ω2

ω4

ω0

ω2

ω4

And so on. A particular eigenvector is an eigenvector of the eigenvalue ωj with respect to
this matrix and of eigenvalue ω−j with respect to the inverse matrix. Thus when we sum
the two matrices we get that the eigenvalue is ωj+ω−j . Observe that ωj+ω−j ∈ R.

28 CHAPTER 3. SOLUTIONS

3.3 Tutorial

1. You are given two coins. One is fair and the other one has Pr[tails] = 1/4. We
use the following algorithm to distinguish those:

• Pick a coin and toss it n times.

• Let p̂ be the probability of getting a tails (number of tails over n).

• If p̂ ≥ 3/8 we say this coin is fair.

Show that if n ≥ 32 ln(2/δ) then our algorithm answers correctly with probability
at least 1− δ.

Solution: Each coin is independent 0, 1 random variable. We could have used the statement
to get a similar bound:

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

but the following is a bit more convenient for us here:

Pr[X ≥ µ+ δn] ≤ e−2nδ2

Pr[X ≤ µ− δn] ≤ e−2nδ2

• If we were tossing the fair coin the probability of failure is

µ = n/2

δ = 1/8

Pr[X ≤ n/2− n/8] ≤ e−2·32 ln(2/δ)(1/8)2

Pr[X ≤ 3n/8] ≤ e− ln(2/δ)

≤ δ/2

• If we were tossing the tipped coin the probability of failure is

µ = n/4

δ = 1/8

Pr[X ≥ n/4 + n/8] ≤ e−2·32 ln(2/δ)(1/8)2

Pr[X ≥ 3n/8] ≤ e− ln(2/δ)

≤ δ/2

3.3. TUTORIAL 3. 29

2. You have seen that ZPP = RP ∩ co-RP.

(a) Recall definitions of:

• RP

Solution: A language L ⊆ {0, 1}∗ is in RP (L ∈ RP) iff there is a probabilistic
Turing machine A such that:

– A works in polynomial time in the input length (that is A(x) works in time |x|
for any x ∈ {0, 1}∗).

– If x �∈ L then A(x) = 0 always.

– If x ∈ L then Pr[A(x) = 1] ≥ 1/2 (the randomness is over the random bits of
A).

• ZPP

Solution: A language L ⊆ {0, 1}∗ is in RP (L ∈ RP) iff there is a probabilistic
Turing machine A such that:

– A(x) = 1 if and only if x ∈ L

– A works in expected polynomial time (expectation is over the random bits of
A).

• co-RP

Solution: L is in co-RP iff {0, 1}∗ \ L is in RP.

• BPP

Solution: L is in BPP iff there is a probabilistic Turing machine A such that:

– A works in polynomial time

– If x ∈ L then Pr[A(x) = 1] ≥ 3/4.

– If x �∈ L then Pr[A(x) = 0] ≥ 3/4.

• NP

Solution: L is in NP if there is a deterministic Turing machine A such that:

– A works in polynomial time in the input length (sum of input length and
certificate length).

– If x ∈ L then there is c ∈ {0, 1}∗ such that |c| is polynomial in |x| and A(x, c) =
1.

– If x �∈ L then for any c ∈ {0, 1}∗ we have A(x, c) = 0.

(b) Show that RP ⊆ NP (and thus co-RP ⊂ co-NP).

Solution: The random bits can serve as the certificate.

(c) Decide if BPP = co-BPP.

Solution: Yes, we can create B that on any x answers 1−A(x).

(d) Show that if NP ⊆ BPP then NP=RP.

Solution: We already know that RP ⊆ NP (unconditionally), we thus need the other
inclusion.

30 CHAPTER 3. SOLUTIONS

We know that 3SAT is NP-complete (if we can solve 3SAT, we can solve anything in
NP). Thus it is enough to show that given A which is the BPP Turing machine for
3SAT we can do the following:

• If A rejects, reject.

• If A accepts, we hope the given formula is satisfiable and try to find an assignment:

– Say the given formula ϕ has n variables.

– If ϕ is satisfiable even if we set x1 = True, we set it to True (otherwise to
False).

– We continue with x2, x3, . . . , xn.

– Return ϕ(x1, x2, . . . , xn).

We need to be certain-enough when deciding the variables. Thus we run A multiple
times – O(log(n)) times and take the majority answer to get probability 1−1/100n
of correct answer. By union bound we get that probability of an error in any fixing
of x1, x2, . . . , xn is at most 1/100.

Determine the constant before the log(n) using a Chernoff bound.

3.3. TUTORIAL 3. 31

3. How to simulate a fair coin using a tipped coin and wice versa.

(a) We are given a fair coin Pr[tails] = 0.5. Show how to generate a random bit
with Pr[1] = p for a given p ∈ (0, 1) (both p = 0 and p = 1 are a bit boring).

Solution: Note that if the given p does not have finite binary representation there is
no number T such that it would be enough to do at most T tosses. If at most T tosses
would suffice, then imagine a tree of toss results. Any leaf is at depth at most T . In
any leaf we output either 1 or 0. Probability of getting to a leaf is a multiple of 2−T

(not all leafs might be at the same depth).

Say that p = 0.p1p2p3 . . . where pj are binary digits. We treat the fair coin tosses as
digits of a random number q. We toss until q > p in which case we output 0 or we are
sure that q ≤ p no matter the following tosses in which case we output 1.

After each toss the probability of outputting is one half. Thus the expected number of
tosses is constant.

(b) We are given a tipped coin – we do not even know p = Pr[tails]. We are sure
that Pr[tails] ∈ (0, 1). Generate a fair coin toss.

Solution: Algorithm:

• We toss twice.

• If the outcome was Heads, Tails we output 0.

• If the outcome was Tails, Heads we output 1.

• If the outcome was Heads, Heads or Tails, Tails we repeat.

We know that:

• Probability of outputting 0 is p (1− p).

• Probability of outputting 1 is (1− p) p = p (1− p).

• Probability of outputting is 2p(1− p) > 0. Thus the expected number of rounds is
1

2p(1−p) , which is finite for any p ∈ (0, 1).

32 CHAPTER 3. SOLUTIONS

4. Show that the expected number of comparisons a quick-sort algorithm does is
roughly n ln(n). Show that probability of it making at least 32n ln(n) comporisons
is at most 1/n3.

Solution: Our plan is to:

• Observe that if the total depth of recursion is k then the number of comparisons is
upper bounded by kn (since each level of recursion causes at most n comparisons).

• Compute the probability that a fixed element is present in > 32 ln(n) levels of recursion.

• Use union bound to bound the probability there is an element which is present in
> 32 ln(n) levels of recursion.

Let us do the second item.

• Let us fix an element s.

• Let S1 = n, Sj be the size of the array containing s on the j-th level of recursion.
Observe that at the end of recursion Sk = 1.

• We say that the j-th recursion is “lucky” if Sj+1 ≤ (3/4)Sj .

• Let us define an indicator variable Xj to denote if the j-th recursion is “lucky.” Observe
that Pr[Xj] = 1/2 and Xi, Xj are independent for any i �= j.

• After r lucky recursions in the first k levels we know that Sk ≤ (3/4)rn.

• So after 4 ln(n) ≥ log3/4(n) lucky recursions the element s is contained in an array of
length one (and thus the recursion stops).

• Number of lucky rounds is equal to X =
�32 ln(n)

j=1 Xj . The expected number of lucky
rounds is µ = 16 ln(n). Let us set δ = 3/4 and use Chernoff bound (independent
indicator variables):

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 (the form we are using)

Pr[X ≤ 4 ln(n)] ≤ e−(3/4)216 ln(n)/2

≤ e−9 ln(n)/2

≤ n−4

3.4. TUTORIAL 4. 33

3.4 Tutorial

1. We have k servers that are supposed to handle n � k jobs. But the jobs come
online and there is no single computer that knows the loads of servers (otherwise
we would have a lot of communication). How do we distribute the jobs? We
distribute the jobs each independently uniformly at random. How to bound the
maximum load?

Solution:

• Let Xi be the load of the i-th server.

• We know that Xi =
�n

�=1 Xi,� where Xi,� indicates if the �-th job lands on the i-th
server. And Xi,1, Xi,2, . . . , Xi,n are independent for each i (that does not hold for Xi).

• Pr[Xi,�] = 1/k

• E[Xi] = n/k

• We use Chernoff bound:

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

We set δ = 3
�
k ln(k)/n.

Pr[Xi ≥ n/k + 3
�
n ln(k)/k)] = Pr[Xi ≥ (1 + 3

�
k ln(k)/n)n/k]

≤ e−(3
√

k ln(k)/n)2n/3k (Chernoff bound)

≤ e−3 ln(k)

= k−3

• We use the union bound to bound the probability that there exists a server with that
load:

Pr[exists i ∈ [k]: Xi ≥ n/k + 3
�
n ln(k)/k)] = k−2

• To be concrete:

k = 1000

n = 1000000

n/k = 1000

Pr[exists a server with at least n/k + 3
�
n ln(k)/k jobs] ≤ k−2

Pr[exists a server with at least 1250 jobs] ≤ 1/1000000

34 CHAPTER 3. SOLUTIONS

2. Distributed discrete logarithm algorithm (Breaking the Circuit Size Barrier for
Secure Computation Under DDH, Boyle, Gilboa, Ishai linked on the website).

Solution: We say that a group G is cyclic iff any of its element can be generated using a
single generator. Say we have the group (Z∗

5, ·) with its generator 3:

Z∗
5 = {1, 2, 3, 4}
30 = 1

31 = 3

32 = 4

33 = 2

When we fix a group G and its generator g we may ask what is the discrete logarithm of a
given group element:

DLogG,g(x) = min
n∈N

gn = x

So for instance DLogZ∗
5 ,3

(4) = 2.

3.4. TUTORIAL 4. 35

3. Let A,B be two disjoint sets of vertices where |A| = |B| = n. Let d ≥ 5 be a
constant. We choose d uniformly at random edges from each vertex from A. We
show that with constant positive probability each set S ⊆ A of size |S| ≤ n/d has
at least β|S| neighbors where β = d/4.

Solution:

• For each S ⊆ A and for each T ⊆ B we denote XS,T the indicator variable that is equal
to one iff all the neighbors of S are contained in T .

•

Pr[XS,T = 1] =

� |T |
n

�d|S|

• We use the estimate that
�
n
k

�
≤

�
ne
k

�k
.

•

Pr[∃S ⊆ A, T ⊆ B : |S| ≤ n/d, |T | ≤ β|S|, XS,T] ≤
n/d�

s=1

�
n

s

��
n

βs

��
βs

n

�ds

≤
n/d�

s=1

�
n

βs

�2 �
βs

n

�ds

(as
�
n
s

�
≤

�
n
βs

�
)

≤
n/d�

s=1

�
ne

βs

�2βs �
βs

n

�ds

=

n/d�

s=1

�
4ne

ds

�ds/2 �
ds

4n

�ds

=

n/d�

s=1

�
eds

4n

�ds/2

≤
n/d�

s=1

�e
4

�ds/2

(as ds ≤ n)

≤ (e/4)d/2

1− (e/4)d/2
(geometric series)

< 1

• What would happen if the graph was a union of d perfect matchings?

36 CHAPTER 3. SOLUTIONS

4. Let us define the edge expansion for a given graph G by:

h(G) = min
|S|≤n/2

e(S, V \ S)
|S|

For any S ⊆ V (G) we denote

e(S) = E(G) ∩ S × S = number of edges inside S

e(S, V (G) \ S) = E(G) ∩ (S × (V (G) \ S)) = number of edges going from S to the complement

Let us show that if λ2 is the second largest eigenvalue of the adjacency matrix
of a d-regular graph G then:

h(G) ≥ d− λ2

2

Solution:

• The idea is to use Courant-Fisher of Problem 3 from the second tutorial. If u1 is the
eigenvector corresponding to the first eigenvalue λ1, we have:

λ2 = max
x∈Rn,xTu1=0

xTAx

xTx

• Recall that u1 = (1, 1, 1, . . . , 1)T and our vector x should be orthogonal to it so that we
can use the Courant-Fisher (�x | u1� = 0). Moreover it should correspond to our set S.

• Let S ⊆ V (G) of size s = |S| ≤ n/2. Let us define the vector

xv =

�
n− s v ∈ S

−s v �∈ S

• Let us determine the norm squared of x:

xTx = xTx

= (n− s)2s+ s2(n− s)

= s(n− s)n

• Let us determine the nominator from Courant-Fischer for our vector x as defined above:

xTAx = 2
�

(u,v)∈E(G)

xuxv

= 2(n− s)2e(S)− 2s(n− s)e(S, V (G) \ S) + 2s2e(V (G) \ S)

Note that:

ds = 2e(S) + e(S, V (G) \ S)
d(n− s) = 2e(V (G) \ S) + e(S, V (G) \ S)

we plug that into the above:

xTAx = 2
�

(u,v)∈E(G)

xuxv

3.4. TUTORIAL 4. 37

= 2(n− s)2e(S)− 2s(n− s)e(S, V (G) \ S) + 2s2e(V (G) \ S)
= (n− s)2 (ds− e(S, V (G) \ S))− 2s(n− s)e(S, V (G) \ S) + s2 (d(n− s)− e(S, V (G) \ S))
= e(S, V (G) \ S)

�
−(n− s)2 − 2s(n− s)− s2

�
+ ds

�
(n− s)2 + s(n− s)

�

= −n2e(S, V (G) \ S) + dsn(n− s)

and we plug our vector x into the Courant-Fisher:

λ2 ≥ xTAx

xTx

=
−n2e(S, V (G) \ S) + dsn(n− s)

s(n− s)n

= d− e(S, V (G) \ S) n

s(n− s)

Finally we use that s ≤ n/2 and thus n−s
n ≥ 1/2 and rearrange the former inequality:

e(S, V (G) \ S)
|S| ≥ n− s

n
(d− λ2)

≥ d− λ2

2

