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Abstract

Catalytic computation was defined by Buhrman et al. (STOC,
2014). It addresses the question whether memory, that already stores
some unknown data that should be preserved for later use, can be
meaningfully used for computation. Buhrman et al. provide an in-
triguing answer to this question by giving examples where the occu-
pied memory can be used to perform computation. In this expository
article we survey what is known about this problem and how it relates
to other problems.

1 Introduction

In various sciences it is customary to study complex systems in isolation to
make the study tractable. This also happens in theoretical computer science
where we often look at a single Turing machine solving a certain problem
while ignoring the rest of the universe. For example, theorems like the Space
Hierarchy Theorem describe computation that happens in isolation from the
rest of the world. However, in typical real world scenario computation hap-
pens in the context of some outside environment. For example, when focusing
on space (memory) used by the computation we can come across the following
typical situations:

1. A process (program) runs on a computer that is equipped with a hard
disk containing data unrelated to the computation.
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2. A process runs on a computer and simultaneously there are other run-
ning processes on the same computer occupying parts of the main mem-
ory.

3. A process invokes some internal procedure (function), the internal state
of the process is stored on the stack before the invocation and upon
finishing the procedure the state is restored from the stack. During the
computation the procedure is using some working memory while not
touching the content of the stack.

In all these scenarios the process or procedure that is running has some
available working memory that it can use as it wishes but in addition to that
there is a huge amount of memory that is accessible in principle but currently
it stores data that must be retained during the computation of the process
or procedure. A natural question that comes up is whether the process or
procedure can make some meaningful use of the extra memory under the
condition that upon finishing it will be restored to its initial content. To
rephrase the question:

Can we compute more or more efficiently if we allow access to
the extra memory?

Naturally, granting access to the extra memory would bring in a host of issues
regarding privacy, security and reliability. Some of these can be easily dealt
with using encryption. However, these issues are not the issues we are trying
to address here. Our question is whether in a friendly environment such as in
the third scenario one can make use of the extra memory. This could allow
for more space efficient computation.

It is natural to conjecture that the extra space cannot be used meaning-
fully. The reason is that we do not have control over the initial content of the
extra memory and we cannot just simply erase it. For example, the content
of the extra memory can be incompressible (either in non-technical sense or
in the sense of Kolmogorov complexity). Then we have to essentially keep
the content of the extra memory in there assuming our own working memory
is substantially smaller. Otherwise we could lose some information and we
would not be able to restore the initial content of the extra memory when
finishing.

On the other hand, if the content of the extra memory were indeed in-
compressible one could try to use it for derandomization using the hardness
versus randomness paradigm [46, 39]. And, if it were compressible we could
compress it and use the extra space to perform our computation. So the
usefulness of the extra memory is not clear cut.



Hence, we are interested in the question of whether there are problems
that can be solved using the extra memory regardless of its initial content
but that cannot be solved using the same resources but without the extra
memory.

The origins of this question can be traced back to the program of Steve
Cook on separating L (problems solvable in logarithmic space) from P (prob-
lems solvable in polynomial time) [24]. In a project of Steve Cook and Yuval
Filmus [21], they propose to prove lower bounds on the size of branching
programs for the Tree Evaluation Problem in two steps: first prove the lower
bounds under essentially the assumption that the extra space does not help
and then justify this assumption. This assumption can be phrased in terms of
catalytic branching programs that we will see in Section 9. The setting of the
parameters for the assumption of Cook and Filmus is quite specific though so
it is not clear how much the study of our general question sheds light on their
problem. However, a prototypical example for our third scenario is Savitch’s
recursive algorithm for solving the Graph Reachability Problem, and hence
understanding the general question provides insights about the relationship
between L and NL (problems solvable non-deterministically in logarithmic
space).

In the rest of the article we will survey what we know about the usefulness
of the extra memory and we will show perhaps surprisingly that the extra
memory can be used meaningfully despite the fact that we do not have control
over its initial content and we have to restore it by the end of the computation.

We will formalize this question in the next section. We will call the compu-
tation with the extra tape a catalytic computation as the extra memory serves
as a form of catalyst to carry out the computation. Section 3 demonstrates
the power of catalytic computation on the Graph Reachability Problem. Sec-
tion 4 provides complexity background for the rest of the article, and builds
the context for the results we exhibit. In Section 5 we survey what is known
about reversible computation and its relationship to catalytic computation.
In Section 6 we present our main technical tool which is transparent com-
putation, and we demonstrate the power of transparent computation on the
case of evaluating arithmetic formulas using few registers. Section 7 shows
how to simulate transparent computation using catalytic memory. Known
limits on the power of catalytic memory are discussed in Section 8. Sec-
tions 9 and 11 explore non-uniformity and non-determinism in the context
of catalytic computation. In Section 10 we discuss the space hierarchy for
catalytic computation. We conclude with a summary of main open problems
in Section 12.



2 Catalytic computation

It is fairly easy to capture the scenarios described in the introduction in terms
of the usual computational models. We can take either a Turing machine or
a random access machine (RAM) and equip it with extra tapes or extra
region of memory that is initialized to an unknown content. The tape can be
modified during the computation but must be restored to its initial content
by the end of computation. For clarity, we will think of Turing machines but
any other computational model could easily be extended to obtain similar
results. We will use the definitions of Buhrman et al. [12].

A catalytic Turing machine is a Turing machine equipped with a read-
only input tape, a read-write work tape and an extra read-write tape — the
auxiliary tape. For every possible initial setting of the auxiliary tape, at the
end of the computation the catalytic Turing machine must have returned the
tape to its initial content. We will often refer to the auxiliary tape as the
catalytic tape.

Definition 1. Let s,w : N → N be non-decreasing functions. We say that
a language L is decided by a catalytic Turing machine M in space s(n) and
using catalytic space w(n) if on every input x of length n and arbitrary string
a of length w(n) written on the auxiliary tape the machine halts with a on its
auxiliary tape, during its computation M uses (accesses) at most s(n) tape
cells on its work tape and w(n) cells initially containing a on its auxiliary
tape, and M correctly outputs whether x ∈ L.

We define CSPACE(s(n),w(n)) to be the set of all languages that can be
decided by a catalytic machine in space s(n) using catalytic space w(n). As
a notational shorthand let CSPACE(s(n)) = CSPACE(s(n), 2O(s(n)))

In our treatment we will assume that Turing machines work with the
binary alphabet {0, 1} but all the results can be easily extended to other
alphabets.

It is natural to consider only functions w(n) where w(n) ∈ 2O(s(n)). The
reason is that otherwise the position of the head on the auxiliary tape encodes
potentially more information than the content of the work space. Indeed, if
we had multiple auxiliary tapes and infinite w(n) we could simulate arbitrary
space computation just using the positions of the heads on the auxiliary tapes
[43]. Such a machine would be essentially equivalent to counter machines.
This justifies our definition of CSPACE(s(n)).

We also allow only one work tape and one auxiliary tape. Since we are
concerned mainly about space this is without the loss of generality as we can
simulate multiple tapes on a single tape whenever s(n) ∈ Ω(logw(n)).



The most important class for us is the catalytic log-space, the class
CL = CSPACE(logn). It corresponds to polynomial size catalytic tape and
logarithmic work space. This seems to be the maximal reasonable auxiliary
tape and the minimal reasonable work space. It is natural to compare this
class to the usual deterministic logarithmic space L and non-deterministic log-
arithmic space NL. As we will exhibit later that both classes are contained
in CL. Indeed, Buhrman et al. [12] show a (to the best of our knowledge)
stronger statement that TC1 ⊆ CL:

Theorem 2. Languages that are recognized by log-space uniform families of
polynomial-size Boolean circuits of logarithmic depth consisting of arbitrary
fan-in MAJ-gates and NOT-gates (i.e. log-space uniform TC1 circuits) are
in CL.

We will survey classes between L and TC1 in Section 4. We remark that
we do not know whether log-space uniform TC1 = L as we do not know of
any separation of L from P or even NP. So to the best of our knowledge it
could be that L = TC1 = CL. That would imply a remarkable sequence of
collapses of complexity classes as we will see later. However, to appreciate
the power of catalytic space and CL in particular we will recall what is known
about the important Graph Reachability Problem (STCONN).

3 Graph Reachability Problem

The Graph Reachability Problem is the following algorithmic problem:

Input: Graph G and two of its vertices s and t.
Output: Decide whether there is a path from s to t in G.

We denote the corresponding language STCONN = {(G, s, t); there is a
path from s to t in G}. This is a well studied problem from the computa-
tional complexity perspective but also from practical stand point. STCONN

is the standard complete problem for non-deterministic log-space, NL. Its
undirected version USTCONN, where the graphs are undirected, is known to
be decidable in log-space, L. This is a celebrated result of Reingold [48]. Pre-
vious to this result it was known that USTCONN is in randomized log-space
(RL) [5], and there is a sequence of results getting ever so closer to logarithmic
space [44, 45, 7, 58]. There are many other restrictions of Graph Reachability
such as reachability on planar graphs or graphs with other special properties
that people study [3].

For general STCONN the best space upper bound is provided by Savitch’s
Theorem which puts NL into DSPACE(log2 n), the class of problems solvable



deterministically using O(log2 n) space. No randomized log-space algorithm
for general STCONN is known. Savitch’s algorithm is very space efficient but
its running time is superpolynomial, namely nΘ(logn).

When we focus on deterministic algorithms running in polynomial time,
the landscape looks markedly different. Solving reachability in linear time
can be accomplished by algorithms using either breadth-first search or depth-
first search. However, all these algorithms typically require space at least
linear in the number of vertices of the graph. The most space efficient algo-
rithm running in polynomial time is the algorithm of Barnes et al. [9] that
uses the unlikely space n/2Θ(

√
logn). No better polynomial time algorithm

is known, and the space used by this algorithm matches a lower bound on
space for solving STCONN on a restricted model of computation so called
Node Naming Jumping Automata on Graphs (NNJAG’s) [28, 26]. NNJAG’s
are a model specifically proposed for the study of STCONN and most of the
known sublinear space algorithms for STCONN can be implemented on it.
Hence, any polynomial time algorithm using space less than n/2ω(

√
logn) is

likely to require fundamentally new ideas. It is a major challenge to design
a polynomial time algorithm for STCONN working in space O(nǫ) for some
ǫ < 1.

So our currently best algorithm for STCONN runs in space Θ(log2 n) and
all known polynomial time algorithms for this problem run in space almost
linear. Compare this to the result of Buhrman et al. [12]:

Theorem 3. STCONN can be solved on catalytic Turing machines in space
O(logn) with catalytic space O(n2 log n) and time O(n9).

The time bound O(n9) is a crude estimate for a naïve implementation of
the algorithm of Buhrman et al. on catalytic Turing machines. On catalytic
RAM it would achieve substantially better running time using the same space
bounds. In other words, if we are allowed to use someone else’s occupied
memory of size O(n2 log n), we can solve STCONN in polynomial time and
logarithmic work space. In terms of work space this is exponentially better
than any known polynomial time algorithm for STCONN. To us, this clearly
justifies the study of the model, and conceivably there could be even practical
applications of this paradigm. Even in the unlikely case of CL = L, catalytic
space could provide nontrivial advantage in terms of algorithm design or the
actual running time.



4 Complexity classes and problems around L

This section serves as a brief overview of the landscape surrounding L. We
assume that the reader is familiar with basic concepts such as Turing ma-
chines. (More background information can be found in standard textbooks,
e.g. [51, 2].) There is a surprising number of complexity classes people study
that are close to L in computational power. Most of these classes come quite
naturally either as classes that capture the computational complexity of some
well-known problems or they correspond to some natural restriction of a more
general computational device.

Problems: STCONN,USTCONN,DET, IMM. We have already seen the
problems STCONN and USTCONN in Section 3. Another problem relevant to
our study is the problem of computing a determinant. By DETn,R we denote
the problem of computing a determinant of an n×n matrix over a ring R. A
closely related problem is the Iterated Matrix Multiplication IMMn,m,R which
is the problem of computing the product of n matrices, each over the ring R
of dimension m×m. Typically we may think of R being the ring of integers,
and m = n. We will omit the subscripts when the ring or dimensions are
understood from the context. It is well-known that by results of Cook [25, 6],
the class of problems log-space many-one reducible to DET is the same as
the class of problems log-space reducible to IMM. (A function f is log-space
many-one reducible to the determinant if there is a function g computable in
log-space such that f(x) (viewed as a number written in binary) is equal to
the determinant of matrix g(x).)

Classes: L,NL, LOGCFL. Beside the computational classes L (problems
solvable deterministically in logarithmic space), and NL (problems solvable
non-deterministically in logarithmic space) we will also refer to the class
LOGCFL which contains both L and NL. LOGCFL is the class of languages
accepted by non-deterministic Turing machines running in polynomial-time,
working in space O(logn) and using in addition to their work space an un-
limited push-down stack, so called AuxPDA’s [52]. Equivalently, LOGCFL is
the class of problems that are log-space many-one reducible to context-free
languages.

Counting classes: #L, #LOGCFL,GapL. Instead of considering whether a
non-deterministic Turing machine accepts its input on some non-deterministi-
cally chosen computational path or rejects on all of them we can count the
number of accepting paths of the machine on the given input. This gives



a function that maps inputs to integers. That is a more general concept
than just acceptance by a non-deterministic machine which corresponds to
a function mapping inputs to {0, 1}. The counting class #L is the class
of functions obtained by counting the number of accepting paths of a non-
deterministic log-space machine, and #LOGCFL is the class of functions that
count the number of accepting paths of an AuxPDA running in logarithmic
space and polynomial time. The complexity of computing the determinant
is closely related to #L. In particular, f is log-space many-one reducible
to determinant if and only if it is the difference of two functions in #L

[55, 27, 61, 63]. The class of such functions is usually denoted by GapL. DET

and IMM are both in GapL.

Circuits. The above classes are defined in terms of Turing machines. We
also consider functions defined in terms of circuits. A circuit is a compu-
tational device that consists of gates interconnected by wires. Wires carry
values (typically 0 or 1) from one gate to another gate, and each gate takes
its incoming values, computes a designated function (such as AND or OR)
on them, and send the resulting value along all its outgoing wires. The fan-in
of a gate is the number of its incoming wires. If a gate has fan-in two we
say it is binary. We say that it has unbounded fan-in when we do not place
any restriction on its fan-in. Gates of fan-in zero are the input gates, each
such a gate is associated with one input bit (e.g. the 17-th input bit), and
when the circuit is provided with an input, the gate sends along its outgoing
wires the value of the associated input bit. The output of the circuit is the
output value of designated gates. One can represent a circuit by a directed
graph where nodes represent gates and directed edges represent wires. We
will consider only circuits whose graphs contain no directed cycle, i.e., they
are directed acyclic graphs (DAG’s). The output value of such circuits is well
defined. A circuit is a Boolean circuit if it computes with the Boolean values
{0, 1}.

Uniformity. For each input length n we typically have a different circuit Cn

taking the appropriate number of input bits. To represent a function which
takes inputs of arbitrary length, one considers families of circuits {Cn}n≥1,
where Cn computes the function on inputs of length n. If we do not put
any restrictions on the circuit family {Cn}n≥1 we can compute any function,
even uncomputable one such as the Halting Problem. To restrict ourselves to
computable functions we will look on circuit families {Cn}n≥1 for which there
is an algorithm that on input 1n outputs a description of the circuit Cn. Such
a family is called uniform. It will be log-space uniform if the algorithm uses



work space O(logn) to compute the description of Cn. In this article when we
say uniform we will mean log-space uniform unless specified otherwise. We
will restrict ourselves essentially only to log-space uniform circuit families.

Size and depth. An important parameter of a circuit is its size which
is the number of its gates. Since the graph of the circuit is acyclic each
gate computes its value ones it receives its input values, and multiple gates
can compute their value at the same time. Hence circuits are a model of
parallel computation. The time to finish the evaluation of a circuit is given
by the depth of the circuit which is the length of the longest path in the
corresponding graph.

For a circuit family {Cn}n≥1, let s(n) be the size of Cn and d(n) be its
depth. If s(n), as a function of n, is bounded by a polynomial in n then we
say that the circuit family has polynomial size; it is exponential size if s(n)
is bounded by an exponential in n. If d(n) is bounded by O(logn) we say
that the family has logarithmic depth, if d(n) is bounded by a constant, that
is d(n) ∈ O(1), then we say that the family has constant depth.

Any Boolean function f : {0, 1}∗ → {0, 1} can be computed by family of
circuits of size O(2n/n) consisting of binary AND and OR gates and unary
NOT gates (see e.g. [2]). For most functions this is actually the optimal
circuit size as can be verified by a simple counting argument. Functions from
P are computable by circuit families of polynomial size consisting of binary
AND, OR and unary NOT gates. This is actually a precise characterization
as a function is computable in polynomial time on a Turing machine if and
only if the function is computable by a log-space uniform circuit family of
polynomial size. We will look on circuit families that compute functions with
complexity close to log-space.

Circuit classes: TC0,NC1, SAC1,AC1,TC1. TC0 is the class of functions
computable by families of Boolean circuits of polynomial size and constant
depth that consist of MAJ gates, that is gates that output the majority
value of their input bits, and unary NOT gates. NC1 is the class of func-
tions computable by families of Boolean circuits of polynomial size and log-
arithmic depth that consist of binary AND and OR gates and unary NOT

gates. Equivalently, it is the class of functions computable by polynomial size
Boolean formulas over AND, OR and NOT. SAC1 is the class of functions
computable by families of Boolean circuits of polynomial size and logarith-
mic depth that consist of binary AND gates, unbounded fan-in OR gates
and unary NOT gates. AC1 is the class of functions computable by families
of Boolean circuits of polynomial size and logarithmic depth that consist of



unbounded fan-in AND and OR gates and unary NOT gates. Finally, TC1

is the class of functions computable by families of Boolean circuits of polyno-
mial size and logarithmic depth that consist of MAJ gates and unary NOT

gates. It is standard knowledge that TC0 ⊆ NC1 ⊆ SAC1 ⊆ AC1 ⊆ TC1, but
none of these inclusions is known to be proper. TC0 is known to contain
problems such as computing the sum and the product of n n-bit integers,
computing the division of two n-bit integers, etc. [11, 49, 32]. The class NL

is contained in SAC1 which is equal to #LOGCFL [62].

Arithmetic circuits: VP, #SAC1, #AC1. Beside circuits that operate over
the Boolean domain we consider also algebraic circuits that operate over some
ring R. When R is the ring of integers Z, these are also called arithmetic
circuits. The most relevant class for us is Valiant’s class VP(R) [60], which
is the class of functions computed by polynomial size algebraic circuits using
+ and × gates over R, where the circuit corresponds to (represents) a multi-
variate polynomial of polynomial degree. An alternative characterization of
VP(R) is as the class #SAC1(R) of functions computed by algebraic circuits
of polynomial size and logarithmic depth that use binary multiplication and
addition with arbitrary fan-in [65]. The class #AC1 contains functions com-
puted by arithmetic circuits of polynomial size and logarithmic depth where
both addition and multiplication have arbitrary fan-in.

Taken over the integers, VP(Z) exactly equals #LOGCFL. Skew circuits
are algebraic circuits where each multiplication gate is binary and restricted
so that one of its inputs is either a constant or an input variable. Skew
circuits over integers having polynomial size and degree compute exactly
GapL [56], i.e., functions reducible to determinant. Hence, the question on
the relationship between GapL and #LOGCFL is exactly the question posed
by Valiant [60] about the relationship between the determinant and VP(Z),
namely, whether evaluating a VP(Z) circuit reduces to evaluating the de-
terminant of a matrix that is at most polynomially larger in size. (Valiant
shows that a matrix of size nlogn is enough, and that this can be reduced to
polynomial size in the case of skew circuits.)

Immerman and Landau [33] conjecture that computing determinant over
the integers is hard for TC1. It is known that TC1 circuits can evaluate
#AC1 circuits over Zm, the ring of integers mod m, for exponentially large
m. This is because TC0 circuits can evaluate an iterated sum and iterated
product of integers, as well as compute the remainder mod m. TC1 circuits
cannot evaluate #AC1 circuits over unbounded integers since #AC1 circuits
represent polynomials of degree up to nO(logn), and hence the representation
of their output may require super-polynomially many bits. If Immerman-
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Figure 1: Inclusion diagram for various classes. All these classes fall in CL.

Landau conjecture were true then #SAC1 circuits over the integers — which
compute polynomials of degree polynomial in the number of inputs — could
simulate TC1, and hence #AC1. The latter can have super-polynomial degree
which seems to go against the conjecture. The conjecture can not be ruled out
entirely, because while polynomials of nO(1) degree over integer variables can
not simulate polynomials of larger degree over integer variables, they could
still conceivably simulate polynomials of nlogn degree over Z2n . Allender, Gál
and Mertz [4] give examples of such type of phenomena. [1, 15, 49] establish
relationship between TC0 and #AC0 over various integral rings and finite
fields. This relationship can be translated into a similar type of relationship
between TC1 and #AC1 as depicted in Figure 1.

5 Reversible computation

Our requirement on catalytic computation is to restore the initial content
of its auxiliary tape by the end of a computation no matter what is its
initial content. This suggest that the problem of using the catalytic tape is
related to reversible computation as we are required to return to the same
configuration of the auxiliary tape. Indeed, catalytic computation is related
to reversible computation but both concepts are somewhat different.

The goal of a reversible (deterministic) computation is to perform each
step of the computation reversibly. This translates into the requirement that
for each configuration of the computer there is at most one other configura-
tion which will lead to the former one in one step of the computation. In



other words, the graph of all possible computational configurations of the
computer consists of lines and cycles. (In irreversible computation multiple
different configurations can lead in one step to the same configuration for
example by setting to 0 a tape cell that in one of the configurations contains
symbol 0 and in the other one symbol 1. Hence, the graph of configurations
of an irreversible computation is formed by disjoint trees (forest).)

The interest in reversible computation is motivated by minimizing energy
needed to carry out a computation. By laws of thermodynamics, irreversible
steps of a computation dissipate heat [41]. Reversible computation could in
principle be carried out without expending any energy. In 60’s this lead to a
question what functions can be computed reversibly. Bennett [13] provided
an answer to this question by showing that any irreversible computation can
be simulated reversibly. His technique is based on recording the history of all
moves on an extra history tape. This solution requires substantial amount of
extra space that has to be initially empty and that will eventually be restored
to its empty state. In [14], Bennett designed a better simulation that requires
only polynomial amount of extra space for recording only milestones in the
history.

Lange, McKenzie and Tapp [42] came up with a different technique that
is based on traversing the tree of the computer configurations in an Eulerian
fashion. This technique in principle does not need any extra space. However,
when run in reverse it might not be able to recognize the correct initial con-
figuration as there might be many initial configurations that lead to the same
final configuration (they will be a part of the same tree of configurations).
Hence, when the computation is run in reverse it will cycle through all these
initial configurations. Thus, one either needs some easy to recognize initial
configuration or extra space to keep track of the length of the computation.
This extra space is proportional to the work space. The drawback of this
technique is that the simulation might require exponential time. Buhrman,
Tromp and Vitányi [20], and independently Williams [68] combined the two
techniques to get various trade-offs between the running time and space of
the simulation.

One can also build reversible Boolean circuits using various types of re-
versible gates such as Toffoli gates [57]. However, they also require extra
space which essentially stores the history of the computation and must be
initialized to a particular configuration. Hence, all of the above techniques re-
quire extra space that has to be initially set to particular values, e.g., blanks.
This makes them unsuitable for catalytic computation as we cannot impose
restrictions on the initial content of the catalytic memory. Catalytic compu-
tation is more relaxed about the reversibility, though. It does not require
every step of the computation to be reversible but only that we can restore



the content of the tape. For example provided that the initial content of
the auxiliary tape is sufficiently compressible it is legal to compress it, per-
form there some irreversible computation, and then decompress the tape
again. So the requirements on catalytic computation are different than on
reversible computation.

There is one more technique that computes in reversible fashion, and
that we did not discuss yet. Motivated by cryptographic applications, Cop-
persmith and Grossman [22] studied which permutations can be computed
reversibly on a very simple model of computation. They showed that all
permutations can be computed in this model where odd permutations need
a single extra bit of storage used in a catalytic fashion. This aspect was
noted by Bennett in his paper [14]. Ben-Or and Cleve [10] extended the
computational model further to get a remarkable result that any arithmetic
formula over a ring (finite or infinite) can be evaluated using only three work-
ing registers to hold values from the ring. This result was a generalization of
Barrington’s famous theorem [8] which established that all Boolean formulas
can be evaluated on width-5 (permutation) branching programs. The model
and techniques allow one to overlay space for one computation over the space
of another computation. These techniques are the basis for the proof of The-
orem 2 that TC1 ⊆ CL. We will describe the model and techniques in the
next section.

6 Transparent computation

In this section we present the model of transparent computation of Buhrman
et al. [12] which is a form of reversible computation. It generalizes the model
of Coppersmith and Grossman [22] and Ben-Or and Cleve [10].

The model of transparent computation is a non-uniform model. The com-
putational device for transparent computation is a register machine equipped
with read-write working registers r1, r2, . . . , rm and read-only input regis-
ters x1, . . . , xn. Each register holds a value from some designated ring R.
The input to the device is given in the registers x1, . . . , xn so, inputs of
different lengths require machines with different numbers of input registers
and possibly also of working registers. Each operation (instruction) of the
machine is of the form ri ← ri + f(x1, . . . , xn, r1, . . . , rm) or ri ← ri −
f(x1, . . . , xn, r1, . . . , rm), where the function f gives a value from R and the
+ and − operations are over the ring R. One may allow different rings for
different input sizes (and registers).

Coppersmith and Grossman consider the case when R = F[2] and when
the instructions can use arbitrary functions f . Ben-Or and Cleve consider



an arbitrary ring R but allow only instructions of the form ri ← ri ± v and
ri ← ri± rj ∗ v, where ri and rj are different working registers and v is either
an element of R (constant) or one of the input registers x1, . . . , xn. (The
∗ denotes multiplication over R.) We will call such instructions skew bases.
Cleve [23] and Buhrman et al. [12] use arbitrary rings R and instructions of
the form ri ← ri ± v and ri ← ri ± u ∗ v, where both u and v can be either
elements from the ring R, input registers, or working registers different from
ri. We will call such instructions standard bases.

A program for the register machine is a sequence of operations. We call P
a transparent program. We say that f(x1, x2, . . . , xn) can be computed trans-
parently into a register ri if there is a transparent program P that when exe-
cuted on registers r1, r2, . . . , rm with arbitrary initial values τ1, τ2, . . . , τm and
the input given in registers x1, . . . , xn, ends with value τi + f(x1, x2, . . . , xn)
in register ri; the other registers may contain any values at the end of the
computation. However, if the other registers do not change their value we
say the program is clean. Clearly, we are interested in clean programs, and
as we will see in a moment, any program can be made clean.

Notice, ri ← ri + f(x1, . . . , xn, r1, . . . , rm) is an inverse operation to ri ←
ri − f(x1, . . . , xn, r1, . . . , rm) provided that f does not depend on the value
of ri. This is in particular true for the standard and skew bases. Thus for
a transparent program P = a1, a2, . . . , aℓ we let the reverse program P−1 be
a−1
ℓ , a−1

ℓ−1, . . . , a
−1
1 where a−1

i is the same instruction as ai but the + and −
are interchanged. It is easy to verify by induction on the length of P that
P ,P−1 computes identity. Hence, all transparent programs are reversible.

Clearly, if we have a program that transparently computes f into a register
ri we can modify it by relabeling registers to compute f transparently into
a different register. To make a program that computes ri ← ri + f(~x) in a
clean fashion, we use an extra working register r′i. Let P ′ be a transparent
program for r′i ← r′i + f(~x). Consider the following program:

1. ri ← ri − r′i.

2. P ′

3. ri ← ri + r′i.

4. P ′−1

One can easily verify that the only effect of this program is adding f(~x) to
ri.

In addition to computing a single function in a transparent fashion one
can simultaneously compute several functions f1(~x), f2(~x), . . . , fk(~x) into reg-
isters ri1 , ri2, . . . , rik so that the execution of P ends with the value τij +fj(~x)



in each register rij . (In case of a clean program the values of the remaining
registers should remain the same, and any program can be made clean using
an additional working register.)

Observe that a transparent program P over the standard bases computes
a polynomial over R in the input variables x1, . . . , xn. The degree of this
polynomial is at most exponential in the length of P , and it is at most
polynomial in the length of P when P is over the skew bases. Ben-Or and
Cleve [10] prove the following:

Theorem 4 (Ben-Or and Cleve). Let f : Rn → R be a function over some
ring R.

1. If f can be computed by an arithmetic formula of depth d over R con-
sisting of +,−, ∗ with variables x1, . . . , xn then f can be computed trans-
parently by a program of length 4d over skew bases using at most three
working registers.

2. If f is computed transparently by a program of length ℓ using skew
instructions and m working registers then f is computable by an arith-
metic formula over R of depth O(log ℓ · logm).

The first part is the important part as it allows to evaluate an arbitrary
arithmetic formula using only three registers. It is well known that any
arithmetic formula can be balanced, i.e., transformed so that its depth be-
comes logarithmic in its size. This was proven originally for commutative
rings by Brent et al. [17, 19] but their argument is known to hold also for
non-commutative rings. This implies that any arithmetic formula can be
computed transparently by a program using three working registers whose
size is polynomial in the size of the formula. This holds for any ring. As
noted by Cleve [23] it even holds over the ring of n× n matrices over R.

That means that the Iterative Matrix Multiplication IMMn,n,R can be
transparently computed using three registers holding values from Rn×n. Al-
ternatively, if we view IMMn,n,R as a function from Rn3

into Rn2
then there is a

polynomial size transparent program computing IMMn,n,R using 3n2 working
registers with instructions over R [23]. In the next section we will describe
how to simulate transparent programs on a catalytic machine. This simu-
lation directly allows one to conclude #L ⊆ CL since IMMn,n,Z is hard for
#L.

To illustrate the technique used for transparent computation we give the
proof of Ben-Or and Cleve’s theorem.

Proof. First, we prove Part 1. We will prove by induction on the depth
d of the formula computing f a slightly stronger statement that there is a



clean transparent program computing ri ← ri + u ∗ f(x1, . . . , xn) and ri ←
ri − u ∗ f(x1, . . . , xn), where u = 1 or u is a working register different from
ri.

If d = 0 then f(x1, . . . , xn) = v, where v is either an input variable xi

or a constant from the ring R. The required program is a single instruction
ri ← ri ± u ∗ v, where we put + or − depending on whether we want to add
u ∗ f to ri or subtract it.

So assume that the claim is true for functions computed by formulas of
depth less than d, where d ≥ 1. There must be some functions g(x1, . . . , xn)
and h(x1, . . . , xn) computed by formulas of depth less than d so that f =
g ⋄ h, where ⋄ ∈ {+,−, ∗}. Consider first the case f = g + h. Computing
ri ← ri + u ∗ f(x1, . . . , xn) can be decomposed into two parts:

1. ri ← ri + u ∗ g(x1, . . . , xn)

2. ri ← ri + u ∗ h(x1, . . . , xn)

By the induction hypothesis we have a clean program Pg implementing the
first part, and a program Ph implementing the second part, both of length
at most 4d−1. The concatenation of the two programs Pg and Ph yields
the required program of length at most 2 · 4d−1 ≤ 4d. Subtraction ri ←
ri − u ∗ f(x1, . . . , xn) is done similarly, as well as the case f = g − h.

The only remaining case is the case of f = g ∗ h, and this is the place
where magic happens. Let rk be a working register different from ri and u.
Consider the program:

1. rk ← rk + u ∗ g(x1, . . . , xn)

2. ri ← ri + rk ∗ h(x1, . . . , xn)

3. rk ← rk − u ∗ g(x1, . . . , xn)

4. ri ← ri − rk ∗ h(x1, . . . , xn)

By induction hypothesis we have a clean transparent program of size at most
4d−1 for each of the parts. A careful inspection of the code should convince the
reader that the four parts together form a clean program for ri ← ri+u∗f(~x).
The size of the program is at most 4d. Subtracting u∗f can be done similarly,
one just switches + and − on the second and last line. This proves the first
part.

To prove the second part, observe that we can think of a skew transpar-
ent program as acting on a vector of registers r̃ = (r1, r2, . . . , rm, 1). Each
instruction ri ← ri + rj ∗ v corresponds to a (m + 1) × (m + 1) matrix ob-
tained from the identity matrix by replacing the ((m + 2 − j), i)-entry by



v, and each instruction ri ← ri + v is obtained by replacing the (1, i)-entry
by v. Multiplying r̃ from right by the sequence of matrices corresponding
to individual instructions of the transparent program gives a vector with the
resulting register values.

If the program computes r1 ← r1 + f(x1, . . . , xn), then (1, 1)-entry of the
product of the matrices is the value of f(x1, . . . , xn). Since each entry of the
product of two (m+1)× (m+1) matrices can be computed by an arithmetic
formula of depth O(logm), each entry of the product of ℓ matrices can be
computed by an arithmetic formula of depth O(log ℓ · logm) by forming a
log-depth tree of matrix products. This proves the claim.

Theorem 4 allows one to transparently compute any function from GapL.
This requires only three matrix registers and skew instructions over matrices.
To go to the (possibly) higher class TC1 Buhrman et al. [12] use the full
standard bases and polynomially many registers. The extra instruction ri ←
ri + rj ∗ rk allows one to efficiently compute iterated product of registers,
polynomially large powers of a register, and equality test.

The main theorem of Buhrman et al. [12] regarding transparent compu-
tation is the following.

Theorem 5 (Buhrman, Cleve, Koucký, Loff, Speelman). For any sequence
of primes (pn)n∈N of size polynomial in n, functions from TC1 can be com-
puted transparently using polynomially many working registers over F[pn] by
programs of polynomial length with instructions from the standard bases.

This claim holds uniformly as well as non-uniformly, so if a function f
is computed by log-space uniform TC1 circuits then it is computed by log-
space uniform transparent programs, that is in log-space on input 1n one
can compute a prime pn and the description of the transparent program
computing f on inputs of size n. Here each input bit is represented by one
register containing either 0 or 1, and the output of the function is also either
0 or 1. Other representations are also possible.

In the next section we will show how to simulate transparent computation
by catalytic machines.

7 Catalytic simulation of transparent programs

Buhrman et al. [12] show how to simulate transparent programs on catalytic
machines. The main idea is to use the catalytic tape to simulate registers
of the machine. This is fairly straightforward for rings of size 2k, where k is
some integer. Each register can be represented by a block of k bits on the
catalytic tape and the work tape can be used to manipulate these registers.



Imagine that we have a function f : Rn → R computed transparently
by a program P into the register r1, i.e., r1 ← r1 + f(x1, . . . , xn). We let
the catalytic machine simulate instructions of P one by one to obtain r1 +
f(x1, . . . , xn) on the catalytic tape. The question is how do we recover the
value of f(x1, . . . , xn) at this point? Consider the case when R is small
enough so that we can fit a value from R into the work memory of the
catalytic machine.

Then to compute f(x1, . . . , xn) we first store the initial value of r1 on the
work tape, execute P , extract f(x1, . . . , xn) from the current and initial value
of r1 by subtracting them, and we recover the initial content of the catalytic
memory by reversing P , i.e., running P−1.

If R is large so we cannot fit the whole value of r1 onto the work tape
then we can recover f(x1, . . . , xn) bit by bit by repeatedly computing r1 ←
r1 + f(x1, . . . , xn) back-and-forth and extracting a different bit during each
iteration. This works well when the operations on R are simple enough so
that we have enough work space to add, subtract and multiply its elements.
For example, for the case of R = Z2n , arithmetics over Z2n can be done
in logarithmic space despite the fact that each value occupies n-bits. We
have seen that IMMn,n,Z2n

can be computed transparently so we can compute
IMMn,n,Z2n

catalytically using catalytic space 3n3 and logarithmic work space.

Since IMMn,n,Z2n
is complete for #L and catalytic space is closed under

log-space reductions (even catalytic log-space reductions) one obtains that
#L ⊆ CL and this also implies the correctness of Theorem 3.

Similarly, one can simulate transparent programs for functions in TC1.
The only difficulty is that those programs need rings of prime size. In such a
situation the initial content of the catalytic tape might represent values out-
side of the ring R and one cannot directly compute with them. This issue can
be overcome using compression as was done by Buhrman et al. to establish
Theorem 2. Currently we do not know of other methods how to catalyti-
cally compute some interesting functions. One possible direction for further
algorithms that we will describe in Section 11 is to use non-deterministic
catalytic computation.

8 Limits on the power of catalytic space

We have seen that CL has surprising computational power. Is there any
limit to that power? Naturally, CL ⊆ PSPACE as we can trivially simulate
catalytic tape by an ordinary work tape. Buhrman et al. [12] provide a more
interesting answer: CL ⊆ ZPP. The class ZPP stands for problems solvable
by zero-error randomized algorithms running in expected polynomial time,



i.e., algorithms that on each input run in polynomial time in expectation
over their random choices and whenever they stop, they provide a correct
answer.

The key observation of Buhrman et al. is that a log-space catalytic com-
putation must finish in polynomial time on average over the initial content
of the catalytic tape. Indeed, if there are W ways how to initialize the cat-
alytic tape then there are at most W · poly(n) possible configurations of the
whole machine on a given input. On two different initial contents of the cat-
alytic tape the machine cannot visit exactly the same configuration as the
computation would be the same from then on so it would fail to restore the
catalytic tape in one of the cases. So on average, a computation can visit at
most W · poly(n)/W = poly(n) configurations and so it is polynomial time
on average.

To simulate CL computation probabilistically we simulate the catalytic
tape on a work tape, we randomly choose its initial content and run the
simulation. If the simulation finishes in O(poly(n)) steps we use its output
as it must be correct. If the simulation runs for too long, we restart it with
a new random initial content of the catalytic tape.

Theorem 6 (Buhrman, Cleve, Koucký, Loff, Speelman). CL ⊆ ZPP and
more generally, CSPACE(s(n)) ⊆ ZPTIME(2O(s(n))).

An immediate consequence is that under the Exponential-Time Hypoth-
esis [35] SAT 6∈ CL and so NP 6⊆ CL. It is widely believed that ZPP = P so
under standard derandomization assumptions CL ⊆ P. However, it is still
possible that CL = PSPACE. Indeed, relative to an oracle this is true.

Theorem 7 (Buhrman, Cleve, Koucký, Loff, Speelman). There exists an
oracle A such that CLA = PSPACEA.

It is an interesting question whether one could derandomize the proba-
bilistic simulation of CL computation. This could in principle be easier than
derandomizing the whole ZPP.

9 Non-uniform catalytic computation

The catalytic computational model we have seen so far is uniform, i.e, there
is a single algorithm that works for all input lengths. It is natural to consider
also the non-uniform variant where the algorithm might be completely dif-
ferent for each input length. There are two standard ways how to facilitate
non-uniformity: either via so called advice function or via some inherently



non-uniform model of computation such as Boolean circuits or branching
programs.

Advice function a : N→ {0, 1}∗ augments the usual uniform algorithm so
that the algorithm on an input x of length n also gets for free the advice string
a(n) [36]. The advice might help the algorithm to decide about the input
x. The length of a(n) controls the amount of non-uniformity the algorithm
receives. For example L/poly is the class of problems solvable in log-space
with advice function of length polynomial in n, L/O(1) is the class of problems
solvable in log-space with advice of constant length.

We can equip a catalytic machine with an advice to get classes such as
CL/poly and CL/O(1). (We assume that there is a single advice for all possi-
ble initial setting of the catalytic space, and the machine has to restore the
tape only with appropriate advice. This deviates from the original defini-
tion of Karp and Lipton [36] which would require the machine to restore the
catalytic space on any advice.)

The other possibility to define a non-uniform model for space bounded
computation is via branching programs. A branching program for inputs of
length n is a directed acyclic graph, where each node is labeled by one of
the input variables x1, . . . , xn except two designated nodes ACCEPT and
REJECT. Each node labeled by a variable xi has two outgoing edges, one
labeled by 0, the other by 1. The computation of the branching program on
an input x starts in a designated initial node INI and follows a path consistent
with the input, i.e., in a node labeled by xi we follow the edge labeled by
the actual value of the i-th input bit. Once we reach either ACCEPT or
REJECT the computation ends and the final node represents the output.
Families of branching programs of polynomial size are known to compute
functions from L/poly.

The model that corresponds to catalytic computation are the catalytic
branching programs. In the context of proving lower bounds they were orig-
inally studied by Cook and Filmus [21], and later they were investigated by
Girard, Koucký and McKenzie [30]. A catalytic branching program has W ini-
tial nodes INI1, . . . , INIW and 2W final nodes ACCEPT1, . . . ,ACCEPTW

and REJECT1, . . . ,REJECTW . When the computation starts in INIi it
must finish in either ACCEPTi or REJECTi. (The W initial nodes cor-
respond to W possibilities for initial setting of the catalytic space.) Hence,
starting from INIi the catalytic branching program computes some function
fi, and overall it computes some W -tuple of functions (f1, . . . , fW ).

The basic question is what is the smallest size of a catalytic branching
program for a given W -tuple of functions. A trivial construction of a catalytic
branching program for (f1, . . . , fW ) puts together W branching programs,
each computing one of the functions. The size of such a branching program



is the sum of the sizes of the W programs. Is there a more efficient way to
construct catalytic branching programs?

It is tempting to conjecture that the trivial construction is the best pos-
sible. This is known for some functions, for example for a W -tuple of ran-
dom functions or for functions computed by read-once Boolean formulas [30].
However, in general this is not the case as demonstrated in [30].

Theorem 8 (Girard, Koucký, and McKenzie). For any n there are functions
f1, . . . , fW : {0, 1}n → {0, 1}, W = 2n/2, such that the minimal branching
program for each fi has size Ω(2n/n) but the size of a catalytic branching
program for (f1, . . . , fW ) is O(2n/n).

Thus, the trivial construction can be far from optimal. Currently, we do
not know of any single complex function where the trivial construction of
catalytic branching programs for its W -tuple would be optimal. [30] conjec-
ture that a random function should be such an example but the counting
argument which works for a W -tuple of independent random functions does
not work for a single random function.

Girard, Koucký and McKenzie establish a correspondence between cat-
alytic branching programs and catalytic computation. A description of a
catalytic branching program of size S for W -tuple (f , . . . , f), i.e., f iter-
ated W times, can be given as an advice to a catalytic machine working in
space logS/W with catalytic space logW to compute f , and vice versa. If
f can be computed by a catalytic machine in space s with catalytic space
w, then 2w-tuple of f can be computed by a catalytic branching program
of size 2w · 2s. This works also when the catalytic machine is getting some
non-uniform advice.

Using this correspondence, Girard, Koucký and McKenzie argue that if
NL 6⊆ L/poly, i.e., when non-deterministic log-space is not in non-uniform
log-space, then for STCONN there are catalytic branching programs com-
puting 23n

3
-tuple of STCONN more efficiently than the trivial construction.

This builds on the result of Buhrman et al. [12]. A similar claim holds
also for complete functions in LOGCFL under this or the weaker assumption
LOGCFL 6⊆ L/poly.

We do not know of any example of a single function, where we could obtain
savings over the trivial construction unconditionally. Possible candidates are
symmetric functions. We have nontrivial lower bounds for them [18], and
also they can be computed by permutation branching programs. That could
be useful in a construction of a nontrivial catalytic branching program.

The question on the size of catalytic branching programs is related to
direct sum type of questions for space. Consider two functions f : {0, 1}n →
{0, 1}n and g : {0, 1}n → {0, 1}. What is the space needed to compute



their composition g(f(·))? Is it the sum of the space needed to compute
each of them separately? It is easy to see that the space can be less if there
is an efficient catalytic program for f . These questions are also related to
the question on the depth of formulas computing composition of functions
[37, 31].

10 Catalytic space hierarchy

One of the first complexity questions about catalytic space one might ask is
whether the catalytic space obeys some form of space hierarchy, i.e., provid-
ing the machine with more space allows one to compute more problems. It
is natural to expect that such a space hierarchy should exist. However, prov-
ing it is a different matter. The model imposes semantic condition on the
behavior of the machine, and we do not now how to enumerate correctly be-
having catalytic machines. That means that diagonalization, the usual tool
for proving hierarchy theorems, is not directly applicable to our model. This
is similar to the situation with other semantic classes such as bounded-error
probabilistic computation (BPP, etc.). However, one can apply general tech-
niques that were developed for proving hierarchy theorems for semantically
defined classes in the non-uniform setting. Using the technique of Kinne and
van Melkebeek, and van Melkebeek and Pervyshev [29, 40, 64], Buhrman et
al. [16] conclude the following.

Theorem 9. For any integer a ≥ 1 and real k > 0 there exists k′ > k such
that

1. CSPACE(ω(logn))/1 6⊆ CSPACE(logn)/a = CL/a,

2. CSPACE(nk′)/1 6⊆ CSPACE(nk)/a.

Similar claim holds also for the non-deterministic catalytic space. Since

CL ⊆ PSPACE ( DSPACE(nω(1)) ⊆ CSPACE(nω(1))

uniformly one can conclude a much weaker statement:

CL ( CSPACE(nω(1)).

Separating CL even from
⋃

k>0 CSPACE(nk) might be difficult as we know of

an oracle A where CLA = PSPACEA.
These statements work for classes where the catalytic space is exponen-

tial in the work space. One might ask whether CSPACE(s(n), o(w(n))) (



CSPACE(s(n),w(n))? Currently we do not know whether this is true even
non-uniformly. The Iterated Matrix Multiplication of

√

w(n)×
√

w(n) matri-
ces over Z is a candidate problem that is known to be in CSPACE(logn,w(n)·
log n) [12] but not known to be in CSPACE(log n, o(w(n))).

11 Non-deterministic catalytic computation

Non-deterministic computation is a useful paradigm for understanding and
classifying some algorithmic problems. In the context of catalytic computa-
tion non-determinism could provide an avenue for designing algorithms for
problems not known to be in CL. Motivated by this, Buhrman et al. [16]
define non-deterministic catalytic computation. There are different ways how
to define non-determinism for catalytic machines, Buhrman et al. chose the
following requirements:

a) Catalicity. For each initial setting of the catalytic tape and any choice
of non-deterministic bits the machine halts and restores its catalytic
tape to its initial setting.

b) Consistency. If a machine non-deterministically accepts an input x for
some initial setting of the catalytic tape then it non-deterministically
accepts x on every possible initial setting of the catalytic tape.

These requirements seem the most natural as they preserve the spirit
of the catalytic model. Additionally, they also allow composition of non-
deterministic computation as is done for example for computing the union
of two languages. We will denote by CNL the class of languages accepted
non-deterministically by a catalytic machine using polynomial catalytic tape
and logarithmic work tape.

For the classical computation Savitch [50] established a relationship be-
tween determinism and non-determinism: NSPACE(s(n)) ⊆ DSPACE(s2(n)).
We do not know of similar relationship for catalytic computation. Savitch’s
proof goes by arguing about reachability in the graph of configurations of the
machine. There seem to be various obstacles to establishing some variant of
Savitch’s Theorem for CNL. On a particular initial setting of the catalytic
tape, the graph of reachable configurations can be exponentially large. Even
if it were polynomial, it is not clear how to deterministically cycle through
all the configurations that are reachable from the initial configuration. These
issues seem to break Savitch’s technique. Interestingly though, CNL is still
in ZPP.



Theorem 10 (Buhrman, Koucký, Loff, Speelman). CNL ⊆ ZPP and more
generally, CNSPACE(s(n)) ⊆ ZPTIME(2O(s(n))).

The argument is similar to the one for deterministic CL as the average
number of reachable configurations is still polynomial.

Buhrman et al. [16] provide also a variant of the Immerman-Szelepcsényi
Theorem [34, 53] which shows that non-deterministic log-space is closed under
the complement (i.e., complements of languages from NL are also in NL). The
proof of Buhrman et al. requires use of pseudo-random generators [38] so the
theorem is known to hold only under certain derandomization assumption.

Theorem 11 (Buhrman, Koucký, Loff, Speelman). If there exists ǫ > 0 and
L ∈ DSPACE(n) which cannot be computed by Boolean circuits of size 2ǫn

then CNL = coCNL.

In a non-uniform setting the conclusion would hold without any assump-
tion. The proof uses the inductive counting technique of Immerman and
Szelepcsényi. To overcome the problem with exponentially many reachable
configurations Buhrman et al. use the pseudo-random generator. For the
actual inductive counting they do not enumerate over all possible configura-
tions but only the reachable ones and they use finger-printing technique to
distinguish them.

It was observed recently together with Tewari [54] that a similar technique
should also establish an equivalent of the Reinhardt-Allender Theorem [47,
67] that NL/poly ⊆ UL/poly. UL is the class of languages accepted by a
non-deterministic Turing machine running in log-space that has at most one
non-deterministic accepting computation on every input. UL is the space
analog of UP with the complete problem UNIQUE-SAT [59, 66].

It would be interesting to see some problems outside of TC1 to be put
in CNL. Languages in NC2 would be natural candidates. (NC2 is defined
similarly to NC1 but one allows depth of O(log2 n). It is well known that
TC1 ⊆ NC2.)

12 Conclusions

We have seen that the catalytic space provides unexpected power to compu-
tation. There are many questions remaining to be answered. We summarize
here some of the major ones.

1. Are there problems beyond TC1 that are computable in catalytic log-
space?



2. What are other techniques for using the catalytic space beyond sim-
ulating transparent computation? What is the relationship between
transparent computation and catalytic computation?

3. Is catalytic log-space contained in P? Is it in NC2?

4. Is there uniform hierarchy of catalytic space? Is there hierarchy with
respect to the amount of catalytic space?

5. What is the relationship between deterministic and non-deterministic
catalytic computation?

6. What can one say about randomized catalytic computation?

7. Is there some meaningful relaxation of catalytic computation? For
example, one could allow the machine with low probability to destroy
the content of the catalytic tape.

Nontrivial answers to some of these questions would provide us with more
insight into the role of space in computation.
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