
Improved Approximation Guarantees for Shortest Superstrings using
Cycle Classification by Overlap to Length Ratios

Matthias Englert1, Nicolaos Matsakis2, and Pavel Veselý∗3
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Abstract

In the Shortest Superstring problem, we are given a set of strings and we are asking for a
common superstring, which has the minimum number of characters. The Shortest Superstring
problem is NP-hard and several constant-factor approximation algorithms are known for it. Of
particular interest is the GREEDY algorithm, which repeatedly merges two strings of maximum
overlap until a single string remains. The GREEDY algorithm, being simpler than other well-
performing approximation algorithms for this problem, has attracted attention since the 1980s
and is commonly used in practical applications.

Tarhio and Ukkonen (TCS 1988) conjectured that GREEDY gives a 2-approximation. In a
seminal work, Blum, Jiang, Li, Tromp, and Yannakakis (STOC 1991) proved that the superstring
computed by GREEDY is a 4-approximation, and this upper bound was improved to 3.5 by
Kaplan and Shafrir (IPL 2005).

We show that the approximation guarantee of GREEDY is at most (13 +
√

57)/6 ≈ 3.425,
making the first progress on this question since 2005. Furthermore, we prove that the Shortest
Superstring can be approximated within a factor of (37 +

√
57)/18 ≈ 2.475, improving slightly

upon the currently best 2 11
23 -approximation algorithm by Mucha (SODA 2013).

1 Introduction

In the Shortest Superstring problem (SSP), we are given a set S of strings over a finite alphabet
and we are asking for a string of minimum length, which contains each member of S as a substring.
SSP has found important applications in various scientific domains [GP14]. One of the early
applications was DNA assembly [Les88, MJ16], where a DNA molecule consisting of four different
nucleotides (Adenine, Thymine, Guanine, and Cytosine) is gradually assembled by DNA fragments.
This problem can be viewed as an instance of SSP over a quaternary alphabet, due to the four
types of nucleotides involved. SSP can also arise in data compression [Sto88]. Since information
is represented by binary strings, we are asking for the minimum number of binary digits that can
encode a larger set of strings. Interestingly, SSP has been used to study how effectively viruses
compress their genome by overlapping genes [IP06].

∗Part of this work was done when the author was at the University of Warwick. Partially supported by European
Research Council grant ERC-2014-CoG 647557, by GA ČR project 19-27871X, and by Center for Foundations of
Modern Computer Science (Charles University project UNCE/SCI/004).
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SSP is NP-hard, even when the alphabet is binary [GJ79]. Moreover, SSP is APX-hard [BJL+91]
as it is not (333

332 − ε)-approximable for any constant ε > 0 unless P = NP [KS13]. There exists
a plethora of constant-factor SSP approximation algorithms, the currently best of which has
an approximation ratio upper bound of 211

23 = 57
23 ≈ 2.478 [Muc13]. Blum, Jiang, Li, Tromp,

and Yannakakis [BJL+91] showed that the GREEDY algorithm, which repeatedly merges two
strings of maximum overlap (breaking ties arbitrarily) until a single string remains, computes
a 4-approximate superstring. Additionally, Blum et al. gave two simple variants of GREEDY,
namely TGREEDY with approximation ratio at most 3 and MGREEDY with ratio at most 4. A
series of improved approximation algorithms followed, most of which were published in the 1990s
[AS95, AS98, BJJ97, CGPR97, KPS94, Muc13, Swe99, TY93]. It is worth noting that several of
these algorithms are significantly more involved than the natural GREEDY algorithm.

The GREEDY algorithm for SSP was proposed by Gallant, Maier, and Storer [GMS80]. Tarhio and
Ukkonen [TU88] and independently Turner [Tur89] showed that GREEDY gives a 1

2 -approximation
for the maximum string compression. The string compression equals the number of characters that
a superstring algorithm saves from the total length of all strings in S, i.e., it is the total overlap
between all pairs of adjacent strings across the superstring. This result, however, does not imply a
constant approximation ratio upper bound for GREEDY, for the length metric.

Moreover, Tarhio and Ukkonen showed that the approximation ratio of GREEDY is at least 2, by
considering the input S = {abk, bk+1, bka}, for which, depending on the tie-breaking choice, GREEDY
will either output the shortest superstring or a superstring of length twice the minimum, when
k →∞.1 Finally, Tarhio and Ukkonen conjectured that GREEDY is a 2-approximation algorithm,
forming the long-standing Greedy Conjecture. By utilizing the Overlap Rotation Lemma of [BJJ97]
in the proof of Blum et al. [BJL+91], Kaplan and Shafrir [KS05] showed that GREEDY gives a
3.5-approximation.

The GREEDY algorithm has been commonly used in practical applications when it becomes
infeasible to compute an optimal solution [Li90, MJ16, IP06]. Also, the good performance of
GREEDY in practice has been documented within a probabilistic framework [FS96, Ma09].

In this paper, we make the first progress on the approximation guarantee of GREEDY since 2005.

Theorem 1.1. The approximation ratio of GREEDY is at most (13 +
√

57)/6 ≈ 3.425.

Furthermore, we obtain a better approximation guarantee for SSP, improving slightly upon the
algorithm by Mucha [Muc13].

Theorem 1.2. The Shortest Superstring problem can be approximated within a factor of (37 +√
57)/18 ≈ 2.475.

Finally, our techniques also imply better approximation guarantees for TGREEDY and MGREEDY;
see Section 3.2.

2 Definitions

Here, we review useful notation and concepts from previous works [BJL+91, BJJ97, KS05] that are
necessary to explain our contribution in more detail in Section 3.

By S = {s1, . . . , sm} we denote the input consisting of m ≥ 2 finite strings. Without loss of
generality (w.l.o.g.), we assume that no string in S is a substring of another string in S. This is

1For S = {c(ab)k, (ba)k, (ab)kc}, GREEDY will merge the first with the third string, producing a superstring of
length twice that of the optimal superstring c(ab)k+1c, when k →∞ [BJL+91]. No tie-breaking is involved here.
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because the addition of any substring of a string in S to the input cannot modify the superstring
that any algorithm considered here outputs.

By |s| we denote the length (i.e., number of characters) of a string s. By s[i, j] we denote the
substring of s starting at its i-th character and ending at its j-th character, where j ∈ [i, |s|]. For
any two strings s and t, st will denote their concatenation.

Overlaps and distances. By ov(s, t) we denote the longest (maximum) overlap to merge a
string s with a different string t, i.e., ov(s, t) = s[|s| − i + 1, |s|], where i is the largest integer
for which s[|s| − i + 1, |s|] = t[1, i] holds. For instance, for s=’bababa’ and t=’ababab’, we have
ov(s, t)=’ababa’. By ov(s, s) we denote the longest self-overlap of string s which has length smaller
than |s|; for instance, ov(s, s)=’baba’ for s=’bababa’.

By pref(s, t) we denote the prefix of maximally merging string s with string t, i.e., assuming that
s = uv and t = vz for strings u, v = ov(s, t) and z, it holds that pref(s, t) = u. In the same way, we
define pref(s, s) so that s = pref(s, s)ov(s, s). The distance dist(s, t) = |pref(s, t)| is the number of
characters of the prefix; possibly dist(s, t) 6= dist(t, s).

Distance and overlap graphs. The distance graph Gdist(S) = (V,E, dist(, )) is a complete
directed graph with self-loops, where |V | = m, |E| = m2. Each node corresponds to a string in
S and the weight of a directed edge (s, t) equals dist(s, t), the distance to merge string s with
the (not necessarily distinct) string t. Note that the edge lengths satisfy the triangle inequality
dist(s, t) ≤ dist(s, t′) + dist(t′, t) as one always obtains the longest overlap by directly merging s to t.

Similarly, the overlap graph Gov(S) is a complete directed graph (V,E, |ov(, )|) with self-loops,
where |V | = m, |E| = m2 and the profit of each directed edge (s, t) equals |ov(s, t)|, i.e., the longest
overlap to merge string s with the (not necessarily distinct) string t. We will also write ov(s, t) as
ov(e), where e = (s, t) is a directed edge of the overlap graph.

We can identify an edge e = (s, t) in Gdist or Gov with the new string pref(s, t)t which we obtain
by merging s and t. Repeating this argument, we see that a simple directed path s0 → s1 → · · · → sk
corresponds to a new string pref(s0, s1) . . . pref(sk−1, sk)sk which contains all strings represented
by nodes on the path as substrings in the same order. Accordingly, a superstring of S simply
corresponds to a directed Hamiltonian path in the graph. If two strings s and t appear in adjacent
positions and in this order (i.e., s precedes t) across a superstring, we say that s and t are merged
in the superstring.

Cycle Covers. A cycle cover in a complete directed weighted graph G with self-loops is a set of
directed cycles such that the inner degree and the outer degree of each node of G are both unit. An
x-cycle, where x ∈ [1,m], is a directed cycle consisting of x nodes. If s and t are in the same cycle
of a cycle cover containing edge (s, t), we say that s and t are merged in the cycle cover.

By w we denote the minimum length of a cycle cover in Gdist(S), i.e., w is the minimum sum of
distances of edges in a cycle cover inGdist(S). A minimum-length cycle cover inGdist(S) is a maximum
overlap cycle cover in Gov(S), since for any edge (s, t), it holds that |ov(s, t)| = |s| − dist(s, t). Note
that we may have more than one cycle cover with the same length w; to see that, consider the input
S = {abk, bk+1, bka}, for which the 3-cycle consisting of strings abk, bk+1, bka has length k+ 2, which
equals the length of the 2-cycle for strings abk, bka plus the length of the 1-cycle for string bk+1.

A maximum overlap cycle cover in Gov(S) is computed efficiently in the second step of the
MGREEDY algorithm of Blum et al. [BJL+91, Theorem 10]. In a nutshell, MGREEDY computes
an optimal cycle cover by sorting the edges of the overlap graph non-increasingly by their overlap
lengths (breaking ties arbitrarily), and adding an edge (s, t) to the cycle cover if and only if no
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edge (s, t′) or (s′, t) has been chosen before (s, t). Fixing some arbitrary tie-breaking, we denote
the resulting maximum overlap cycle cover by CC(S). For any cycle c of CC(S), the last edge of
c added by MGREEDY to the solution is called the cycle-closing edge. We will frequently use the
fact that the overlap length of every edge in a cycle c is at least as large as the overlap length of
the cycle-closing edge of c. The sum of overlap lengths of all cycle-closing edges of CC(S) will be
denoted by o.

By |ALG(S)| we denote the length of a superstring ALG(S) produced by an algorithm ALG for
input S. We use n = |OPT(S)|, where OPT is an optimal Shortest Superstring algorithm. Since
merging the last string of a superstring with the first string of this superstring gives a cycle cover in
the distance graph (namely, a Hamiltonian cycle), it follows that w ≤ n.

Representative strings. By sc0 → sc1 → · · · → scr−1 → sc0 we denote the cycle c ∈ CC(S)
consisting of r ≥ 1 strings, where the last edge scr−1 → sc0 always denotes the cycle-closing edge. By
Rc we denote the string pref(sc0 , sc1)pref(sc1 , sc2) . . . pref(scr−2 , scr−1)scr−1 , i.e., the string obtained
by opening the cycle-closing edge scr−1 → sc0 of cycle c. String Rc will be called the representative
string of cycle c; note that Rc contains all strings of c as substrings. As R we denote the set of all
representative strings. It follows that a superstring of the strings in R is, also, a superstring of the
strings in S.

3 Our Contribution

Our technical result is the following upper bound on o, the total overlap length of cycle-closing
edges, in terms of the shortest superstring length n and w, the total length of all cycles of the
minimum-length cycle cover CC(S):

o ≤ n+ α · w for α = 1 +
√

57
6 ≈ 1.425 . (1)

This improves upon similar bounds on o in [BJL+91, KS05], which we outline below. In the following
two subsections, we explain how this inequality implies Theorems 1.1 and 1.2. The remaining part
of the paper is devoted to proving (1).

3.1 Improved Approximation Guarantee of GREEDY
Assuming that all |E| = m2 edges of Gov(S) are ordered by non-increasing overlap, breaking ties
arbitrarily, GREEDY works by going down this list and picking edge e if:

• e does not share a head or tail with an edge e′ that GREEDY picked in a previous step (such
e′ precedes e in the ordered list of edges) and

• e is not a cycle-closing edge.

Otherwise, GREEDY moves to the next edge in the order. Clearly, GREEDY outputs a directed path
of m− 1 edges which gives a superstring by merging adjacent strings. Note that the computation of
CC(S) by MGREEDY only differs from GREEDY by not using the second condition.

Blum et al. [BJL+91] call the edges rejected by GREEDY for not satisfying the second condition
(but satisfying the first condition) bad back edges. The reason that they are called “back edges”
is that one can number the input strings S = {s1, . . . , sm} so that the superstring GREEDY(S)
contains the strings in the same order, i.e., si appears before sj in GREEDY(S) if and only if i < j.
In this subsection, we assume that the input strings are numbered in this way.
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

Figure 1: Illustration of culprits. The superstring returned by GREEDY merges the strings s1 to s14
in this order as indicated by the path (however, the order in which GREEDY picks edges (si−1, si) is
different). The bend edges are the bad back edges. Out of the bad back edges, the dashed edges are
the culprits.

We say that a bad back edge e spans interval [i, j] (for i < j) if e = (sj , si). Blum et al. show
that the intervals spanned by two bad back edges are either disjoint or one is contained in the other,
i.e., these intervals form a laminar family [BJL+91, Lemma 13]. A culprit is a bad back edge e such
that the interval spanned by e is minimal in this laminar family (i.e., there is no bad back edge
e′ such that the interval spanned by e′ is properly contained in the interval spanned by e). See
Figure 1 for an illustration. A cycle is called culprit if its cycle-closing edge is a culprit.

Let wc denote the sum of the lengths of culprit cycles and let oc be the sum of overlap lengths
of culprit edges. Blum et al. showed the following two inequalities (paragraph after the proof of
Lemma 17 in [BJL+91]):

|GREEDY(S)| ≤ 2n+ oc − wc (2)
oc ≤ n+ 2wc (3)

Plugging (3) into (2), we have |GREEDY(S)| ≤ 2n + oc − wc ≤ 3n + wc ≤ 4n, since wc ≤ w ≤ n.
By using the Overlap Rotation Lemma of [BJJ97], Kaplan and Shafrir [KS05] improved (3) to
oc ≤ n+ 1.5wc and, hence, the upper bound on the approximation ratio of GREEDY to 3.5 since
|GREEDY(S)| ≤ 2n+ oc − wc ≤ 3n+ 0.5 · wc ≤ 3.5n.

Let Sc ⊆ S be the set of input strings which lie on culprit cycles. Blum et al. show that the
application of MGREEDY on Sc outputs exactly the culprit cycles [BJL+91, Lemma 15] (see also
Observation 5.1). Therefore, our technical result in (1) applied to input Sc implies oc ≤ nc + α · wc
where nc ≤ n equals the length of the shortest superstring for Sc. Plugging this into (2), we have:

|GREEDY(S)| ≤ 2n+ nc + (α− 1) · wc ≤ 3n+ (α− 1) · wc ≤ (2 + α) · n ≈ 3.425n . (4)

3.2 Improved Approximation Guarantee for SSP

As discussed before, the algorithm MGREEDY computes CC(S) or, more specifically, the set
of representative strings R for all cycles. It then outputs the superstring that is obtained by
concatenating all representative strings in an arbitrary order. The total length of the representative
strings is w + o, i.e., the minimum length of a cycle cover in Gdist(S) plus the sum of overlaps of all
cycle-closing edges of the cycle cover. Our main result in (1) states that o ≤ n+ α · w. Therefore,
the superstring computed by MGREEDY has length w + o ≤ n+ (1 + α) · w ≤ (2 + α) · n. Hence,
just as for GREEDY, we get that MGREEDY is a (2 + α)-approximation algorithm, which improves
upon the upper bound of 3.5 implied in [KS05].

Instead of just concatenating the representative strings, we can also attempt to overlap them,
i.e., to compute a shorter superstring of the representative strings. One possibility is to use an
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approximation algorithm for Maximum Asymmetric TSP (MaxATSP) for this in order to find a
superstring that aims to maximize the total overlap between the representative strings.

The following theorem is adopted from the literature [BJJ97, Muc07, Muc13] (for this particular
version we are following [Muc07, Theorem 21]) and, combined with our new result for MGREEDY,
results in an improved approximation guarantee for SSP. A proof is included in the appendix for
completeness.

Theorem 3.1. If MGREEDY is a (2+α)-approximation algorithm and there exists a δ-approximation
algorithm for MaxATSP (for δ ≤ 1), then there exists a (2 + (1− δ) · α)-approximation algorithm
for SSP.

Using the 2
3 -approximation algorithm for MaxATSP of [KLSS03] or the more recent and simpler 2

3 -
approximation algorithm of [PEvZ12], Theorem 3.1 with δ = 2

3 implies that we get an approximation
guarantee of 37+

√
57

18 ≈ 2.475. This improves slightly upon the approximation guarantee of 211
23 ≈

2.478 of the currently best SSP algorithm [Muc13]. The use of a better than 2
3 -approximation

algorithm for MaxATSP as a black-box will give an even smaller approximation guarantee for SSP2.

TGREEDY. The TGREEDY algorithm of Blum et al. works by first computing the representative
strings R and then, rather than applying a possibly complicated approximation algorithm for Max-
ATSP, applying GREEDY to this set of representative strings. As GREEDY gives a 1

2 -approximation
for such instances of MaxATSP [TU88] (more precisely, for the longest Hamiltonian path, which is
sufficient), using δ = 1

2 in Theorem 3.1, we get that TGREEDY is a 25+
√

57
12 ≈ 2.7125-approximation

algorithm, which improves upon the upper bound of 2.75 (implied in [BJJ97, Muc07]).

4 The Big Picture

Small, large, and extra large cycles. Our key idea is to partition cycles into a few types
according to the ratio between their length and the overlap length of their cycle-closing edge, and
treat these types differently in the analysis. To this end, let w(c) denote the length of a cycle c of
CC(S), and let o(c) denote the overlap length of the cycle-closing edge of c, i.e., o(c) = |ov(scr−1 , sc0)|,
where (scr−1 , sc0) is the cycle-closing edge. A cycle c of CC(S) is

• a small cycle if o(c) > 2w(c),

• a large cycle if α · w(c) < o(c) ≤ 2w(c), and

• an extra large cycle if o(c) ≤ α · w(c),

where α is the parameter defined in (1). The set of extra large cycles of CC(S) will be denoted by
X (S), the set of large cycles of CC(S) will be denoted by L(S), and the set of small cycles of CC(S)
will be denoted by S(S).

In Section 5.1, we show that we can assume w.l.o.g. that CC(S) contains no extra large cycle.
For this, we exploit the slack in the right-hand side of o(c) ≤ α · w(c) for an extra large cycle c,
compared to the right-hand side of o ≤ n+ α · w that we want to show.

2Recently, Paluch [Pal20] announced a 0.7-approximation algorithm for MaxATSP, which would give a 2 33
76 ≈ 2.434-

approximation for SSP when using the result from [BJJ97, Muc07] in a black-box way. Setting δ = 0.7 in Theorem 3.1
directly implies an improved 2.428-approximation for SSP.
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Outline. To get our technical result in (1), we prove two independent upper bounds on o. In
Section 6, we improve o ≤ n+ 1.5w = n+ 1.5 ·∑c∈S(S)w(c) + 1.5 ·∑c∈L(S)w(c) of [KS05] to

o ≤ n+
∑

c∈S(S)
w(c) + 3

2 ·
∑

c∈L(S)
w(c) . (5)

On its own, the improvement by 1
2 ·
∑
c∈S(S)w(c) over [KS05] is insignificant because the total

length of the small cycles may be very small compared to the total length of the large cycles.
However, we show a different upper bound which is better when small cycles contribute only very
little to w. Namely, in Section 7, we prove that

o ≤ n+ γ ·
∑

c∈S(S)
w(c) +

∑
c∈L(S)

w(c) (6)

for a positive constant γ, and this is sufficient to obtain o ≤ n+ (1.5− ε) · w for a positive constant
ε, when combined with the first upper bound on o. Naturally, the smaller γ we get, the smaller
the resulting upper bound. We will require that γ and the aforementioned parameter α satisfy the
following four constraints:

(3− 2α) · γ = 2− α (7)

3 ·
(
α− 2

γ − 2

)
≥ 1 (8)

5
2 + 1

2(α− 1) ≤ γ (9)

γ ≤ (γ − 1) · α (10)

Solving this system of inequalities, while minimizing α, yields

α = 1 +
√

57
6 ≈ 1.425 and γ = 31 + 3

√
57

14 ≈ 3.832 .

Note that (9) and (10) are not tight, i.e., α and γ are determined by (7) and (8).
Multiplying (5) by (2α− 2) and (6) by (3− 2α) and adding the two resulting inequalities we get

o ≤ n+ ((2α− 2) + (3− 2α) · γ)
∑

c∈S(S)
w(c) + ((3α− 3) + (3− 2α))

∑
c∈L(S)

w(c)

= n+ α
∑

c∈S(S)
w(c) + α

∑
c∈L(S)

w(c) = n+ α · w ,

where we use (7) in the second step. This shows (1), as desired.

Intuition. Before we start with formal proofs, we give some intuition and explain the main ideas
behind our technical contribution. First, we observe in Section 5.1 that we can assume that there
are no extra large cycles (as they can be handled separately), which will come in handy for the
second bound. Note that if all (remaining) cycles are large, then our proof is complete as summing
over all cycles gives o ≤ 2 ·w ≤ n+w. On the other hand, if all cycles are small, the first bound (5)
gives o ≤ n+ w, again implying a better bound than in (1). This means that it is the presence of
both small and large cycles that makes the analysis challenging.

To facilitate the analysis of small cycles, we show in Section 5.3 that we can make the following
assumption: If an optimal superstring merges two strings from one small cycle c, then these two
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strings must be merged in the small cycle c as well. This essentially follows from the large amount
of overlap length (relatively to w(c)) in small cycles.

We obtain the first bound by proving a lower bound on n, the optimal superstring length.
Roughly speaking, we show that each small cycle c must contribute at least o(c)− w(c) to n, for
which we use that strings of small cycles must be relatively long (longer than o(c) > 2w(c)) together
with a bound from [BJL+91] on the overlap between two strings from different cycles. For a large
cycle, we use a generalization of the Overlap Rotation Lemma from [BJJ97] to carefully pick a
single string from this cycle that is suitable for obtaining the lower bound on n.

It is the second upper bound that constitutes our main technical contribution. Recall that w,
the length of the optimal cycle cover CC, is a lower bound on the length of the shortest Hamiltonian
cycle CC0 in Gdist, which is itself a lower bound on n. In proving the second upper bound, we make
use of the difference between w and the length of CC0 and therefore, we derive a stronger lower
bound on n. Namely, we construct a careful sequence of edge swaps transforming CC0 into CC such
that each step decreases the length of the current cycle cover by at least a certain suitable amount.
In a nutshell, when an edge swap in the constructed sequence adds an edge of a small cycle c to
the current cycle cover, we show that this must decrease the length of the cycle cover by at least
o(c)− γ ·w(c) minus a term for certain large cycles affected by the swap. Summing up over all steps
will give us the desired lower bound on the length of CC0.

Outline. Before proving the two bounds using the ideas outlined above, we review useful lemmas
from previous work in Section 5.2 and derive several properties of strings belonging to small cycles
in Section 5.3. We remark that Sections 6 and 7 are independent of each other and can be read in
any order.

5 Preliminaries for the Analysis

We start by observing that MGREEDY executed on the strings belonging to a subset of cycles of the
minimum cycle cover CC(S) produces exactly the same subset of cycles.
Observation 5.1. Let CC ⊆ CC(S) be a set of cycles and let S ⊆ S be the set of input strings that
belong to cycles in CC. Then MGREEDY on input S (with the same tie-breaking rule) outputs CC,
which is thus the minimum-length cycle cover of S, i.e., CC(S) = CC.
Proof. Note that MGREEDY on input S rejects any edge (s, t) between S and S \ S because there
is an incident edge (s′, t) or (s, t′) with larger (or equal) overlap that precedes (s, t) in the list of
edges sorted by their overlap length. Thus, when we run MGREEDY on input S, it selects exactly
the same edges among vertices in S as when we run MGREEDY on input S.

5.1 Dealing with Extra Large Cycles

Let S ⊆ S be the subset of strings that belong to all small and large cycles of CC(S). Observation 5.1
implies that CC(S) consists of all small and large cycles of CC(S), while CC(S − S) consists of all
extra large cycles of CC(S). Let ŵ denote the sum of lengths of the (extra large) cycles in CC(S−S)
and let ô be the sum of overlap lengths of the cycle-closing edges of the cycles in CC(S−S). Similarly,
let o be the sum of overlap lengths of the cycle-closing edges in CC(S) and let w be the sum of
lengths of the cycles in CC(S). Proving (1) for input S implies that o ≤ |OPT(S)| + α · w, and
assuming this, we show o ≤ n+ α · w. Indeed, we take the sum of inequality o ≤ |OPT(S)|+ α · w
with inequality ô ≤ α · ŵ (which holds by the definition of extra large cycles) and obtain:

o = o+ ô ≤ |OPT(S)|+ α · w + α · ŵ = |OPT(S)|+ α · w ≤ n+ α · w
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where the penultimate step uses w = w + ŵ and the last inequality uses |OPT(S)| ≤ |OPT(S)| = n,
which follows from S ⊆ S. Therefore, for proving (1), we assume w.l.o.g. that CC(S) has no extra
large cycle.

5.2 Useful Lemmas from Previous Work

We start with describing further concepts from the literature. A semi-infinite string is defined as
the concatenation of an infinite number of finite non-empty strings. If these strings are the same
string x, then the semi-infinite string will be denoted by x∞ and called periodic. For a semi-infinite
string α and integer k ≥ 1, we denote by α[k] its (semi-infinite) substring which starts at its k-th
character.

We say that a string s has periodicity of length a for a ≤ |s| if s is a prefix of x∞ for some
string x of length a. Note that pref(s, s) is the shortest string x such that s is a prefix of x∞. The
length of pref(s, s) is denoted as period(s) = |pref(s, s)| = dist(s, s). In other words, period(s) is the
smallest periodicity of a string. We will need the following property of periodicity3.

Lemma 5.2. Any string s with periodicities a and b such that |s| ≥ a+ b has periodicity gcd(a, b),
where gcd(a, b) is the greatest common divisor of a and b. Consequently, any periodicity a of s with
a ≤ |s|/2 (if any) is an integer multiple of period(s).

Proof. Let g = gcd(a, b), and suppose w.l.o.g. that a < b. Further, let a′ = a/g and b′ = b/g.
Due to the periodicity by a, it is sufficient to prove that for any i = 1, . . . , a′ − 1, it holds that
s[1, g] = s[i · g+ 1, (i+ 1) · g]. To this end, using that s has periodicities a and b and that |s| ≥ a+ b,
for any i = 0, . . . , a′ − 1, we get

s[i · g + 1, (i+ 1) · g] = s[i · g + 1 + b, (i+ 1) · g + b] = s[f(i) · g + 1, (f(i) + 1) · g] , (11)

where we use f(i) := (i+ b′) mod a′. Note that the cyclic group Z/a′Z = {0, . . . , a′ − 1} of integers
modulo a′ (with addition) is generated by b′ mod a′, since gcd(a′, b′) = gcd(a/g, b/g) = 1, which
follows from gcd(a, b) = g. Hence, applying (11) for i = 0, f(0), f(f(0)), and so on proves that
s[1, g] = s[i · g + 1, (i+ 1) · g] for any i = 1, . . . , a′ − 1.

String z is a rotation of string q if q = uv and z = vu for some strings v and u (string z is
a rotation of itself if one of them is empty). Two strings s and t are equivalent if pref(t, t) is a
rotation of pref(s, s), i.e., there exist strings x and y (possibly empty) such that pref(s, s) = xy and
pref(t, t) = yx. Two strings that are not equivalent will be called inequivalent.

For any cycle c = sc0 → sc1 → · · · → scr−1 → sc0 in Gdist(S), we define s(c) as the string
pref(sc0 , sc1)pref(sc1 , sc2) . . . pref(scr−1 , sc0). Note that Rc = s(c)ov(scr−1 , sc0) and Rc is a prefix
of s(c)∞. We define as strings(c, scl

) the string pref(scl
, scl+1) . . . pref(scl−1 , scl

), where subscript
arithmetic is modulo r and 0 ≤ l ≤ r − 1. In other words, strings(c, scl

) is a rotation of s(c) such
that string scl

is a prefix of strings(c, scl
)∞.

The following three lemmas appear in previous works:

Lemma 5.3 (Claim 2 in [BJL+91]). For any cycle c in the distance graph for S, every string of c
is a substring of s(c)∞.

3Blum et al. [BJL+91] say that an equivalence class [s] (for the equivalence defined below Lemma 5.2) has periodicity
a if it is invariant under a rotation by a characters, i.e., it holds that pref(s, s) = uv = vu where |u| = a. Note that
this definition of periodicity is different to ours. With a reference to [FW65], they remark that if [s] has periodicities
a and b, then it has periodicity gcd(a, b) as well. We are not aware of a proof of this property for our definition of
periodicity.
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Lemma 5.4 (Claim 3 in [BJL+91]). If all strings of a subset of S are substrings of a semi-infinite
string t∞, then there exists a cycle of length |t| in the distance graph Gdist(S) that contains all these
strings.

Lemma 5.5 (Lemma 13 in [Muc07]). It holds that period(Rc) = w(c) for any cycle c of CC(S).

As a corollary of these lemmas, we obtain:

Observation 5.6. The representative strings Rc and Rc′ for any two cycles c and c′ in CC(S)
are inequivalent. Moreover, any string R̂c′ that contains all strings of cycle c′ as substrings is
inequivalent to s(c)∞.

Proof. Recall that Rc is a prefix of s(c)∞, which contains all strings of c by Lemma 5.3. From
Lemma 5.5 it follows that pref(Rc, Rc) = s(c) and pref(Rc′ , Rc′) = s(c′). If Rc and Rc′ were
equivalent, then s(c′) is a rotation of s(c) and thus, any string of both cycles appears as a substring
of s(c)∞. Therefore, by Lemma 5.4, all strings of both c and c′ are contained in a single cycle of
length w(c), contradicting the minimality of CC(S).

The second claim follows similarly. If pref(R̂c′ , R̂c′) is a rotation of f := pref(s(c)∞, s(c)∞), then
f∞ = s(c)∞ contains all strings of both c and c′, so we again obtain a contradiction with the
minimality of CC(S) by using Lemma 5.4.

Since the representative string Rc contains any string s of the cycle c it belongs to, the period of
s cannot be larger than period(Rc) and thus, by Lemma 5.5, we obtain:

Observation 5.7. For any string s of a cycle c ∈ CC(S), it holds that period(s) ≤ w(c).

Next, we need the following upper bound for the overlap length between inequivalent strings:

Lemma 5.8 (Lemma 2.3 in [KS05]). For any two inequivalent strings s and t, it holds that
|ov(s, t)| < period(s) + period(t).

In the case that these two inequivalent strings belong to two different cycles c and c′ of CC(S),
we have |ov(s, t)| < w(c) + w(c′) by Observation 5.7, and more generally:

Lemma 5.9 (Lemma 9 in [BJL+91]). Let c and c′ be any two cycles of CC(S). It holds that
|ov(s, t)| < w(c) + w(c′), where s is any string of c and t is any string of c′.

We will need an even more general corollary that follows from the same argument as in Lemma 9
in [BJL+91] (see also Lemma 7 in [Muc07]), but we provide a proof for completeness.

Corollary 5.10. Let c and c′ be any two cycles of CC(S). Any string h, which is a substring of both
s(c)∞ and s(c′)∞, satisfies |h| < w(c) + w(c′). In particular, it holds that |ov(s, t)| < w(c) + w(c′),
where s is any substring of s(c)∞ and t is any substring of s(c′)∞.

Proof. Assume for a contradiction that |h| ≥ w(c) + w(c′). Since h is a substring of s(c)∞, it is a
prefix of x∞1 for a string x1 with |x1| = w(c), which is a rotation of s(c). Similarly, h is a prefix
of x∞2 for x2 with |x2| = w(c′), which is a rotation of s(c′). Using |h| ≥ w(c) + w(c′), we get that
x1x2 = x2x1 and by a simple induction, it holds that xk1xk2 = xk2x

k
1 for any k ≥ 1, which implies

x∞1 = x∞2 . Since any string in cycle c is a substring of s(c)∞, it is also a substring of x∞1 = x∞2 . Thus,
using Lemma 5.4 gives a contradiction with the fact that c and c′ are cycles of the minimum-length
cycle cover CC(S).
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5.3 Properties of Strings of Small Cycles

In this section, we prove several properties of small cycles. Consider a small cycle c. Recall that the
MGREEDY algorithm picks edges in non-increasing order of overlap length when producing CC(S).
Therefore, o(c) is no larger than any other overlap length between two merged strings in cycle c.
By this and since the length of any string s in c is greater than the length of any of its two (i.e.,
left and right) overlaps (or the self-overlap if c is a 1-cycle), we have |s| > o(c). Further, by the
definition of a small cycle, it is o(c) > 2 · w(c) and thus, for any string s of c, we get:

|s| > 2 · w(c) (12)

Note that the representative string Rc is even longer as |Rc| = w(c) + o(c) > 3 · w(c), since string
Rc is formed by opening cycle c at the cycle-closing edge.

While a string of a cycle c is not necessarily equivalent to string Rc (cf. Lemma 2.1 in [KS05]),
we prove that this property actually holds for small cycles.

Lemma 5.11. Consider any small cycle c of CC(S). All strings of c and Rc are equivalent and in
particular, period(s) = w(c) for any string s of cycle c.

Proof. Recall that Rc is a prefix of s(c)∞. From Lemma 5.5 it follows that pref(Rc, Rc) = s(c).
Hence, it suffices to show that pref(s, s) is a rotation of s(c) for any string s of the small cycle
c. We first prove that period(s) = w(c). By Observation 5.7, we have period(s) ≤ w(c). Assume
for a contradiction that period(s) < w(c). Since s has periodicity w(c) and, by (12), |s| > 2w(c),
we have that w(c) must be a multiple of period(s) by Lemma 5.2. So there exists an integer
k ≥ 2 such that k · |pref(s, s)| = k · period(s) = w(c). Recall that strings(c, s) is a rotation of
s(c) that is a prefix of s and has length w(c). We thus have that strings(c, s) = pref(s, s)k, which
implies strings(c, s)∞ = pref(s, s)∞. Note that every substring of s(c)∞ is also a substring of
strings(c, s)∞ = pref(s, s)∞. By Lemmas 5.3 and 5.4, it follows that all strings of c belong to a cycle
(in Gdist(S)) of length |pref(s, s)| = period(s) < w(c), which contradicts the minimality of CC(S).
Hence, period(s) = w(c) and thus, pref(s, s) = strings(c, s). This concludes the proof as strings(c, s)
is a rotation of s(c) = pref(Rc, Rc).

As a corollary, we obtain that for small cycles, the triangle inequality in Gdist(S) becomes
equality.

Lemma 5.12. Consider two strings s ∈ S and t ∈ S both belonging to a small cycle c ∈ CC(S)
and assume that s is not merged with t across cycle c. Then, for any string t′ that lies on cycle c
between s and t (in this order), it holds that dist(s, t) = dist(s, t′) + dist(t′, t).

Proof. First, it is dist(s, t) ≤ dist(s, t′) + dist(t′, t) by the triangle inequality in Gdist(S). Next,
assume for a contradiction that dist(s, t) < dist(s, t′) + dist(t′, t). Consider the semi-infinite string
R′ = pref(s, t)strings(c, t)∞. Let t0 = t, t1, . . . , t` = s be the strings on the directed path from t to
s on cycle c. Observe that s is a prefix of R′ (as t is a prefix of strings(c, t)∞) and a substring of
strings(c, t)∞, starting at position ∑`−1

j=0 dist(tj , tj+1). It follows that

dist(s, s) ≤ dist(s, t) +
`−1∑
j=0

dist(tj , tj+1) < dist(s, t′) + dist(t′, t) +
`−1∑
j=0

dist(tj , tj+1) ≤ w(c) ,

where the penultimate inequality holds by the assumption dist(s, t) < dist(s, t′) + dist(t′, t) and the
last inequality follows by using the triangle inequality in Gdist(S) for the edges between s and t′

and for those between t′ and t. Thus, we have that period(s) = dist(s, s) < w(c), which contradicts
Lemma 5.11.
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Lemma 5.12 implies the following useful property:

Observation 5.13. If two strings that belong to the same small cycle c ∈ CC(S) are not merged in
c, then there is an optimal superstring in which they are not merged.

Proof. Suppose that strings s, t belonging to c ∈ CC(S) are not merged in c, and let t1, . . . , t` (for
` ≥ 1) be the strings on the directed s-t-path in c. Let σ be any superstring in which s and t are
merged. Consider string σ̂ obtained by removing strings t1, . . . , t` from σ, which may only decrease
its length, i.e., |σ̂| ≤ |σ|. From σ̂, we create a superstring σ′ by inserting strings t1, . . . , t` between s
and t in σ̂. Crucially, by Lemma 5.12, it holds that |σ′| = |σ̂| ≤ |σ|. Thus, if σ is optimal, then σ′ is
also optimal.

Remark 5.14. By Observation 5.13, if a superstring σ merges all r strings belonging to the same
small cycle c = sc0 → sc1 → · · · → scr−1 → sc0 (i.e., they all appear in adjacent positions across the
superstring σ), then we can transform σ into a superstring σ′ with |σ′| ≤ |σ| where the order of
these strings across σ′ is a rotation of the ordered set {sc0 , sc1 , . . . , scr−1}. In this case, each of the
r edges of c ∈ CC(S) coincides with an edge of σ′ except for one edge, which is not necessarily the
cycle-closing edge scr−1 → sc0 of c.

6 The First Upper Bound

In this section, we prove (5), which is our first bound on o.
We consider a partition of strings of all small cycles such that no two strings from two different

cycles are in one part and moreover, due to Observation 5.13, if strings s and t from a small cycle
c are in one part, then all strings between s and t on c are in that part as well. In other words,
this partition consists of directed paths and single nodes that remain after removing a subset of
edges from small cycles. The particular partition that we consider below is induced by an optimal
superstring for a certain subset of the input S containing all strings of small cycles and one (carefully
chosen) string of each large cycle.

Consider a small cycle c. Let r′ be the number of parts with strings from cycle c, and for
j = 0, . . . , r′, denote by s̄j the string obtained by merging strings in the j-th part (in the same
order as they appear on the small cycle c). In the next technical lemma, we lower-bound the sum of
lengths of the strings s̄j .

Lemma 6.1. It holds that
∑r′−1
j=0 (|s̄j | − 2 ·w(c)) ≥ o(c)−w(c) for any small cycle c = sc0 → · · · →

scr−1 → sc0, where r′ ≤ r.

Proof. Fix a small cycle c. Consider string s̄j , and let t0j , t1j , . . . , t
`j−1
j for `j ≥ 1 be the strings that

are merged into s̄j . Assuming that the parts are numbered in the order in which they appear on the
cycle, t0j+1 is the string to which t`j−1

j is merged on cycle c, with the subscript arithmetic modulo r′.
(In the special case of a 1-cycle, we have r′ = r = 1, `0 = 1, t00 is the only string of that cycle, and
we use t01 = t00.) It holds that:

|s̄j | =
`j−2∑
k=0

dist(tkj , tk+1
j ) + |t`j−1

j |

=
`j−2∑
k=0

dist(tkj , tk+1
j ) + dist(t`j−1

j , t0j+1) + |ov(t`j−1
j , t0j+1)| ,
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since |s| = dist(s, t) + |ov(s, t)| for any two strings s and t. Summing over all r′ strings s̄j , we get

r′−1∑
j=0

(|s̄j | − 2w(c)) =
r′−1∑
j=0

`j−2∑
k=0

dist(tkj , tk+1
j ) + dist(t`j−1

j , t0j+1) + |ov(t`j−1
j , t0j+1)| − 2w(c)


= w(c) +

(
|ov(t`0−1

0 , t01)| − 2w(c)
)

+
r′−1∑
j=1

(
|ov(t`j−1

j , t0j+1)| − 2w(c)
)

≥ w(c) + (o(c)− 2w(c)) + 0 = o(c)− w(c) ,

where the second equality uses that each edge of cycle c either “lies inside a string s̄j”, i.e., is an
edge (tkj , tk+1

j ) for some j and 0 ≤ k ≤ `j − 2, or “leads from string s̄j to s̄j+1”, i.e., is an edge
(t`j−1
j , t0j+1) for some j, and the inequality follows from the fact that o(c) is the smallest overlap on

cycle c and that o(c) > 2w(c) as the cycle is small.

We will need the Overlap Rotation Lemma from [BJJ97]:

Lemma 6.2 (Lemma 3.3 in [BJJ97]). Let α be a periodic semi-infinite string. There exists an
integer k ∈ [1, period(α)] such that |ov(s, α[k])| < period(s) + 1

2period(α) for any (finite) string s
inequivalent to α.

Note that the index k is universal for all strings inequivalent to α. We now generalize Lemma 6.2:

Lemma 6.3. Let α and k be as in Lemma 6.2. For any k′ ∈ [0, k) and any (finite) string s
inequivalent to α, the string α[k − k′] satisfies |ov(s, α[k − k′])| < period(s) + 1

2period(α) + k′.

Proof. For k′ = 0 the statement of the lemma coincides with Lemma 6.2. It remains to show the
lemma for k′ > 0. We have

|ov(s, α[k − k′])| = |s| − dist(s, α[k − k′])
≤ |s| − dist(s, α[k]) + dist(α[k − k′], α[k])
= |ov(s, α[k])|+ dist(α[k − k′], α[k])

≤ |ov(s, α[k])|+ k′ < period(s) + 1
2period(α) + k′ ,

where in the second line, we applied the triangle inequality in Gdist(S) and the last step follows from
Lemma 6.2.

In Lemma 6.4, we prove the first upper bound on o, i.e., inequality (5).

Lemma 6.4. It holds that o ≤ n+∑
c∈S(S)w(c) + 1.5 ·∑c∈L(S)w(c).

Proof. First, for each large cycle c, we apply Lemma 6.2 for the semi-infinite string αc = s(c)∞ to
get an integer kc ≥ 1. We also let k′c to be the smallest integer k′ ≥ 0 such that αc[kc − k′] starts
with a string fc from cycle c. By the minimality of k′c, it follows that k′c < dist(fc, tc), which is the
prefix length between fc and string tc that fc is merged to across the large cycle c. See the following
for an illustration.

αc = abcabcabc︸ ︷︷ ︸
pref(sc0 ,sc1 )

abcabcabcabc︸ ︷︷ ︸
pref(sc1 ,sc2 )

abcabcabcabcabcabc︸ ︷︷ ︸
pref(fc=sc2 ,tc=sc3 )

abcabcabcabcabca︸ ︷︷ ︸
pref(sc3 ,sc0 )

abcabcabc︸ ︷︷ ︸
pref(sc0 ,sc1 )

. . .

kck′c
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Since |fc| = dist(fc, tc) + |ov(fc, tc)| and |ov(fc, tc)| ≥ o(c), we get that k′c < dist(fc, tc) = |fc| −
|ov(fc, tc)| ≤ |fc| − o(c).

Fix input Sr ⊆ S, which contains all strings of S belonging to small cycles and only the
single string fc from each large cycle c. Consider OPT(Sr), the optimal superstring of Sr, and let
nr = |OPT(Sr)|. Our aim is to derive a lower bound on nr ≤ n.

Superstring OPT(Sr) induces a partition of the strings in each small cycle c such that strings in
each part are merged together in OPT(Sr), while strings from different parts are separated by a
string from a different cycle; this is the partition for which we apply Lemma 6.1. By Observation 5.13,
we may assume that the order in which strings of the same small cycle c are merged in OPT(Sr)
is the same as the order in which they appear on c. For a small cycle c, let r′c be the size of this
partition of strings in c, and for j = 0, . . . , r′c, denote by s̄c,j the string obtained by merging strings
in the j-th part (in the same order as they appear on c).

The key step towards lower-bounding nr is to obtain suitable upper bounds on the overlap
length of two strings merged in OPT(Sr) after we merge strings of small cycles c to obtain strings
s̄c,j . First, consider string fc of a large cycle c and string s′ from a cycle c′ for c′ 6= c such that
s′ is either fc′ or s̄c′,j (depending on whether c′ is large or small) and s′ and fc are merged in
OPT(Sr) in this order. Consider string R̂c′ := strings(c′, s′)s′4. Note that period(R̂c′) ≤ w(c′) as
R̂c′ = strings(c′, s′)s′, s′ is a prefix of strings(c′, s′)∞ and |strings(c′, s′)| = w(c′). Furthermore, R̂c′
contains all strings of cycle c′ as substrings, and thus, R̂c′ is inequivalent to αc by Observation 5.6.
Since fc is a prefix of αc[kc − k′c] and s′ is a suffix of R̂c′ , we have |ov(s′, fc)| ≤ |ov(R̂c′ , αc[kc − k′c])|.
Using this together with Lemma 6.3 for αc, k′c, and R̂c′ , it holds that

|ov(s′, fc)| ≤ |ov(R̂c′ , αc[kc − k′c])| < period(R̂c′) + 1
2period(αc) + k′c

< w(c′) + 1
2w(c) + |fc| − o(c) , (13)

where the third inequality uses period(R̂c′) ≤ w(c′), period(αc) ≤ w(c) (by the definition of αc =
s(c)∞ and |s(c)| = w(c)), and k′c < |fc| − o(c).

Second, consider string s̄c,j for a small cycle c (recall that s̄c,j may be the result of merging
several strings appearing consecutively on c). Let s′ be the string merged to s̄c,j in OPT(Sr) in this
order, and let c′ be the (large or small) cycle of string s′. From Corollary 5.10 we get

|ov(s′, s̄c,j)| < w(c′) + w(c) . (14)

Observe that nr ≥
∑
s(|s| − |ov(s′, s)|), where the sum is over strings fc and s̄c,j as defined above

and s′ is the string merged to s in OPT(Sr) (s′ is empty for the first string in OPT(Sr)). Next,
we use (13) or (14) to bound |ov(s′, s)| for all such strings s. In particular, since each such string
appears once as string s′ (except for the last one), we get that

nr ≥
∑

c∈L(S)
(|fc| − 1.5 · w(c)− (|fc| − o(c))) +

∑
c∈S(S)

r′c−1∑
j=0

(
|s̄c,j | − 2 · w(c)

)
. (15)

Using Lemma 6.1, we lower-bound the second term in the right-hand side of (15) and obtain

nr ≥
∑

c∈L(S)

(
o(c)− 1.5 · w(c)

)
+

∑
c∈S(S)

(
o(c)− w(c)

)
4Strictly speaking, strings(c′, s′) is only defined for a string s′ of cycle c′. If c′ is a small cycle and s′ = s̄c′,j is a result

of merging strings t0j , t1j , . . . , t
`j−1
j from cycle c′, then we let strings(c′, s′) := strings(c′, t0j ) so that R̂c′ = strings(c′, t0j )s′.
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Using that n = |OPT(S)| ≥ |OPT(Sr)| = nr as Sr ⊆ S, and that o = ∑
c∈L(S) o(c) +∑

c∈S(S) o(c),
we obtain

n ≥ o− 1.5 ·
∑

c∈L(S)
w(c)−

∑
c∈S(S)

w(c) ,

which completes the proof by rearranging.

7 The Second Upper Bound

In this section we show (6). The first ingredient of our analysis is a suitable modification of the
input set of strings S.

7.1 Modifying the Input

For each small cycle c = sc0 → sc1 → · · · → scr−1 → sc0 in CC(S), we remove all strings belonging
to this cycle from S and instead add the string

R′c := pref(sc0 , sc1)pref(sc1 , sc2) . . . pref(scr−2 , scr−1)pref(scr−1 , sc0)sc0

to S. Note that the representative string Rc is a prefix of R′c and thus, R′c contains all strings of the
small cycle c. We denote the new set of strings obtained this way by S′.

The length of CC(S′) is the same as the length of CC(S). Indeed, due to Lemma 5.5, the
generated optimal cycle cover remains the same except that whenever we had a small cycle c
involving nodes sc0 , sc1 , . . . , scr−1 before, we now only have a single node (corresponding to the
string R′c) and a self-loop at that node. In addition, the length of small cycles does not change, i.e.,∑
c∈S(S′)w(c) = ∑

c∈S(S)w(c), again by Lemma 5.5.
However, the length n′ = |OPT(S′)| of the shortest superstring of S′ could increase compared

to the length n = |OPT(S)| of the optimal shortest superstring of S. The following lemma gives a
bound on the increase.

Lemma 7.1. The shortest superstring for S′ is at most by
∑
c∈S(S)w(c) longer than the shortest

superstring for S.

Proof. We show how to transform any superstring σ for S into a superstring σ′ for S′ (which is
also a superstring for S as R′c contains all strings of the small cycle c) while only increasing the
length of the superstring by ∑c∈S(S)w(c), i.e., |σ′| ≤ |σ|+∑

c∈S(S)w(c). Namely, for every small
cycle sc0 → sc1 → · · · → scr−1 → sc0 in CC(S), we replace the first occurrence of sc0 in σ by R′c.
The resulting superstring is our new string σ′, which by construction, contains all strings of S′ as
required.

For a small cycle c, the length of R′c is equal to |sc0 |+w(c). Therefore, |σ′| ≤ |σ|+∑c∈S(S)w(c)
as claimed.

Corollary 7.2. Let CC0(S′) be a directed Hamiltonian cycle of minimum length in the distance
graph Gdist(S′). The length n of the shortest superstring for S is at least |CC0(S′)| −∑c∈S(S′)w(c).

Proof. The length n′ of the shortest superstring for S′ is at least |CC0(S′)|, since we can form a
Hamiltonian cycle of length at most n′ by merging the first and last string of the shortest superstring.
With this, the corollary follows from Lemma 7.1.
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Since the sum of overlap lengths of cycle-closing edges in CC(S′), denoted o′, cannot be smaller
than o, the sum of overlap lengths of cycle-closing edges in CC(S), showing the following inequality

o′ ≤ |CC0(S′)|+ (γ − 1) ·
∑

c∈S(S′)
w(c) +

∑
c∈L(S′)

w(c) (16)

implies (6), due to Corollary 7.2.

7.2 Overview of the Proof

Before proceeding, we note that our goal is to show (16) and from now on we will only be concerned
with the modified input S′. Therefore, for the sake of simplicity, we omit the set S′ from the cycle
cover notation from this point onward (for instance, we shall indicate CC(S′) as CC and CC0(S′) as
CC0).

Consider a maximum directed Hamiltonian cycle CC0 in Gov(S′) and note that CC0 is, in
particular, also a (not necessarily maximum) cycle cover in Gov(S′). We call the sum of the profits
of the edges of a cycle cover in Gov(S′) the total overlap of the cycle cover. Our goal is to show that
the total overlap of CC0 is by at least∑

c∈S(S′)
(o(c)− γ · w(c)) +

∑
c∈L(S′)

(o(c)− 2 · w(c)) (17)

smaller than the total overlap of the optimal cycle cover CC. In terms of the distance graph, this
implies that CC0 has a length which is by at least ∑c∈S(S′)(o(c)−γ ·w(c)) +∑c∈L(S′)(o(c)−2 ·w(c))
larger than the length of CC. The length of CC is ∑c∈S(S′)w(c) +∑

c∈L(S′)w(c). Therefore, (16) is
then implied by the following sequence of calculations:

|CC0| ≥
∑

c∈S(S′)
(o(c)− γ · w(c)) +

∑
c∈L(S′)

(o(c)− 2 · w(c)) +
∑

c∈S(S′)
w(c) +

∑
c∈L(S′)

w(c)

=
∑

c∈S(S′)
(o(c)− (γ − 1) · w(c)) +

∑
c∈L(S′)

(o(c)− w(c))

= o′ − (γ − 1) ·
∑

c∈S(S′)
w(c)−

∑
c∈L(S′)

w(c) ,

and this implies (6), as noted above.
To show the desired lower bound on the difference of total overlap between CC and CC0, we

slowly “transform” CC0 into CC and track how each step of the transformation increases the total
overlap. Next, we describe these individual transformation steps in more detail.

Consider any cycle cover CC and a directed edge e = (u, v) which is not contained in CC (note
that u = v is possible because the graphs contain self-loops). Then we can modify CC slightly such
that it does contain e. Specifically, let f = (v′, v) be the incoming edge of v in CC and f ′ = (u, u′)
be the outgoing edge of u in CC. Then, we can add e and e′ = (v′, u′) to CC and instead remove f
and f ′ from CC. The resulting set of edges forms a cycle cover CC′ which now includes the edge
e. We call this operation an edge swap. Note that the edge swap is completely determined by the
given cycle cover CC and the edge e. We refer to this unique swap as swap(CC, e) and always refer
to the edges that are added to the cycle cover as e and e′ and to the edges which are removed as f
and f ′; see Figure 2 for an illustration of the notation.

Given a cycle cover CC0 (in our case the maximum Hamiltonian cycle) and the cycle cover CC,
we can transform CC0 into CC by a sequence of edge swaps. Specifically, if CCi is a cycle cover, we
can take any edge e ∈ CC \ CCi, i.e., any edge in CC that is not in CCi, and obtain a new cycle
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u v

u′ v′

e

f ′ f

e′

Figure 2: Illustration of the notation for swap(CC, e). Note that we also allow nodes to be equal to
one another here, e.g., it could be that u = v, in which case e is a self-loop.

cover CCi+1 from CCi by performing swap(CCi, e). Note that because e ∈ CC, the edges f and f ′

which are swapped out in swap(CCi, e) cannot be part of CC. If e′ belongs to CC, the symmetric
difference between CCi+1 and CC contains four fewer edges than the symmetric difference between
CCi and CC (namely all four edges e, e′, f , and f ′). If e′ is not part of CC, the symmetric difference
between CCi+1 and CC contains two fewer edges than the symmetric difference between CCi and
CC (it no longer contains e, f , and f ′, but it now contains e′). In either case, the number of edges
in the symmetric difference always decreases and therefore, after a finite number of such edge swap
operations, we obtain a cycle cover CC` which is identical to CC.

If we obtain CCi+1 from CCi by swapping in the edges e and e′ and swapping out the edges f
and f ′, then the total overlap of CCi+1 is larger than the total overlap of CCi by |ov(e)|+ |ov(e′)| −
|ov(f)| − |ov(f ′)|.

For a cycle cover CCi, let M(CCi) be the set of small cycles of CC which are also part of CCi.
In other words, if CCi contains a self-loop (s, s) and the string s corresponds to a small cycle c in
CC, then (and only then) c ∈M(CCi). Note that since swap(CCi, e) for e ∈ CC \ CCi only removes
edges f, f ′ ∈ CCi \ CC from CCi, it holds that M(CCi+1) ⊇M(CCi).

Ideally, we would want to show that we can always choose an edge e ∈ CC \ CCi such that the
total overlap increase from CCi to CCi+1 is at least ∑c∈M(CCi+1)\M(CCi)(o(c)−γ ·w(c)). It would not
be difficult to see that summing over all i would then imply the desired result, i.e., inequality (17),
even without the sum over large cycles. Unfortunately, this appears difficult and in some cases we
have to allow for slightly smaller increases. To address this, we relate some small cycles and some
large cycles to one another.

We define a relation T between small cycles and a large cycle as follows. A small cycle c of CC
and a large cycle c′ of CC are related if (γ − 2) ·w(c) ≤ w(c′) and the large cycle has a string s′ such
that |ov(s, s′)| ≥ α · w(c′) or |ov(s′, s)| ≥ α · w(c′), where s is the only string corresponding to the
small cycle, by the input modification in Section 7.1. In this case, and only in this case, we have
(c, c′) ∈ T .

Lemma 7.3. For every large cycle c′ of CC, at most two different small cycles of CC are related to
c′.

Proof. Suppose for a contradiction that there are three small cycles c1, c2, and c3 related to cycle c′.
For j ∈ {1, 2, 3}, let sj be the only string of cycle cj and let oj be the overlap from the definition of
the relation satisfying |oj | ≥ α · w(c′), i.e., either oj = ov(sj , s′j) or oj = ov(s′j , sj) for some string
s′j from c′. Note that since oj is a suffix or prefix of sj (depending on whether oj = ov(sj , s′j) or
oj = ov(s′j , sj)), Corollary 5.10 implies

|ov(o1, o2)| < w(c1) + w(c2) ≤ 2
γ − 2 · w(c′) , (18)
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where the second inequality holds as both c1 and c2 are related to c′. Using the same argument,
both |ov(o2, o3)| and |ov(o3, o1)| are also strictly smaller than 2

γ−2 · w(c′).
Each overlap string oj appears as substring in the semi-infinite string s(c′)∞ for the large cycle

c′, since each s′j is a substring of s(c′)∞ by Lemma 5.3. For j ∈ {1, 2, 3}, let ij ∈ [1, w(c′)] be
the smallest index such that oj is a prefix of s(c′)∞[ij ]. W.l.o.g., suppose that i1 ≤ i2 ≤ i3 (by
reordering indexes of c1, c2, and c3). Observe that

i2 − i1 >
(
α− 2

γ − 2

)
w(c′) ,

since otherwise, o1 and o2 would overlap by at least 2
γ−2w(c′) (using that o1 and o2 have length

at least α · w(c′)), contradicting (18). Similarly, it holds that i3 − i2 >
(
α− 2

γ−2

)
w(c′) and

i1 + w(c′)− i3 >
(
α− 2

γ−2

)
w(c′); for the latter, we use that o1 is also a prefix of s(c′)∞[i1 + w(c′)]

as |s(c′)| = w(c′) is a periodicity of s(c′)∞. Finally, we get a contradiction as follows:

w(c′) = (i2 − i1) + (i3 − i2) + (i1 + w(c′)− i3) > 3 ·
(
α− 2

γ − 2

)
· w(c′) ≥ w(c′) ,

where the last step uses (8).

With this we define

∆i =
∑

c∈M(CCi+1)\M(CCi)

(
o(c)− γ · w(c)− 1

2 ·
∑

c′:(c,c′)∈T
(2 · w(c′)− o(c′))

)
.

We will show that, for every i, we can choose e ∈ CC \ CCi such that the total overlap increase
from CCi to CCi+1 is at least ∆i when we obtain CCi+1 from CCi by performing swap(CCi, e). Note
that the value of ∆i does depend on CCi+1 and therefore on the edge e that we choose.

Summing over all i gives the desired result since then the total overlap increase is at least

`−1∑
i=0

∆i =
∑

c∈M(CC`)\M(CC0)

(
o(c)− γ · w(c)− 1

2 ·
∑

c′:(c,c′)∈T
(2 · w(c′)− o(c′))

)

=
∑

c∈S(S′)

(
o(c)− γ · w(c)− 1

2 ·
∑

c′:(c,c′)∈T
(2 · w(c′)− o(c′))

)

≥
∑

c∈S(S′)

(
o(c)− γ · w(c)

)
− 2 · 1

2 ·
∑

c′∈L(S′)

(
2 · w(c′)− o(c′)

)
=

∑
c∈S(S′)

(
o(c)− γ · w(c)

)
+

∑
c′∈L(S′)

(
o(c′)− 2 · w(c′)

)

and this is what we wanted in (17). Here, the first line follows because M(CCi+1) ⊇M(CCi) for
all i as noted above, the second line follows because CC` = CC and M(CC0) = ∅, and the third
line follows from Lemma 7.3. Strictly speaking, it is possible that M(CC0) 6= ∅. However, CC0 is a
Hamiltonian cycle, and therefore, the only case in which this happens is if this Hamiltonian cycle is
in fact a single small cycle c, in which case, by Observation 5.13, GREEDY computes an optimal
solution.
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We will sometimes use the fact that the term 2w(c′)− o(c′) is non-negative for every large cycle
c′. Therefore, the part of the definition of ∆i that sums over large cycles c′ such that c is related to
c′ can only decrease the value of ∆i (and makes it easier to find a suitable edge e in some cases), i.e.,

∆i ≤
∑

c∈M(CCi+1)\M(CCi)

(
o(c)− γ · w(c)

)
. (19)

In Section 7.4, we will show that for any cycle cover CCi 6= CC, it is always possible to find an
edge e ∈ CC \ CCi such that if we obtain CCi+1 by performing the swap(CCi, e), the total overlap
increase is at least ∆i. Before that, we present three useful lemmas.

7.3 Useful Lemmas

Tarhio and Ukkonen [TU88] and Turner [Tur89] show the following lemma.

Lemma 7.4. Let e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′) be edges in Gov(S′) such that
max{|ov(e)|, ov(e′)|} ≥ max{|ov(f)|, |ov(f ′)|}. Then |ov(e)|+ |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ 0.

The following is a slightly different, but somewhat related inequality which gives us better
bounds when e is the (only) edge of a small cycle in CC. Another difference to Lemma 7.4 is that
the following lemma can also be applied if max{|ov(e)|, |ov(e′)|} < max{|ov(f)|, |ov(f ′)|}.

Lemma 7.5. Let e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′) be edges in Gov(S′) such that
e is an edge in a small cycle c in CC. Then

|ov(e)|+ |ov(e′)| − |ov(f)| − |ov(f ′)| > |ov(e)| −max{|ov(f)|, |ov(f ′)|} − w(c) .

Proof. If min{|ov(f)|, |ov(f ′)|} < w(c), then trivially |ov(e)|+ |ov(e′)|− |ov(f)|− |ov(f ′)| ≥ |ov(e)|−
|ov(f)| − |ov(f ′)| > |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c) and we are done. So now assume
min{|ov(f)|, |ov(f ′)|} ≥ w(c).

First note that since e is an edge of a small cycle in CC, e is a self-loop in Gov(S′) and u = v.
Since ov(f) is a prefix of u = v, we observe that ov(f) = u[1, |ov(f)|]. Because u has period w(c) by
Lemma 5.11, this also implies ov(f) = u[1 + k · w(c), |ov(f)|+ k · w(c)], where we choose k ≥ 0 as
the largest integer for which k · w(c) ≤ |u| −max{|ov(f)|, |ov(f ′)|}. For this choice of k, we have
k · w(c) > |u| −max{|ov(f)|, |ov(f ′)|} − w(c).

Furthermore, ov(f ′) = u[|u| − |ov(f ′)|+ 1, |u|] because ov(f ′) is a suffix of u. Hence, the string
u[|u| − |ov(f ′)|+ 1, |ov(f)|+ k ·w(c)] is a suffix of ov(f) as well as a prefix of ov(f ′). This string has
length |ov(f)|+k·w(c)−(|u|−|ov(f ′)|) > |ov(f)|+|u|−max{|ov(f)|, |ov(f ′)|}−w(c)−(|u|−|ov(f ′)|) =
min{|ov(f)|, |ov(f ′)|} − w(c), which is non-negative by the assumption above.

Every suffix of ov(f) is also a suffix of v′ and every prefix of ov(f ′) is also a prefix of u′. Hence,
v′ has a suffix of length larger than min{|ov(f)|, |ov(f ′)|} − w(c) which is identical to a prefix of u′.
Therefore, |ov(e′)| > min{|ov(f)|, |ov(f ′)|} − w(c), which implies the lemma.

Under a certain condition, we can further strengthen the inequality of the previous lemma.

Lemma 7.6. Consider the edges e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′). Suppose e is
an edge in a (large or small) cycle c of CC, e′ is an edge in a (large or small) cycle c′ of CC, and
|ov(e′)| ≥ w(c) + w(c′). Then

|ov(e)|+ |ov(e′)| − |ov(f)| − |ov(f ′)| > |ov(e)| − w(c) .
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Proof. We show that |ov(e′)| > |ov(f)|+ |ov(f ′)| − w(c), which trivially implies the lemma.
If min{|ov(f)|, |ov(f ′)|} ≤ w(c), this inequality holds because by using Lemma 5.9, we get

|ov(e′)| ≥ w(c) + w(c′) > max{|ov(f)|, |ov(f ′)|} ≥ max{|ov(f)|, |ov(f ′)|}+ min{|ov(f)|, |ov(f ′)|} −
w(c) = |ov(f)|+ |ov(f ′)| − w(c). Hence, for the remainder of the proof, we assume that we have
min{|ov(f)|, |ov(f ′)|} > w(c).

Now, assume for a contradiction that |ov(e′)| ≤ |ov(f)|+ |ov(f ′)| − w(c). We claim that in this
case ov(e′) has a periodicity of w(c), i.e., ov(e′) is prefix of x∞ for some string x with |x| = w(c). To
show this, recall that |ov(e′)| ≥ w(c) +w(c′) > max{|ov(f ′)|, |ov(f)|} by Lemma 5.9. Since ov(f ′) is
a prefix of u′ and a suffix of u and since ov(e′) is a prefix of u′, the first |ov(f ′)| characters of ov(e′)
are also a suffix of u, i.e.,

ov(e′)[1, |ov(f ′)|] = ov(f ′) = u[|u| − |ov(f ′)|+ 1, |u|] .

Similarly, since ov(f) is a prefix of v and a suffix of v′ and since ov(e′) is a suffix of v′, we get that

ov(e′)[|ov(e′)| − |ov(f)|+ 1, |ov(e′)|] = ov(f) = v[1, |ov(f)|] .

Observe that for all 1 ≤ i ≤ |ov(e′)| − w(c), a character at position i of ov(e′) must be the same
as the character at position i+ w(c) of ov(e′). Indeed, if i+ w(c) ≤ |ov(f ′)|, this is true as u has
a periodicity of w(c). If i > |ov(e′)| − |ov(f)|, it is true because v has periodicity w(c). One of
these two cases must apply because otherwise, i+ w(c) > |ov(f ′)| and i ≤ |ov(e′)| − |ov(f)|, which
implies |ov(f ′)|−w(c) < i ≤ |ov(e′)|− |ov(f)|, contradicting our assumption that |ov(f ′)|+ |ov(f)| ≥
|ov(e′)|+ w(c). Hence, ov(e′) has a periodicity of w(c) (in particular, period(ov(e′)) ≤ w(c)).

Next, we show that ov(e′) is a substring of the semi-infinite string s(c)∞. Because ov(e′) has a
periodicity of w(c) and s(c)∞ has period w(c), it is sufficient to argue that the first w(c) characters
of ov(e′) are a substring of s(c)∞. This is indeed the case since ov(e′)[1, |ov(f ′)|] is a substring of u
which is a substring of s(c)∞ and we assumed that |ov(f ′)| > w(c).

Since ov(e′) is a substring of s(c)∞ as well as of s(c′)∞ (because e′ lies on cycle c′), Corollary 5.10
implies |ov(e′)| < w(c) + w(c′) which contradicts the assumption of the lemma.

7.4 Analysis

In this section, we will show that for any cycle cover CCi 6= CC, it is always possible to find an edge
e ∈ CC \CCi such that if we obtain CCi+1 by performing the swap(CCi, e), the total overlap increase
is at least

∆i =
∑

c∈M(CCi+1)\M(CCi)

(
o(c)− γ · w(c)− 1

2 ·
∑

c′:(c,c′)∈T
(2 · w(c′)− o(c′))

)
.

The following defines the concept of a good edge. It is a slightly technical definition, but it is
useful in the sense that (a) we will be able to show that a good edge e is always a suitable choice
for swap(CCi, e) and (b) in many cases we can find a good edge. For the remaining cases (i.e., when
it is not obvious whether a good edge exists), we will have separate arguments that show that an
appropriate swap is possible.

Definition 7.7. We call an edge e = (u, v) ∈ CC \ CCi a good edge if the following statements hold
for the swap(CCi, e) which swaps out edges f = (v′, v) ∈ CCi \ CC and f ′ = (u, u′) ∈ CCi \ CC and
swaps in edges e = (u, v) and e′ = (v′, u′):

• e belongs to a small cycle c of CC and e′ does not belong to a small cycle of CC.

20



u = v

u′ v′

f ′ ∈ CCi \ CC f ∈ CCi \ CC

e′

e ∈ CC \ CCi
c

c′

u = v

u′ v′

f ′ ∈ CCi \ CC f ∈ CCi \ CC

e′

e ∈ CC \ CCi
c

c′

Figure 3: Illustration of a good edge e for different cases. The edge e′ is not allowed to be in a small
cycle of CC. It can either not be contained in CC at all or it can be part of a large cycle of CC. For
these illustrations, we also assume that |ov(f)| ≥ |ov(f ′)|. On the left, c′ is a large cycle and |ov(f)|
is at least o(c′) (it is possible that e′ is part of the large cycle c′). On the right, c′ is a small cycle
and w(c) ≥ w(c′).

• If |ov(f)| ≥ |ov(f ′)|, then for the cycle c′ in CC that contains the string v′, it holds that either
|ov(f)| ≥ o(c′) or c′ is a small cycle with w(c′) ≤ w(c).

• If |ov(f ′)| > |ov(f)|, then for the cycle c′ in CC that contains the string u′, it holds that either
|ov(f ′)| ≥ o(c′) or c′ is a small cycle with w(c′) ≤ w(c).

The following lemma shows that if there is a good edge e, performing swap(CCi, e) results in a
sufficient increase of the total overlap.
Lemma 7.8. If e is a good edge, then after performing swap(CCi, e), the resulting cycle cover CCi+1
has by at least ∆i larger total overlap than CCi.

Proof. By definition of a good edge, e is the edge of a small cycle c. Due to Lemma 7.5, |ov(e)|+
|ov(e′)| − |ov(f)| − |ov(f ′)| > |ov(e)| −max{|ov(f)|, |ov(f ′)|} − w(c).

Suppose |ov(f)| ≥ |ov(f ′)| (the other case is analogous) and let c′ be the cycle containing the
string v′. Then |ov(e)| −max{|ov(f)|, |ov(f ′)|} − w(c) = |ov(e)| − |ov(f)| − w(c) > |ov(e)| − w(c)−
w(c′)− w(c) = |ov(e)| − 2w(c)− w(c′), where the inequality follows from Lemma 5.9. Hence, it is
sufficient to show that |ov(e)| − 2w(c)− w(c′) ≥ ∆i.

Since e is the edge of a small cycle in CC and e′ is not an edge of a small cycle in CC (by
the definition of a good edge), if we obtain CCi+1 from CCi by performing swap(CCi, e), then
M(CCi+1) \M(CCi) = {c}. In this case,

∆i = o(c)− γ · w(c)− 1
2 ·

∑
c′′:(c,c′′)∈T

(2 · w(c′′)− o(c′′))

= |ov(e)| − γ · w(c)− 1
2 ·

∑
c′′:(c,c′′)∈T

(2 · w(c′′)− o(c′′))

≤
{
|ov(e)| − γ · w(c)− 1

2 · (2 · w(c′)− o(c′)) if (c, c′) ∈ T
|ov(e)| − γ · w(c) otherwise

≤
{
|ov(e)| − γ · w(c)− 1

2 · (w(c′)− w(c)) if (c, c′) ∈ T
|ov(e)| − γ · w(c) otherwise

. (20)
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The last step follows since if (c, c′) ∈ T , then c′ is a large cycle and therefore, o(c′) ≤ |ov(f)| <
w(c) + w(c′), where the first inequality follows from the definition of a good edge and the last
inequality follows from Lemma 5.9.

The following fact establishes an upper bound on w(c′) by a function of w(c).

Fact 7.9.

• If c′ is a large cycle and (c, c′) ∈ T , then w(c′) < 1
α−1w(c).

• Otherwise, w(c′) < (γ − 2) · w(c) holds.

Proof. If c′ is a large cycle, then w(c) + w(c′) > |ov(f)| ≥ o(c′) > α · w(c′), where the first step
follows from Lemma 5.9, the second step follows from the definition of a good edge, and the last
step follows from the definition of a large cycle. Rearranging this inequality gives w(c′) < 1

α−1w(c).
Now, to show the second claim, there are two cases. If c′ is a large cycle, but (c, c′) /∈ T , then

we again recall that |ov(f)| ≥ α · w(c′). Since (c, c′) /∈ T , this implies that w(c′) < (γ − 2) · w(c) as
claimed. On the other hand, if c′ is a small cycle, then, due to the definition of a good edge, either
w(c′) ≤ w(c) or |ov(f)| ≥ o(c′). In the former case, we are already done as γ > 3. In the latter case,
|ov(f)| ≥ o(c′) > 2w(c′) and hence w(c) > |ov(f)| − w(c′) > w(c′), where the first inequality follows
from Lemma 5.9. Again, this implies the second claim as γ > 3.

Finally, to show that |ov(e)| − 2w(c)−w(c′) ≥ ∆i, we distinguish two cases and utilize the upper
bound on ∆i derived in (20).

• If c′ is large cycle and (c, c′) ∈ T , then using the first claim in Fact 7.9,

|ov(e)| − 2w(c)− w(c′) = |ov(e)| − 2w(c)− 1
2w(c′)− 1

2w(c′)

> |ov(e)| − 2w(c)− 1
2w(c′)− 1

2(α− 1)w(c)

= |ov(e)| −
(

2 + 1
2(α− 1)

)
· w(c)− 1

2w(c′)

= |ov(e)| −
(5

2 + 1
2(α− 1)

)
· w(c)− 1

2w(c′) + 1
2w(c)

≥ |ov(e)| − γ · w(c)− 1
2w(c′) + 1

2w(c) ≥ ∆i ,

where the last line uses (9).

• Otherwise, |ov(e)| − 2w(c)− w(c′) ≥ |ov(e)| − γ · w(c) ≥ ∆i.

There may be cases where CC \ CCi does not necessarily have a good edge. In such cases, we
can use other arguments. The following lemma is an example of this.

Lemma 7.10. If there exists an edge e ∈ CC \ CCi such that (i) swap(CCi, e) swaps in edges e
and e′, (ii) neither e nor e′ are edges of a small cycle in CC, and (iii) max{|ov(e)|, |ov(e′)|} ≥
max{|ov(f)|, |ov(f ′)|}, then after performing swap(CCi, e), the resulting cycle cover CCi+1 has by at
least ∆i larger total overlap than CCi.

Proof. If neither e nor e′ are edges of a small cycle in CC, then performing swap(CCi, e) results in a cy-
cle cover CCi+1 for whichM(CCi+1)\M(CCi) = ∅. Therefore, ∆i = 0. Since max{|ov(e)|, |ov(e′)|} ≥
max{|ov(f)|, |ov(f ′)|}, Lemma 7.4 implies that |ov(e)| + |ov(e′)| ≥ |ov(f)| + |ov(f ′)|. Hence,
|ov(e)|+ |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ 0 = ∆i.
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If there is an edge e ∈ CC \ CCi such that performing swap(CCi, e) reduces the symmetric
difference between CC and CCi by four, then we show that swap(CCi, e) increases the total overlap
by at least ∆i.

Lemma 7.11. If there exists an edge e ∈ CC \ CCi such that performing swap(CCi, e) reduces
the symmetric difference between the cycle cover CCi and CC by four edges, then after performing
swap(CCi, e), the resulting cycle cover CCi+1 has by at least ∆i larger total overlap than CCi.

Proof. Recall that swap(CCi, e) adds the edges e and e′ to the cycle cover CCi and removes the
edges f and f ′. Thus, if the symmetric difference to CC decreases by four edges, then it must be
the case that e, e′ ∈ CC \ CCi and f, f ′ ∈ CCi \ CC.

We have max{|ov(e)|, |ov(e′)|} ≥ max{|ov(f)|, |ov(f ′)|}, since otherwise, MGREEDY would have
picked the edge of greater overlap between f and f ′ for inclusion in CC, before picking either one of
e or e′. We now consider four cases:

• Suppose e and e′ both belong to large cycles in CC. Then Lemma 7.10 applies and we are
done.

• Suppose e and e′ both belong to small cycles in CC. Let these two small cycles be c and
c′ respectively. If we obtain CCi+1 from CCi by performing swap(CCi, e), then M(CCi+1) \
M(CCi) = {c, c′}. Thus, using (19) together with |ov(e)| = o(c), |ov(e′)| = o(c′), and γ > 2,
we obtain

∆i < |ov(e)| − 2w(c) + |ov(e′)| − 2w(c′) .
Due to Lemma 5.9, max{|ov(f)|, |ov(f ′)|} < w(c) + w(c′). Therefore, |ov(e)| + |ov(e′)| −
|ov(f)| − |ov(f ′)| ≥ |ov(e)| − 2w(c) + |ov(e′)| − 2w(c′) > ∆i as claimed.

• Suppose e belongs to a small cycle c and e′ belongs to a large cycle c′ in CC.
We distinguish between three cases:

– If |ov(e′)| ≤ max{|ov(f)|, |ov(f ′)|}, then e is a good edge (note that o(c′) ≤ |ov(e′)|
because e′ belongs to the cycle c′) and we apply Lemma 7.8.

– If w(c) + w(c′) ≥ |ov(e′)| > max{|ov(f)|, |ov(f ′)|}, then using Lemma 5.9,

max{|ov(f)|, |ov(f ′)|} < w(c) + w(c′) = w(c) + γ · w(c′)− (γ − 1) · w(c′)
≤ w(c) + (γ − 1) · α · w(c′)− (γ − 1) · w(c′)
≤ w(c) + (γ − 1) · o(c′)− (γ − 1) · w(c′)
≤ w(c) + (γ − 1) · |ov(e′)| − (γ − 1) · w(c′)
≤ w(c) + (γ − 1) · w(c) = γ · w(c) ,

where the second line uses (10), the third line follows from c′ being large, the fourth
one from that o(c′) is the smallest overlap on cycle c′, and the fifth line uses the case
condition. Now, the increase in the total overlap when performing swap(CCi, e) is at
least |ov(e)|+ |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − |ov(f)| > o(c)− γ ·w(c) ≥ ∆i, where
we use (19) together with |ov(e)| = o(c) and γ > 1.

– Otherwise, we have |ov(e′)| > w(c) + w(c′). From Lemma 7.6, it follows that |ov(e)|+
|ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − w(c) ≥ ∆i.

• Suppose e belongs to a large cycle and e′ belongs to a small cycle in CC. Observe that
swap(CCi, e′) results in exactly the same cycle cover CCi+1 as swap(CCi, e). Therefore, we just
apply the previous argument to swap(CCi, e′), and we are done.
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Lastly, if neither of the previous two lemmas applies, we can find a good edge for sure:

Lemma 7.12. Suppose Lemmas 7.10 and 7.11 do not apply, i.e., no edge with the corresponding
properties exists. Then there exists a good edge in CC \ CCi.

Proof. Let fmax be an edge of CCi \CC that has the maximum overlap among the edges of CCi \CC.
We will show that fmax is a candidate for either f or f ′.

Let eh be the edge of CC that has the same head node as fmax and let et be the edge of
CC that has the same tail node as fmax. We will later pick one of these as our edge e. We
have |ov(fmax)| ≤ max{|ov(eh)|, |ov(et)|} as otherwise, MGREEDY would have picked edge fmax for
inclusion in CC before picking either one of eh or et.

We first show that eh or et satisfies the first condition of a good edge in Definition 7.7.

Fact 7.13.

• If |ov(eh)| ≥ |ov(fmax)|, then e = eh satisfies the first condition of a good edge.

• Similarly, if |ov(et)| ≥ |ov(fmax)|, then e = et satisfies the first condition of a good edge.

Proof.

• To see that e = eh satisfies the first condition of a good edge if |ov(eh)| ≥ |ov(fmax)|, consider
swap(CCi, eh) and use the same notation as in Figure 2.
First of all, in this case, f = fmax = (v′, v) and because fmax was chosen to have the maximum
overlap in CCi \ CC, |ov(f)| ≥ |ov(f ′)|. We conclude that |ov(e)| ≥ max{|ov(f)|, |ov(f ′)|}. If e
and e′ both belong to CC, Lemma 7.11 applies. Since we assume that the lemma does not
apply and since we know that e ∈ CC, it follows that e′ /∈ CC. If e belongs to a large cycle
in CC, Lemma 7.10 applies because e′ /∈ CC and |ov(e)| ≥ max{|ov(f)|, |ov(f ′)|}. Because
we assume that the lemma does not apply, we conclude that e must belong to a small cycle.
Together with e′ /∈ CC, this satisfies the first condition of a good edge.

• By symmetric arguments to the above, it also follows that if |ov(et)| ≥ |ov(fmax)|, then e = et
satisfies the first condition of a good edge.

To show that we can also satisfy the second or the third condition (for an edge that satisfies the
first), we distinguish three cases:
Case A: Suppose |ov(eh)| ≥ |ov(fmax)| and |ov(et)| ≥ |ov(fmax)|.

Let c be the cycle of CC to which eh belongs and let c′ be the cycle of CC to which et belongs;
see Figure 4 for an illustration. We assume that w(c) ≥ w(c′) as the arguments for the other case
are completely symmetric with the roles of eh and et reversed.

We claim that e = eh is a good edge. It follows from Fact 7.13 that e satisfies the first condition
of a good edge. Since |ov(f)| ≥ |ov(f ′)| as f = fmax, it only remains to show the second condition.
Since et is an edge in the cycle c′ in CC, we have |ov(et)| ≥ o(c′). If o(c′) ≤ |ov(f)|, the second
condition of a good edge is already satisfied. So suppose o(c′) > |ov(f)|.

Assume for a contradiction that c′ is a large cycle in CC. Then consider the edge h in CCi \ CC
that has the same head node as et. We know that |ov(f)| ≥ |ov(h)| because fmax = f was chosen to
have the maximum overlap among all edges in CCi \ CC. Hence, |ov(et)| ≥ o(c′) > |ov(f)| ≥ |ov(h)|
and thus |ov(et)| > max{|ov(f)|, |ov(h)|}. Consider swap(CCi, et), i.e., with edge et acting as edge e
in the operation. If swap(CCi, et) reduces the symmetric difference between Ci and CC by four edges,
then Lemma 7.11 applies. Otherwise, e′ 6∈ CC, so Lemma 7.10 applies as the cycle c′ containing
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u = v

u′ v′

f ′ f = fmax ∈ CCi \ CC

e′ 6∈ CC

e = eh ∈ CC
c

et ∈ CC c′

h ∈ CCi \ CC

Figure 4: Illustration of Case A in the proof of Lemma 7.12.

e = et is large. This is a contradiction to our assumption that neither Lemma 7.11 nor Lemma 7.10
can be applied.

Thus, c′ must be a small cycle. Since we initially assumed that w(c) ≥ w(c′), the second
condition in Definition 7.7 follows and thus, e is a good edge.
Case B: Suppose that |ov(eh)| ≥ |ov(fmax)| > |ov(et)|. We claim that e = eh is a good edge. It
follows from Fact 7.13 that e satisfies the first condition of a good edge. Since |ov(f)| ≥ |ov(f ′)|, it
only remains to show the second condition.

Let c′ be the cycle containing the string v′. Observe that et is an edge in the cycle c′ and recall
that f = fmax and |ov(et)| < |ov(fmax)|. We conclude that o(c′) ≤ |ov(et)| < |ov(f)|, so the second
condition in Definition 7.7 is satisfied and e is good edge.
Case C: Otherwise, since max{|ov(eh)|, |ov(et)|} ≥ |ov(fmax)|, we have |ov(et)| ≥ |ov(fmax)| >
|ov(eh)|. This case is symmetric to the previous one with the roles of et and eh swapped.

To summarize, for any arbitrary cycle cover CCi, there exists an edge e ∈ CC \ CCi such that
if we obtain the cycle cover CCi+1 from CCi by performing swap(CCi, e), then the total overlap
of CCi+1 is by at least ∆i larger than the total overlap of CCi. This follows because either one
of Lemmas 7.10 and 7.11 directly applies or, if that is not the case, Lemma 7.12 guarantees the
existence of a good edge e ∈ CC \ CCi. For such a good edge, swap(CCi, e) provides the claimed
increase of the total overlap due to Lemma 7.8.

8 Final Remarks

We have made the first progress since 2005 on the approximation factor of the GREEDY algorithm,
showing that the upper bound of 3.5 by Kaplan and Shafrir [KS05] is not the final answer. In
addition, we have also improved the approximation guarantee for the Shortest Superstring problem
in general. Both results follow from our main technical contribution, which is the inequality
o ≤ n+ α · w for α ≈ 1.425. We get this inequality by proving two incomparable upper bounds on
o, stated in (5) and (6), with the second one being better when large cycles contribute much more
to w than small cycles.
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Lastly, we want to briefly comment on whether we see potential for further improvements of
our results. We believe that the technique to prove the first bound (largely based on lemmas from
previous works) does not offer room for improvement without bringing in substantial new ideas.
On the other hand, our approach to get the second bound might have more potential for further
improvements. While we do not know specifically how, it would not be surprising to us if arguments
in the same spirit could prove inequality o ≤ n + γ ·

∑
c∈S(S)w(c) + ∑

c∈L(S)w(c) for a smaller
value of γ. However, we also believe that this would make the proof considerably longer and more
technical as, for example, more cases about how different short and long cycles interact with each
other may have to be considered. Furthermore, decreasing γ slightly does not lead to significantly
better upper bounds for GREEDY or for SSP. In fact, even for γ = 3 (compared to the current value
of ≈ 3.832), one would only obtain that o ≤ n+ 1.4 · w, which would imply an upper bound of 3.4
for GREEDY (compared to ≈ 3.425 in Theorem 1.1) and of ≈ 2.467 for the general approximation
guarantee of SSP (via Theorem 3.1, which currently gives ≈ 2.475).

References

[AS95] Chris Armen and Clifford Stein. Improved length bounds for the shortest superstring
problem (extended abstract). In Proceedings of the 4th International Workshop on
Algorithms and Data Structures (WADS), pages 494–505, 1995.

[AS98] Chris Armen and Clifford Stein. A 2 2/3 superstring approximation algorithm. Discret.
Appl. Math., 88(1-3):29–57, 1998.

[BJJ97] Dany Breslauer, Tao Jiang, and Zhigen Jiang. Rotations of periodic strings and short
superstrings. J. Algorithms, 24(2):340–353, 1997.

[BJL+91] Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear
approximation of shortest superstrings. In Proceedings of the 23rd ACM Symposium on
Theory of Computing (STOC), pages 328–336, 1991.

[CGPR97] Artur Czumaj, Leszek Gasieniec, Marek Piotrów, and Wojciech Rytter. Sequential and
parallel approximation of shortest superstrings. J. Algorithms, 23(1):74–100, 1997.

[FS96] Alan M. Frieze and Wojciech Szpankowski. Greedy algorithms for the shortest com-
mon superstring that are asymptotically optimal. In Proceedings of the 4th European
Symposium on Algorithms (ESA), pages 194–207, 1996.

[FW65] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions.
Proceedings of the American Mathematical Society, 16(1):109–114, 1965.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[GMS80] John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings.
J. Comput. Syst. Sci., 20:50–58, 1980.

[GP14] Theodoros P. Gevezes and Leonidas S. Pitsoulis. The Shortest Superstring Problem,
pages 189–227. Springer New York, New York, NY, 2014.

[IP06] Lucian Ilie and Cristian Popescu. The shortest common superstring problem and viral
genome compression. Fundamenta Informaticae, 73(1, 2):153–164, 2006.

26



[KLSS03] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation
algorithms for asymmetric TSP by decomposing directed regular multigraphs. In
Proceedings of the 44th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 56–65, 2003.

[KPS94] S. Rao Kosaraju, James K. Park, and Clifford Stein. Long tours and short superstrings. In
Proceedings of the 35th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 166–177, 1994.

[KS05] Haim Kaplan and Nira Shafrir. The greedy algorithm for shortest superstrings. Inf.
Process. Lett., 93(1):13–17, 2005.

[KS13] Marek Karpinski and Richard Schmied. Improved inapproximability results for the
shortest superstring and related problems. In Proceedings of the 19th Computing: The
Australasian Theory Symposium (CATS), pages 27–36, 2013.

[Les88] Arthur M. Lesk. Computational Molecular Biology: Sources and Methods for Sequence
Analysis. Oxford University Press, 1988.

[Li90] Ming Li. Towards a DNA sequencing theory (learning a string). In Proceedings of the
31st IEEE Symposium on Foundations of Computer Science (FOCS), pages 125–134,
1990.

[Ma09] Bin Ma. Why greed works for shortest common superstring problem. Theor. Comput.
Sci., 410(51):5374–5381, 2009.

[MJ16] Eugene W. Myers Jr. A history of DNA sequence assembly. It-Information Technology,
58(3):126–132, 2016.

[Muc07] Marcin Mucha. A tutorial on shortest superstring approximation. https://www.mimuw.
edu.pl/˜mucha/teaching/aa2008/ss.pdf, 2007. [Accessed 28-October-2021].

[Muc13] Marcin Mucha. Lyndon words and short superstrings. In Proceedings of the 24th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 958–972, 2013.

[Pal20] Katarzyna Paluch. New approximation algorithms for maximum asymmetric traveling
salesman and shortest superstring. https://arxiv.org/abs/2005.10800, 2020.

[PEvZ12] Katarzyna Paluch, Khaled Elbassioni, and Anke van Zuylen. Simpler approximation
of the maximum asymmetric traveling salesman problem. In Proceedings of the 29th
Symposium on Theoretical Aspects of Computer Science (STACS), pages 501–506, 2012.

[Sto88] James A. Storer. Data Compression: Methods and Theory. Addison-Wesley, 1988.

[Swe99] Z. Sweedyk. A 2½-approximation algorithm for shortest superstring. SIAM J. Comput.,
29(3):954–986, 1999.

[TU88] Jorma Tarhio and Esko Ukkonen. A greedy approximation algorithm for constructing
shortest common superstrings. Theor. Comput. Sci., 57:131–145, 1988.

[Tur89] Jonathan S. Turner. Approximation algorithms for the shortest common superstring
problem. Inf. Comput., 83(1):1–20, 1989.

27

https://www.mimuw.edu.pl/~mucha/teaching/aa2008/ss.pdf
https://www.mimuw.edu.pl/~mucha/teaching/aa2008/ss.pdf
https://arxiv.org/abs/2005.10800


[TY93] Shang-Hua Teng and F. Frances Yao. Approximating shortest superstrings. In Proceedings
of the 34th IEEE Symposium on Foundations of Computer Science (FOCS), pages 158–
165, 1993.

A Proof of Theorem 3.1

For completeness, we provide a proof of Theorem 3.1. The proof entirely follows the ideas from
Theorem 21 in [Muc07].

We start by observing that the existence of a δ-approximation algorithm for MaxATSP also
implies the existence of a δ-approximation algorithm for MaxATSP path, i.e., the longest Hamiltonian
path. This is because we can add one node to our graph which has outgoing and incoming edges to
and from all other nodes, and all of these additional edges have profit 0. A TSP tour in this graph
corresponds to a Hamiltonian path of equal profit in the original graph, and vice versa.

Given S, we compute CC(S) and obtain the set of representative strings R. The string that
MGREEDY generates is simply a concatenation of all these representative strings. Suppose this
superstring has length x.

If we were not computationally bounded, we could also optimally merge the representative
strings instead of naively concatenating them. Optimally merging the representative strings means
finding an optimal solution for the SSP instance that has R as its set of input strings. The following
lemma states that optimally merging the representative strings would result in a 2-approximation
for the input S.

Lemma A.1. An optimal superstring for input R is at most twice as long as an optimal superstring
for input S.

Proof. The proof follows the same idea as Lemma 7.1. Consider the following superstring for R:
For each cycle c, we take the single string sc0 . Let S′ ⊆ S be the set of these strings for all cycles.
Let t be an optimal superstring for this set S′ of strings. Clearly |t| ≤ |OPT(S)|. Now for each
string sc0 ∈ S′ replace one occurrence of the string sc0 in t by the string

pref(sc0 , sc1)pref(sc1 , sc2) . . . pref(scr−2 , scr−1)pref(scr−1 , sc0)sc0 .

This increases the length of t by ∑cw(c) ≤ |OPT(S)| and results in a superstring for R.

Since we do not know how to compute this optimal solution for R efficiently, we instead use
the δ-approximation algorithm for MaxATSP path on the corresponding overlap graph. Suppose
the optimal value (i.e. maximum total overlap) for this MaxATSP path problem is y. Then, using
Lemma A.1 and that x is the total length of representative strings, we have x− y ≤ 2 · |OPT(S)|
or, equivalently, y ≥ x− 2 · |OPT(S)|. Therefore, using the δ-approximation algorithm we obtain
a superstring of length at most x− δ · y ≤ x− δ · (x− 2 · |OPT(S)|) = (1− δ) · x+ 2δ · |OPT(S)|.
Now, the theorem directly follows by using x ≤ (2 + α) · |OPT(S)|.
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