Streaming Algorithms for Geometric Steiner Forest

Artur Czumaj* Shaofeng H.-C. Jiang! Robert Krauthgamer?
University of Warwick Peking University Weizmann Institute of Science

Pavel Vesely?
Charles University

November 4, 2021

Abstract

We consider an important generalization of the Steiner tree problem, the Steiner forest
problem, in the Euclidean plane: the input is a multiset X C R?, partitioned into k color classes
C1,C4,...,Cr € X. The goal is to find a minimum-cost Euclidean graph G such that every
color class C} is connected in G. We study this Steiner forest problem in the streaming setting,
where the stream consists of insertions and deletions of points to X. Each input point z € X
arrives with its color color(xz) € [k], and as usual for dynamic geometric streams, the input
points are restricted to the discrete grid {0,..., A}2.

We design a single-pass streaming algorithm that uses poly(k - log A) space and time, and
estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous
Euclidean Steiner ratio ag (currently 1.1547 < «ay < 1.214). This approximation guarantee
matches the state of the art bound for streaming Steiner tree, i.e., when k£ = 1. Our approach
relies on a novel combination of streaming techniques, like sampling and linear sketching, with
the classical Arora-style dynamic-programming framework for geometric optimization problems,
which usually requires large memory and has so far not been applied in the streaming setting.

We complement our streaming algorithm for the Steiner forest problem with simple arguments
showing that any finite approximation requires Q(k) bits of space.

*Research partially supported by the Centre for Discrete Mathematics and its Applications (DIMAP), by a
Weizmann-UK Making Connections Grant, by an IBM Faculty Award, and by EPSRC award EP/V01305X/1. Email:
A.Czumaj@warwick.ac.uk

tPart of this work was done when the author was at the Weizmann Institute of Science and Aalto University.
Email: shaofeng.jiang@pku.edu.cn

fWork partially supported by ONR Award N00014-18-1-2364, by the Israel Science Foundation grant
#1086/18, by a Weizmann-UK Making Connections Grant, and by a Minerva Foundation grant. Email:
robert.krauthgamer@weizmann.ac.il

$Part of this work was done when the author was at the University of Warwick. Partially supported by European
Research Council grant ERC-2014-CoG 647557, by a Weizmann-UK Making Connections Grant, by GA CR project
19-27871X, and by Charles University project UNCE/SCI/004. Email: vesely@iuuk.mff.cuni.cz

1 Introduction

We study combinatorial optimization problems in dynamic geometric streams, in the classical
framework introduced by [Ind04]. In this setting, focusing on low dimension d = 2, the input
point set is presented as a stream of insertions and deletions of points restricted to the discrete
grid [A]? := {0,...,A}2. Geometric data is very common in applications, and has been a central
object of algorithmic study, from different computational paradigms (like data streams, property
testing and distributed /parallel computing) to different application domains (like sensor networks
and scientific computing). Research on geometric streaming algorithms has been very fruitful, and
in particular, streaming algorithms achieving (1 4 ¢)-factor estimation (i.e., approximation of the
optimal value) have been obtained for fundamental geometric problems, such as k-clustering [FS05,
BFL"17, HSYZ19], facility location [LS08, CLMS13], and minimum spanning tree (MST) [FIS08].

Despite this significant progress, some similarly looking problems are still largely open. Specifi-
cally, for the TSP and Steiner tree problems, which are the cornerstone of combinatorial optimiza-
tion, it is a major outstanding question (see, e.g., [Soh12]) whether a streaming algorithm can
match the (1+¢)-approximation known for the offline setting [Aro98, Mit99]. In fact, the currently
best streaming algorithms known for TSP and Steiner tree only achieve O(1)-approximation, and
follow by a trivial application of the MST streaming algorithm.

While MST is closely related to TSP and Steiner tree — their optimal values are within a
constant factor of each other — it seems unlikely that techniques built around MST could achieve
(1 + e)-approximation for either problem. Indeed, even in the offline setting, the only approach
known to achieve (1 + ¢)-approximation for TSP and/or Steiner tree relies on a framework devised
independently by Arora [Aro98] and Mitchell [Mit99], that combines geometric decomposition (e.g.,
a randomly shifted quad-tree) and dynamic programming. These two techniques have been used
separately in the streaming setting in the past: quad-tree decomposition in [ABIW09, AIKO0S,
Cha02, CLMS13, FIS08, FS05, IT03, LS08] and dynamic programming, mainly for string processing
problems, in [BZ16, CGK16, CFH" 21, EJ15, GJKK07, SS13, SW07]. However, we are not aware of
any successful application of the Arora/Mitchell framework, which combines these two approaches,
for any geometric optimization problem whatsoever.

We make an important step towards better understanding of these challenges by developing
new techniques that successfully adapt the Arora/Mitchell framework to streaming. To this end, we
consider a generalization of Steiner tree, the classical Steiner Forest Problem (SFP). In this
problem (also called Generalized Steiner tree, see, e.g., [Aro98]), the input is a multiset of n terminal
points X C [A]?, partitioned into k color classes X = Cy - --UCy, presented as a dynamic stream.
In addition, apart from the coordinates of the point x € X, its color color(x) € [k] is also revealed
upon its arrival in the stream'. The goal is to find a minimum-cost Euclidean graph G such that
every color class C}; is connected in G. Observe that the Steiner tree problem is a special case of
SFP in which all terminal points should be connected (i.e., K = 1). Similarly to the Steiner tree
problem, a solution to SFP may use points other than X; those points are called Steiner points.

Remark. In the literature, the term SFP sometimes refers to the special case where each color class
contains only a pair of points, i.e., each C; = {s;,t;}, see, e.g., [BH12, BHM11, BKM15, CHJ18,
GK15]. It is not difficult to see (see [Sch16]) that one can reduce one problem into another in the
standard setting of offline algorithms. The special case of pairs is often simpler to present and does
not restrict algorithmic generality for offline algorithms, even though the setting considered here is
more natural for applications (cf. [MWO95]). Nevertheless, an important difference that we explore

!The points are arriving and leaving in an arbitrary order; there is no requirement that each color arrives in a
batch, i.e., that its points are inserted/deleted consecutively in the stream; we discuss this special case in Section 6.

is that the definition used here allows for better parameterization over the number of colors k.

Background. While one might hope for a streaming algorithm for SFP with o(k) space, we
observe that this task is impossible, even in the one-dimensional case. In Theorem 4.1, we present
a reduction that creates instances of SFP in R such that every streaming algorithm achieving any
finite approximation ratio for SFP must use Q(k) bits of space. This holds even for insertion-only
algorithms, and even if all color classes are of size at most 2, and thus the input size is n < 2k.
Even for k = 1, which is the famous Steiner tree problem, the only known streaming algorithm
is to estimate the cost of a minimum spanning tree (MST) and report it as an estimate for SFP. It
is useful to recall here the Steiner ratio oy, defined as the supremum over all point sets X C R?, of
the ratio between the cost of an MST and that of an optimal Steiner tree. The famous Steiner ratio
Gilbert-Pollak Conjecture [GP68] speculates that ag = % ~ 1.1547, but the best upper bound to

date is only that ap < 1.214 [CGS85]. It follows that employing the streaming algorithm of Frahling,
Indyk, and Sohler [FIS08], which (1 + ¢)-approximates the MST cost using space poly(s~!log A),
immediately yields a streaming algorithm that (ag + ¢)-approximates the Steiner tree cost, with
the same space bound.

1.1 Our Contribution

Our main result, stated in Theorem 1.1, is a space and time efficient, single-pass streaming algorithm
that estimates the optimal cost OPT for SFP within (ay +) factor. Our space bound is nearly
optimal in terms of the dependence in k, since any finite approximation for SFP requires space
Q(k) (Theorem 4.1), and our ratio matches the state of the art even for the special case k = 1.

Theorem 1.1 (Informal version of Theorem 3.1). For any integers k, A > 1 and any fized € > 0,
one can with high probability (cs + €)-approzimate the SFP cost of an input X C [A]? presented as
a dynamic geometric stream, using space and query and update times all bounded by poly(k-log A).

We notice that while the algorithm in Theorem 1.1 returns only an approximate cost of the
optimal solution and it cannot return the entire approximate solution (since the output is of
size Q(n)), an additional desirable feature of our algorithm in Theorem 1.1 is that it can return
information about the colors in the trees in an approximate solution. That is, our algorithm can
maintain a partition of the colors used in X into Iy,...,I, C {1,...,k}, so that the sum of the
costs of the minimum-cost Steiner trees for sets | J;. 1, Ci is an (a2 + €)-approximation of SFP. It
is worth noting that in estimating the optimal cost, our algorithm does use Steiner points. This
means that the MST costs for sets [J;c I C; of the aforementioned partition may be by an O(1)
factor larger than the estimate of the algorithm.

Comparision to a simple exponential-time approach. As we shall discuss in Section 1.2,
a simple brute force enumeration combined with linear sketching techniques yields a streaming
algorithm also with near-optimal space, but significantly worse running time that is exponential in
k. Technically, while this approach demonstrates the amazing power of linear sketching, its core
is exhaustive search rather than an algorithmic insight, and thus it is quite limited, offering no
path for improvements or extensions. Furthermore, the poly(k) running time in Theorem 1.1 is
exponentially better than the exhaustive search, which seems to be a limit of what linear sketching
could possibly achieve. Therefore even though the primary focus of streaming algorithms is on
their space complexity, the improvement of the running time is critical in terms of pursuing
efficient algorithms and making our techniques broadly applicable. Indeed, similar exponential

improvements of running time have been of key importance in the advances of various other
fundamental streaming problems, for instance, for moment estimation the query time was improved
from poly(¢~1) to poly log(e 1) [KNPW11], and for heavy hitters from poly(n) to poly log(n) [LNNT19].

1.1.1 Technical Contribution: Adapting Arora’s Framework to Streaming

We introduce a method to efficiently implement an offline Arora-style [Aro98] dynamic-programming
framework based on the quad-tree decomposition in the streaming setting. This method, which is
probably the first of its kind for geometric streams, is our main technical contribution.

In the offline setting, Borradaile, Klein, and Mathieu [BKM15] and then Bateni and Hajiaghayi
[BH12] extended the Arora’s approach to obtain a polynomial-time approximation scheme (PTAS)
for SFP. The key insight of these works is that one can tweak the optimal solution so that its
cost remains nearly optimal, but it satisfies certain structural properties that allow for designing
a suitable dynamic program. In Section 2, we review the structural theorem and the dynamic-
programming approach for SFP from [BH12, BKM15] in more detail.

The main difficulty of using the Arora-style approach in low-space streaming is that in general,
such approach requires access to all input points, that is, Q(n) space to store 2(n) leaves at the
bottom of the quad-tree input decomposition that have to be considered as basic subproblems. In
order to ensure a low-space implementation of the Arora-style framework in the streaming setting,
we will use only O(klog A) non-uniform leaf nodes of the quad-tree, each corresponding to a square.
The definition of these leaf nodes is one of the novel ideas needed to make the dynamic-programming
approach work in the streaming setting. Moreover, since each internal node in the quad-tree has
degree 4, the total number of quad-tree squares to consider is thus O(k - log A).

The next challenge is that for the dynamic program to run, we need to find an (ag + €)-
approximate estimation for each new leaf and each dynamic-programming subproblem associated
with it. The definition of leaf squares will enable us to reduce it to estimating the MST cost for a
certain subset of points inside the square. It would then be natural to just employ the MST sketch
designed in [FISO8] to estimate the MST cost, in a black box manner. However, the leaf squares
are not known in advance as we can only find them after processing the stream and thus, it is
impossible to build the MST sketch for each leaf square and each subproblem associated with it.
To overcome this, we observe that in essence, the MST sketch consists of uniformly sampled points
(with suitably rounded coordinates). We thus obtain the MST sketch for each color separately and
we only use the sampled points that are relevant for the subproblem to estimate the MST cost for
the subproblem, in a way similar to [FIS08].

However, due to restricting the attention to a single subproblem, the original analysis of the
MST sketch in [FIS08] has to be modified as we need to deal with additional technical challenges.
For instance, we may not sample any point relevant to a leaf square in case there are relatively
few points in it. We will need to account for the error arising from this case in a global way, by
observing that in such a case, the MST cost inside the leaf square is a small fraction of the overall
cost.

Further, to be able to accurately enumerate the subproblems for a leaf square, we need to
know the set of color classes that intersect every leaf square, but unfortunately doing so exactly
is impossible in the streaming setting. To this end, we employ a J-net for a small-enough §, so
that the intersection test can be approximately done by only looking at the nearby net points. We
show that this only introduces a small error for SFP, and that this §-net can be constructed in a
dynamic stream, using space by only a factor of poly log(A) larger than the net. Finally, we apply
the dynamic program using our leaf nodes as basic subproblems to obtain the estimation.

1.2 Could Other Approaches Work?

A simple exponential-time streaming algorithm based on linear sketching. An obvious
challenge in solving SFP is to determine the connected components of an optimal (or approximate)
solution. Each color class must be connected, hence the crucial information is which colors are
connected together (even though they do not have to be). Suppose momentarily that the algorithm
receives an advice with this information, which can be represented as a partition of the color set
[k] = P U---U P. Then a straightforward approach for SFP is to solve the Steiner tree problem
separately on each part P; (i.e., the union of some color classes), and report their total cost. In our
streaming model, we could apply the aforementioned MST-based algorithm [FIS08], using space
poly(e~!log A), to achieve (o + €)-approximation, and we would need | < k parallel executions
of it (one for each P;). An algorithm can bypass having such an advice by enumeration, i.e., by
trying in parallel all the k¥ partitions of [k] and reporting the minimum of all their outcomes. This
would still achieve (ag + €)-approximation, because each possible partition gives rise to a feasible
SFP solution (in fact, this algorithm optimizes the sum-of-MST objective). However, this naive
enumeration increases the space and time complexities by a factor of O(k¥). We can drastically
improve the space complexity by the powerful fact that the MST algorithm of [FIS08] is based on
a linear sketch, i.e., its memory contents is obtained by applying a (randomized) linear mapping to
the input X. The huge advantage is that linear sketches of several point sets are mergeable. In our
context, one can compute a linear sketch for each color class C;, and then obtain a sketch for the
union of some color classes, say some P;, by simply adding up their linear sketches. These sketches
are randomized, and hence, one has to make sure they use the same random coins (same linear
mapping), and also to amplify the success probability of the sketches so as to withstand a union
bound over all 2F subsets P; C [k]. This technique improves the space complexity and update time
to be polynomial in k, basically poly(ke~!log A), however the query time is still exponential in k
(see Theorem 5.1 for details).

Tree embedding. Indyk [Ind04] incorporated the low-distortion tree embedding approach of
Bartal [Bar96] to obtain dynamic streaming algorithms with O(log A) ratio for several geometric
problems. This technique can be easily applied to SFP as well, but the approximation ratio is
O(log A) which is far from optimal, far from what we are aiming at.

Other O(1)-approximate offline approaches. In the regime of O(1)-approximation, SFP has
been extensively studied using various other techniques, not only dynamic programming. For
example, in the offline setting there are several 2-approximation algorithms for SFP using the
primal-dual approach and linear programming relaxations [AKR95, GW95, Jai0l], and there is
also a combinatorial (greedy-type) constant-factor algorithm called gluttonous [GK15]. Both of
these approaches work in the general metric setting. While there are no known methods to
turn the LP approach into low-space streaming algorithms, the gluttonous algorithm of [GK15]
might seem amenable to streaming. Indeed, it works similarly to Kruskal’s MST algorithm as
it also builds components by considering edges in the sorted order by length, and the MST cost
estimation in [FIS08] is similar in flavor to Kruskal’s algorithm. However, a crucial difference is
that the gluttonous algorithm stops growing a component once all terminals inside the component
are satisfied, i.e., for each color 7, the component either contains all points of C;, or no point from
C;. This creates a difficulty that the algorithm must know for each component whether or not
it is “active” (i.e., not satisfied), and there are up to n components, requiring overall (n) bits
of space. This information is crucial because “inactive” components do not have to be connected
to anything else, but they may help to connect two still “active” components in a much cheaper

way than by connecting them directly. Apart from these implementation challenges, we have a
simple one-dimensional example showing that the approximation ratio of the gluttonous algorithm
cannot be better than 2 (moreover, its approximation guarantee in [GK15] is significantly larger
than 2). In comparison, our dynamic-programming approach gives a substantially better ratio of
ag + €. Nevertheless, it is an interesting open question whether the gluttonous algorithm admits a
low-space streaming implementation.

1.3 Related Work

SFP has been extensively studied in operations research and algorithmic communities for several
decades. This problem has been also frequently considered as a part of a more general network
design problem (see, e.g., [AKR95, GW95, Jai01, MW95]), where one could require for some subsets
of vertices to maintain some higher inter-connectivity.

In the classical, offline setting, it is known that the Steiner tree problem, and thus also SFP
which is more general, is NP-hard and APX-hard in general graphs and in high-dimensional
Fuclidean spaces. In general graphs, a 2-approximation algorithm is known due to Agrawal,
Klein and Ravi [AKR95] (see also [GW95, JaiOl]). These 2-approximation algorithms rely on
linear programming relaxations, and the only two combinatorial constant-factor approximations
for SFP were recently devised by Gupta and Kumar [GK15] and by Groff et al. [GGK™18].
For low-dimensional Euclidean space, which is the main focus of our paper, Borradaile, Klein,
and Mathieu [BKM15] and then Bateni and Hajiaghayi [BH12] obtained (1 + ¢)-approximation,
i.e., a PTAS, by applying dynamic programming and geometric space decomposition, significantly
extending the approach of Arora [Aro98]. Further extensions of the dynamic-programming approach
have led to a PTAS for metrics of bounded doubling dimension [CHJ18] and for planar graphs and
graphs of bounded treewidth [BHM11].

There has been also extensive work for geometric optimization problems in the dynamic (turnstile)
streaming setting, with low space. Indyk [Ind04] introduced this framework and designed O(log A)-
estimation algorithms for several basic problems, like MST and matching. Follow-up papers
presented a number of streaming algorithms achieving approximation ratio of 1 + ¢ or O(1) to
the cost of Euclidean MST [FISO08], various clustering problems [FS05, HM04], geometric facility
location [CLMS13, LS08], earth-mover distance [ABIW09, Ind04], and various geometric primitives
(see, e.g., [AN12, Cha06, Chal6, FKZ05]). Some papers have studied geometric problems with
superlogarithmic but still sublinear space and in the multipass setting (see, e.g., [ANOY14]). We
are not aware of prior results for the (Euclidean) Steiner tree problem nor SFP in the streaming
context, although (1 + ¢)-approximation of the MST cost [FIS08] immediately gives a (ag + €)-
approximation of the Euclidean Steiner tree.

1.4 Future Directions

We believe that our paper is an important step towards understanding the applicability of Arora’s
framework for low-space streaming algorithms for geometric optimization problems. Still, our work
leaves a number of open problems which should be of broad interest for streaming researchers.
We refer the reader to Section 6 for an exhaustive list of open problems related to our work, but
here we mention the main open problem: Our approximation ratio as + € matches the current
state of the art approximation ratio for the Steiner tree problem in geometric streams. Hence,
any improvement to our approximation ratio would require to first improve the approximation for
Steiner tree, even in insertion-only streams. This naturally leads to the main open problem of
obtaining a (1 + ¢)-approximation for Steiner tree in geometric streams using only poly (¢! log A)

space.

2 Preliminaries

2.1 Notations

For z,y € R?, let dist(z,y) := ||z—yl|2. For two subsets S, T € R?, let dist(S, T) := minges yer dist(z, y).
For S C R?, let diam(S) := max, yegdist(z,y). A p-packing S C R? is a point set such that
Va,y € S, dist(z,y) > p. A p-covering of X is a subset S C R2, such that Vz € X, 3y € S,
dist(z,y) < p. We call S C R? a p-net for X if it is both a p-packing and a p-covering for X.

: d
Fact 2.1 (Packing Property, cf. [Pol90, Lemma 4.1]). A p-packing S C RY has size |S| < (%@) .

Metric graphs. We call a weighted undirected graph G = (X, E,w) a metric graph if for every
edge {u,v} € E, w(u,v) = dist(u,v), and we let w(G) to be the sum of the weights of edges in G.
A solution F' of SFP may be interpreted as a metric graph. For a set of points S (e.g., S can be
a square), let F'|g be the subgraph of F' formed by edges whose both endpoints belong to S. Note
that we think of F' as a continuous graph in which every point of an edge is itself a vertex, so F|g
may be interpreted as a geometric intersection of F' and S.

Randomly-shifted quad-trees [Aro98]. Without loss of generality, suppose that A is a power
of 2, and let L := 2A. A quad-tree sub-division is constructed on [L]?. In the quad-tree, each node
u corresponds to a square R, and if it’s not a leaf, it has four children, whose squares partition R,,.
The squares in the quad-tree are of side-lengths that are powers of 2, and we say a square R is of
level i if its side-length is 2° (this is also the level of its corresponding node in the quad-tree, where
leaves have level 0 and the root is at level log, L). The whole quad-tree is shifted by a random
vector in [—A,0]2. Throughout, we assume a randomly-shifted quad-tree has been sampled from
the very beginning. When we talk about a quad-tree square R, we interpret it as the point set that
consists of both the boundary and the internal points. For i = 0,...log, L, let 2i-grid G; C R? be
the set of centers of all level-i squares in the quad-tree.

2.2 Review of Dynamic Programming (DP) [BH12, BKM15]

The PTAS for geometric SFP in the offline setting [BH12, BKM15] is based on the quad-tree sub-
division framework of Arora [Aro98], with modifications tailored to SFP. For each square R in the
(randomly-shifted) quad-tree,

e O(c7'log L) equally-spaced points on the four boundary edges are designated as portals; and
e the v x v sub-squares of R are designated as cells of R, denoted cell(R), where 7 = O(c~!) is

a power of 2.

For each square R in the quad-tree, let R be the boundary of R (which consists of four segments).
The following is the main structural theorem from [BH12], and an illustration of it can be found
in Figure 1la.

Theorem 2.2 ([BH12]). For an optimal solution F of SEFP, there is a solution F' (defined with
respect to the randomly-shifted quad-tree), such that

1. w(F") < (14 0(¢e)) - w(F) with constant probability (over the randomness of the quad-tree);

2. For each quad-tree square R, F'|ar has at most O(e~!) components, and each component of
F'|gr contains a portal of R;

3. For each quad-tree square R and each cell P of R, if two points x1,x2 € X NP are connected
to OR wvia F', then they are connected in F'|g; this is called the cell property.

It suffices to find the optimal solution that satisfies the structure defined in Theorem 2.2. This
is implemented using dynamic programming (DP), where a subproblem of the DP is identified as
a tuple (R, A, f,1I), specified as follows:

e R is a quad-tree square;
e Ais a set of at most O(e~!) active portals through which the local solution enters/exits R;
o f:cell(R) — 24 s.t. for S € cell(R), f(S) represents the subset of A that S connects to;

e II is a partition of A, where active portals in each part of II have to be connected outside of
R (in a larger subproblem).

The use of R and A is immediate, and f is used to capture the connectivity between cells and
portals (this suffices because we have the “cell property” in Theorem 2.2). Finally, II is used to
ensure feasibility, since a global connected component may be broken into several components in
square R, and it is important to record whether or not these components still need to be connected
from outside of R. An optimal solution for subproblem (R, A, f,II) is defined as a minimum weight
metric graph in R that satisfies the constraints A, f, II.

Remark 2.3. Strictly speaking, we use a simplified definition of DP subproblems, compared to [BH12].
Namely, one can additionally require that for any two cells S, 5" € cell(R), either f(S) = f(S")

or f(S)N f(S") = 0 and that any active portal in A appears in f(S) for some cell S. Then, f

defines a partition of cell(R) and of A into local components inside R (taking into account only

components connected to OR), and II should encode which local components need be connected

from the outside of R, implying that II should be a partition of local components (instead of A).

Thus, II can also be thought of as a partition of the partition of A induced by f. We chose to give

a more relaxed definition of DP subproblems as it is sufficient for describing how to implement the

DP approach in the streaming setting.

Standard combinatorial bounds show that the number of subproblems associated with each
square is bounded by (e71 - log A)P€ ™) (see [BH12)).

3 Streaming Dynamic Programming: k*-time-and-space Algorithm

In this section, we prove our main result, Theorem 1.1, restated with more precise bounds. Formally,
we call the time for processing inserting/deleting one point as update time, and for reporting the
estimate of OPT the query time.

Theorem 3.1. For any integers k,A > 1 and any 0 < ¢ < 1/2, one can with high probability
(ag + €)-approzimate the SFP cost of an input X C [A]? presented as a dynamic geometric stream,
using space and update time of k® - poly(logk - €1 - log A) and with query time bounded by k> -
poly(log k) - (67! - log A)O™),

Overview. As reviewed in Section 2.2, a PTAS has been shown for SFP in the offline setting
[BH12, BKM15]. Our overall approach for the streaming algorithm is to modify this algorithm,
which is based on dynamic programming (DP). Observe that one important reason that the DP

requires €2(n) space is that €(n) leaves in the quad-tree have to be considered as basic subproblems

which correspond to singletons. To make the DP use only O(poly(k)) space, we wish to use only
O(poly(k)) leaf nodes. Indeed, since each internal node in the quad-tree has degree 4, the total
number of squares to consider is thus O(poly(k)). Furthermore, we design an algorithm that
runs in time and space O(poly(k)) and finds an (g + €)-approximate estimation for each new
leaf and each DP subproblem associated with it. Finally, we apply the DP using such leaves as
basic subproblems to obtain the estimation. We start with a description of this approach in the
offline setting (Section 3.1), and we make it streaming in Section 3.2. We then give the proof of

Theorem 3.1 in Section 3.3.

3.1 Offline Algorithm

New definition of basic subproblems. Each of our new leaves in the DP will be a simple
square defined below. The idea behind the definition is also simple: If no color is contained in R,
then all points inside R must be connected to OR, so we can make better use of the cell property
in Theorem 2.2.

Definition 3.2 (Simple squares). We call a square R simple if for every 1 < i < k, C; N R # C;.
In other words, there is no color totally contained in R.

We note that the number of all possible simple squares can still be large (in particular, any
empty square is simple as well as any square containing a single point of color C; with |C;| > 2),
and we use Lemma 3.3 below to show the existence of a small subset of simple squares that covers
the whole instance and can be found efficiently. Our new leaves are naturally defined using such
subset of squares.

Lemma 3.3. There is a subset R of disjoint simple squares, such that the union of the squares in

R covers X, and |R| = O(k -log A).

Proof. Consider the recursive procedure specified in Algorithm 1 that takes as input a square R
and returns a set of disjoint simple squares R that covers R; see Figure 1b for an illustration of
the outcome of the procedure. For our proof, we apply the procedure with R being the root square
covering the whole instance.

Algorithm 1 Algorithm for finding simple squares

1: procedure SIMP-SQUARE(R)

2 if R is simple then

3 return {R}

4 else

5: let {R;}; be the child squares of R in the quad-tree
6: return | J; SIMP-SQUARE(R;)

7 end if

8: end procedure

Suppose the procedure returns R. We call a square R intermediate square if it is a square visited
in the execution of the algorithm and it is not simple (i.e., R contains a color class). We observe
that |R| is O(1) times the number of intermediate squares. On the other hand, each color C; can
be totally contained in at most O(log A) intermediate squares. Therefore, |[R| = O(k -log A). O

(a) structural property (b) simple squares (c) compatibility checking

Figure 1: Illustrations of the structural properties of Theorem 2.2 (Figure la), construction of
simple squares by Algorithm 1 (Figure 1b) and the approximate compatibility checking idea in
Section 3.2.2 (Figure lc). Figure la shows a square R with portals (crosses) on JR, the 4 x 4
cells of R, and the part of solution F’|g, such that F’|r passes OR through four portals ay,as, as, b
on the sides, and in each cell, points that are connected by F’ to R in the cell are connected in
R. Figure 1b demonstrates the 13 simple squares constructed by Algorithm 1 for the three colors
(noting that the 5 empty squares are also included as simple squares). In Figure lc, red points
are data points, cross points are the net points constructed from the data, and the black hollowed
points are the added points for cells that are close-enough to a net point (for simplicity, not shown
for cells containing a data point).

Approximation algorithm for subproblems on simple squares. Fix some simple square
R. We now describe how each DP subproblem (R, A, f,II) associated with R can be solved directly
using an ag-approximation algorithm that is amenable to the streaming setting.

Since R is a simple square, every point in R has to be connected to the outside of R, as otherwise
the color connectivity constraint is violated. Hence, by the cell property of Theorem 2.2, for every
cell R’ € cell(R), all points in R’ are connected in R.

Therefore, we enumerate all possible partitions of cell(R) that is consistent with the f constraint.
For each partition, we further check whether it satisfies the constraint defined by II. To do so, for
each cell R’ € cell(R), we scan through all colors, and record the set of colors Cr C C that intersects
R’. The Cg'’s combined with the f constraint as well as the enumerated connectivity between cells
suffice for checking the II constraint.

Observe that every feasible solution of the subproblem corresponds to the above-mentioned
partition of cells. Therefore, to evaluate the cost of the subproblem, we evaluate the sum of the
MST costs of the parts in each partition and return the minimum one.

The time complexity for evaluating each subproblem is bounded since |A] = O(s~!) and
|cell(R)| = O(¢72). The approximation ratio is ag because we use MST instead of Steiner tree
for evaluating the cost. Using MST will enable us to implement this algorithm in the streaming
setting.

3.2 Building Blocks for Streaming Algorithm

We implement the offline algorithm in the streaming setting. As we shall see, the offline algorithm
consists of several important steps that are nontrivial to implement in the streaming setting. Thus,

we start with presenting the streaming building blocks of these important steps, in Sections 3.2.1
to 3.2.3.

3.2.1 Constructing Simple Squares in the Streaming Setting

The first step is to construct a set of simple squares, as in Lemma 3.3, and an offline construction
is outlined in Algorithm 1. For the streaming construction of simple squares, we observe that the
key component of Algorithm 1 is a subroutine that tests whether a given square is simple or not.
To implement the subroutine, we use a streaming algorithm to compute the bounding square for
each color, and we test whether a given square contains any bounding square as a sub-square.

Lemma 3.4. Algorithm 1 can be implemented in the streaming setting, using space O(k poly log A)
and in time O(k polylog A) per stream update, with success probability at least 1 — poly(A~1).

Proof. We show that for a point set S C [A]? and a quad-tree decomposition, the smallest quad-tree
square that contains S as a subset can be computed in the dynamic streaming setting, as stated
in Algorithm 2. We argue that Algorithm 2 indeed finds the minimal enclosing quad-tree square

Algorithm 2 Finding the minimal enclosing quad-tree square

1: procedure MIN-SQAURE(S C [A]?)
2: for each 1 < i < log, L, maintain sketch K; of Lemma A.1 for the 2°-grid G; (see Section 2),
with parameter T' =1

3: for insertion/deletion of point z in the stream do
4: for i +0,...,log, L do
5: let y € G; be the grid point for the level-i square that x belongs to
> recall that grid points in G; are centers of level-i squares
6: increase/decrease the frequency of y by 1 in sketch K;
7 end for
8 end for > the stream terminates, and the computing phase starts
9 find the smallest ¢ such that sketch K; returns exactly one element, and return the

corresponding square
10: end procedure

for a point set S, with high probability (w.h.p.). Suppose R is the minimal quad-tree square that
contains S, and suppose R is of level i. Then all points in .S correspond to the same grid point y in
Gi, so K; returns exactly square R w.h.p. On the other hand, for any level i’ < 4, sketch ;s either
reports that the number of non-empty grid squares is larger than 2, or returns 2 squares w.h.p.
This concludes that Algorithm 2 finds exactly the minimal enclosing square of S w.h.p.

We apply Algorithm 2 for each color C; € C. After the stream ends, we get the bounding
squares {R;}; for colors {C;};. Then we execute Algorithm 1 using the bounding squares {R;}. In
particular, to test whether a square R is simple or not, it suffices to scan through all the bounding
squares {R;};, and R is simple if and only if R does not contain any R; as a sub-square (note that
if R = R; for some ¢, then R is not simple).

By the guarantee of Lemma A.1, the space is bounded by O(k polylogA), and the overall
success probability is at least 1 — poly(A~1). O

3.2.2 Approximate Compatibility Checking

Suppose we apply Lemma 3.4, and it yields a set of simple squares R. We proceed to evaluate
the cost of the DP subproblems associated with each simple square. Fix a simple square R € R.

10

We next describe how to evaluate the cost for every subproblem associated with R, in a streaming
manner.

Suppose we are to evaluate the cost of a subproblem (R, A, f,II). Since R is known, we have
access to cell(R), and hence, we can enumerate the connectivity between the cells, which is a
partition of cell(R), on-the-fly without maintaining other information about the input. Similarly,
we can check the compatibility of the partition of cells with the f constraint, since the constraint
only concerns the information about A and the partition.

Then, when we check the compatibility of the partition of cells with II, in the offline setting we
need to compute the set of colors Cg: C C that a cell R’ intersects. However, we note that computing
this set Cg is difficult in the streaming setting, even if there is only one color C'. Indeed, testing
whether color C' has an intersection with cell R’ can be immediately reduced to the INDEX problem
(see e.g. [KN9T7] or Section 4 for the definition), which implies an ©(n) space bound, where n is the
number of points of color C. Therefore, we need to modify the offline algorithm, and only test the
intersection approximately.

To implement the approximate testing, for every color C € C, we impose a § - diam(C)-net
Ne¢ for C (as defined in Section 2), where § := O (¢3(klog A)~'). We show that such a net can
be constructed in the streaming setting in Lemma 3.5. To be exact, the streaming algorithm in
Lemma 3.5 returns a set of net points N¢ such that for any point © € N¢o at least one point in C' is
within distance § - diam(C) from z (so N¢ does not contain net points that are far away from any
point in C'). Hence, take D¢ := diam(N¢), and we have D¢ € (1£0)-diam(C'). Then, for each cell
R’ € cell(R) of each simple square R, we examine each point in N¢, and if dist(R', N¢) < 6 - D¢,
we add a new point x € R’ such that dist(x, N¢) < § - D¢ to the stream, and assign it color C.
Furthermore, we declare C' intersects R’. This idea is visually demonstrated in Figure 1c.

Lemma 3.5. There is an algorithm that for every 0 < p < 1 and every point set S C R? provided
as a dynamic geometric stream, computes a subset Ng C R? that is a p - diam(S)-net for S such
that for every x € Ng there exists y € S with dist(x,y) < p - diam(S), with probability at least
1 —poly(A~Y), using space O(p)~2-polylog A, and running in time O(p)~2 - poly log A per stream
update.

Proof. We give the procedure in Algorithm 3. It makes use of Lemma A.l in a way similar to
Algorithm 2. The space and time complexity as well as the failure probability follow immediately

Algorithm 3 Streaming algorithm for constructing the net

1: procedure NET(S C [A]%,p € (0,1])

2: for each 1 <4 < log, L, maintain sketch K; of Lemma A.1 for the 2i-grid G;, with parameter
T=3p")>

3 for insertion/deletion of point = in the stream do

4 for i < 0,...,logy L do

5 let y € G; be the grid point for the level-i square that x belongs to

6: increase/decrease the frequency of y by 1 in sketch K;

7

8

9

end for
end for > the stream terminates, and the computing phase starts
find the smallest ¢ such that sketch /C; reports the number of elements is < 27T
10: return the < 27T grid points in G; that IC; reports
11: end procedure

from the guarantee of Lemma A.1. We now analyze the correctness. Observe that by Fact 2.1,

11

every p-diam(S)-net for S has size at most (3p71)2 = T, so the point set returned by the sketch is
a net that can only be finer. Also, by the construction, if a point y is reported by Algorithm 3, then
there must be a point & € S such that z is inside the square whose center is y. Therefore, for every
y € Ng, there is x € S such that d(z,y) < p-diam(S). This finishes the proof of Lemma 3.5. [

In fact, such procedure of adding points is oblivious to the subproblem, and should be done only
once as a pre-processing step before evaluating any subproblems. Therefore, the subproblems are
actually evaluated on a new instance (X’,C’) after the pre-processing. Since we apply Lemma 3.5
for every color ¢, and by the choice of §, the space complexity for the pre-processing step is
(@) (k:3 -poly(s~!log A)), and the time complexity per update is bounded by this quantity. Next,
we show that the error introduced by the new instance is well bounded.

Lemma 3.6. Let OPT be the optimal SFP solution for the original instance (X,C), and let OPT’
be that for (X',C’). Then w(OPT) < w(OPT') < (1 +¢) - w(OPT).

Proof. Since OPT is a feasible solution for (X, C), we obtain w(OPT) < w(OPT’) by the optimality
of OPT. It remains to prove the other side of the inequality.

Recall that for every color C, we use Lemma 3.5 to obtain a § - diam(C')-net N¢ and estimate
diam(C) using D¢ := diam(N¢). Then, for every cell R’ of every simple square, if dist(R’, N¢) <
d - D¢ for some color C' (chosen arbitrarily if there are more), we add a point x to color class C
satisfying d(x, N¢) < - Deo. Moreover, for any other color C' # C with dist(R’, Nov) < §- Der, we
add the same point z to color class C’. Note that we only add at most one distinct point for each
cell. Let z be a point z € N¢ with d(z,2z) < 6 - Do. Adding point x increases OPT by at most
20 - Do < 36 - diam(C), since one can connect = to a point y in C such that dist(y, z) < ¢ - diam(C)
(the existence of y is guaranteed by Lemma 3.5).

Since there are in total at most O(klog A - €72) cells in all simple squares by Lemma 3.3, the
total increase of the cost is at most

klogA-e7?)- i < i < PT 1
O -klogA-e7) Iéléeié(dlam(C) < argzgé(dlam(C) < ew(OPT), (1)
using the definition of § and w(OPT) > maxcec(diam(C)). We conclude that w(OPT') < (1+¢) -
w(OPT). O

3.2.3 Evaluating Basic Subproblems in the Streaming Setting

After we obtain the new instance (X’,C’), we evaluate the cost for every subproblem (R, A, f,1I).
Because of the modification of the instance, we know for sure the subset of colors Cgr for each
cell R'. To evaluate the subproblem, recall that we start with enumerating a partition of cell(R)
that is compatible with the subproblem, which can be tested efficiently using Cg/’s. Suppose now
{P;:= R; U A;}!_, is a partition of cell(R) U A that we enumerated (recalling that A is the set of
active portals, which needs to be connected to cells in a way that is compatible to the constraint
f). Then, as in the offline algorithm, we evaluate MST(F;) of each part P;, and compute the sum
of them, i.e. 2¢_ MST(P;), however, we need to show how to do this in the streaming setting.
Frahling et al. [FIS08] designed an algorithm that reports a (1+¢)-approximation for the value of
the MST of a point set presented in a dynamic stream, using space O(c~! log A)O(l). Furthermore,
as noted in Section 1, their algorithm maintains a linear sketch. Now, a natural idea is to apply
this MST sketch, that is, create an MST sketch for each color, which only takes k-O(s~! log A)O(l)
space. Then, for each P; = R; U A;, we compute the set of intersecting colors, and we create a new
MST sketch K by first adding up the MST sketches of these colors (recalling that they are linear

12

sketches), and then adding the active portals connected to P; to the sketch. We wish to query the
sketch IC for the cost of MST(F;).

However, this idea cannot directly work, since the algorithm by [FIS08] only gives the MST
value for all points represented by K, instead of the MST value for a subset P;. Therefore, we will
modify the MST sketch to answer the value of the MST on a subset of points of interest.

Brief review of the MST sketch. We give a brief overview of the algorithm of [FIS08] before
we explain how we modify it. The first observation (already from [CRT05]) is that the MST cost
can be written as a weighted sum of the number of connected components in metric threshold
graphs, which are obtained from the complete metric graph of the point set by removing edges of
length larger than a threshold 7. Essentially, the idea is to count the number of MST edges of
length larger than 7.

To estimate the number of components in a threshold graph, we round the points to a suitable
grid and sample a small number of rounded points uniformly, using {p-samplers. An fy-sampler is
a data structure that processes a dynamic stream (possibly containing duplicate items), succeeds
with high probability, and conditioned on it succeeding, it returns a random item from the stream
such that any item in the stream is chosen with the same probability 1/n, where n is the £y norm
of the resulting frequency vector, i.e., the number of distinct items in the stream (see Lemma 3.10
for a more precise statement). For each sampled (rounded) point y, the algorithm in [FISO8] runs
a stochastic-stopping BFS from y and in particular, it checks if it explores the whole component
of y within a random number of steps. We note that this requires an extended fp-sampler that
also returns the neighboring points for each sampled point, as presented in [FIS08] and stated in
Lemma 3.10. The MST cost is estimated by a weighted sum of the number of completed BFS’s,
summed over all levels.

Generalizing the MST algorithm to handle subset queries. Fix some part F;. Recall that
the P;’s always consist of at most O(¢~2) cells (which are quad-tree squares), plus O(e2) active
portal points. Hence, a natural first attempt is to make the fp-samplers to sample only on these
clipping squares defined by P;. Unfortunately, this approach would not work, since the squares are
not known in advance and may be very small (i.e., degenerate to a point), so sampling a point from
them essentially solves the INDEX problem.

Therefore, when estimating MST(P;), we still use the original fp-samplers, and we employ a
careful sampling and estimation step. We sample from the whole point set maintained by the sketch
K by querying the fp-samplers, but we only keep the sampled points contained in P;. We execute
the stochastic BFS from these points that are kept, restricting the BFS to the points contained in
P;.

One outstanding problem of this sampling method is that if the number of points in F;, or to
be exact, the number of non-zero entries of level-i £y-samplers, is only a tiny portion of that of the
full sketch, then with high probability, we do not sample any point from P; at all. Hence, in this
case, no stochastic BF'S can be performed, and we inevitably answer 0 for the number of successful
BFS’s. This eventually leads to an additive error. We summarize the additive error and the whole
idea of the above discussions in Lemma 3.7.

Lemma 3.7. There is an algorithm that for every 0 < € < 1, integer k,A > 1, and every set
of points S C [A]? presented as a dynamic geometric stream, maintains a linear sketch of size
k?-poly(log k-1 log A). For every query (R, {R; }3:17 A) (provided after the stream ends) satisfying

1. R is a simple square, A is a subset of portals of R, and

13

2. {Rj}§:1 C cell(R),

the algorithm computes from the linear sketch a real number E such that with probability at least
1 — exp(—logk - poly(e~!log A)),

MST(P) < E < (1+¢)-MST(P) + O <Z‘ﬁ)}g2) - MST(S),

where P = (U§:1 Rj> U A. The algorithm runs in time k? - poly(logk - e~ log A) per update and
the query time is also k? - poly(logk - e !log A).

This lemma constitutes the main algorithm for the evaluation of the subproblem. Note that
we only need to prove it for one point set .S, since the sketch is linear. Indeed, when applying
Lemma 3.7, we obtain the sketch for each color separately from the stream, and for every query,
we first merge the sketches of colors relevant to the query and add query portals to the resulting
sketch. By linearity, this is the same as if we obtain the sketch for all these colors and portals at
once. We postpone the proof of Lemma 3.7 to Section 3.4, where we give a more detailed discussion
of the technical issues and our novel ideas to overcome them.

3.3 Proof of Theorem 3.1

We first restate Theorem 3.1 for convenience.

Theorem 3.1. For any integers k,A > 1 and any 0 < ¢ < 1/2, one can with high probability
(ag + €)-approzimate the SFP cost of an input X C [A]? presented as a dynamic geometric stream,
using space and update time of k® - poly(logk - e=1 - log A) and with query time bounded by k> -
poly(log k) - (67! - log A)O™),

We combine the above building blocks to prove Theorem 3.1. We start with a description of
the complete algorithm (Algorithm 4). The space and update time follow immediately from the
description of Algorithm 4 and from Theorem 2.2 and Lemmas 3.4, 3.5 and 3.7.

The query time is bounded by

O(k -log A)-(71 - log A)O(Eiz) g0l 2. poly(logk - e ' log A)
< k* - poly(logk) - (¢ !log A)O(fl)

where O(k - log A) is the number of simple squares (and thus, up to an O(1) factor, the number
of quad-tree squares for which we evaluate DP subproblems), (¢7! - log A)O(s_Q) is the number
of subproblems associated with each square (see Section 2.2), £9C"") is the number of MST
queries evaluated for each subproblem, and each MST query takes k? - poly(logk - e !log A) time
by Lemma 3.7.

To bound the failure probability, we use a union bound over the failure probabilities of all
applications and queries of the streaming algorithms as well as the error bound in Theorem 2.2.
We observe that Theorem 2.2 incurs an O(1) failure probability, and every other steps, except for
the use of Lemma 3.7, have a failure probability of poly(A~1). Since we have k- (67! -log A)O¢E ™)
basic subproblems (see Section 2), and for each basic subproblem we need to evaluate at most
=0 MST queries, the total failure probability of evaluating the subproblems is at most

k(e 1og A)OE™) . e=OE) L exp(—log k - poly(e ' log A)) < poly(A~1),

by the guarantee of Lemma 3.7. Therefore, we conclude that the failure probability is then at most
%. It remains to analyze the error.

*We need to use the same randomness for sketches {ICg’ >} among all colors C' so that they can be combined later.

14

Algorithm 4 Main streaming algorithm

1. procedure SFP(X,(C)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

23:
24:

25:
26:

27:
28:
29:
30:
31:

initialize a sketch KM of Lemma 3.4, a set of sketches of Lemma 3.5 {/Cg)}ch for every

color C' € C with parameter § := poly(¢)(klog A)~!, and a set of (linear) sketches?of Lemma 3.7
{ng)}Cec for every color C' € C

for every insertion/deletion of point = of color C' do

insert/delete point x in sketches KW, ng), IC(C?’)
end for > the stream terminates
use sketch () to compute a set of simple squares R > see Section 3.2.1
for each color C € C, use sketch ICg) to compute a set of net points N¢, and let Do :=

diam(N¢) > D¢ is a (1 &+ €)-approximation for diam(C)

initialize a Boolean list Z that records whether a cell of a simple square and a color intersects
> This uses space at most O(k - log A - poly(s71))
for every R € R, R’ € cell(R) do
if dist(N¢, R') < p- D¢ for some color C' then
let € R’ be a point such that dist(z, N¢) < p- D¢
for every color C’ with dist(Ng/, R') < p- Do do
add z to IC(C?’/) and record in Z that R intersects color C’ > see Section 3.2.2
end for
end if
end for
for each simple square R and an associated subproblem (R, A, f,1I) do
for each partition of cell(R) do
if the partition is compatible with the subproblem then > see Section 3.2.2
for each part R; in the partition do
let A; C A be the set of active portals that R; connects to
create linear sketch X', by adding up IC(C::’) for every C' intersecting a cell in R;
> the intersection information is recorded in 7
add points in A; to sketch K’
query sketch K’ for the value of the MST of the part R; and portals A; (as in

Lemma 3.7) > see Section 3.2.3
end for
store the sum of the queried values of MST(R;, A;) as the estimated cost for the
subproblem
end if
end for
end for

invoke the DP (as in [BH12]) using the values of basic subproblem estimated as above
return the DP value (for the root square with no active portals)

32: end procedure

Error analysis. For the remaining part of the analysis, we condition on no failure of the sketches
used in Algorithm 4 and on that the error bound in Theorem 2.2 holds. By Lemma 3.6, for the
part of evaluating the basic subproblems (Line 17 to Line 29 of Algorithm 4), the actual instance
that the linear sketches work on is (14 O(e))-approximate. Hence, it suffices to show the DP value
is accurate to that instance.

15

First of all, our estimation is never an underestimate, by Lemma 3.7 and since all partitions
that we enumerated are compatible with the subproblems; see Section 3.2.2. Hence, it remains to
upper bound the estimation. Consider an optimal DP solution F', which we interpret as a metric
graph (see Section 2). Then we create a new solution F’ from F' by modifying F' using the following
procedure. For each simple square R, we consider F|r which is the portion of F' that is totally
inside of R (see Section 2). For each component S C R in F|g, let S’ be the point set formed
by removing all Steiner points from S, except for portals of R (note that we remove portals of
subsquares of R if they appear in S). Then, for each component S, we replace the subtree in F
that spans S with the MST on S’. It is immediate that after the replacement, the new solution has
the same connectivity of portals and terminal points as before. We define F”’ as the solution after
doing this replacement for all simple squares.

F’ is still a feasible solution. Furthermore, for every simple square R, if F' is compatible with a
subproblem (R, A, f,11), then so does F’. By the construction of F”’, the definition of Steiner ratio
o, and Theorem 2.2, we know that

w(F) <ag-w(F) < (1+0())-ay-OPT, (2)

where the last inequality holds as we condition on that the error bound in Theorem 2.2 holds.

Now we relate the algorithm’s cost to w(F”). Fix a simple square R, and suppose (R, A, f,1I)
is the subproblem that is compatible with F’|z. Then, the components in F’|g can be described
by a partition of the cells plus their connectivity to active portals. Such a subproblem, together
with the partition, must be examined by the algorithm (in Line 17 to Line 29), and the MST value
for each part is estimated in Line 24. Since the algorithm runs a DP using the estimated values,
the final DP value is no worse than the DP value that is only evaluated from the subproblems that
are compatible to F’. Recall that our estimation for each subproblem not only has a multiplicative
error of (1+¢) but also an additive error by Lemma 3.7. Therefore, by the fact that F’ always uses
MST to connect points in components of basic subproblems, it suffices to bound the total additive
error for the estimation of the MST cost of the components of F”.

Fix a connected (global) component @ of F’, and let Cg C C be the subset of colors that belongs
to Q. By Lemma 3.7, for every basic subproblem (R, f, A, II) that is compatible with F’, and every

component P of Q|g, the additive error is at most O (Z({gg(z)) - MST(S), where S is the union of

color classes that intersect P plus the active portals A. Observe that Cs C Cg (where Cg is the
set of colors used in S), so S is a subset of the point set of @ (note that () contains all portals
in A as F' is a portal-respecting solution and the subproblem is compatible with F”’) and thus
MST(S) < MST(Q), which implies

o (F822) e <0 (B29) e <0 (B2) i

Observe that for each simple square R, Q|r has at most O(¢~2) local components, hence, summing
over all local components of Q|r and all simple squares R, the total additive error is bounded by

poly(c) - 0k 1og)0 (B) (@) < e w(@).

where use that there are at most O(klog A) simple squares by Lemma 3.3. Finally, summing over
all components @ of F’, we conclude that the total additive error is € - w(F’). Combining with
Equation (2), we conclude the error guarantee. This finishes the proof of Theorem 1.1.

16

3.4 Proof of Lemma 3.7
We first restate the lemma for convenience.

Lemma 3.7. There is an algorithm that for every 0 < € < 1, integer k,A > 1, and every set
of points S C [A]? presented as a dynamic geometric stream, maintains a linear sketch of size
k?-poly(log k-1 log A). For every query (R, {R; }3:17 A) (provided after the stream ends) satisfying

1. R is a simple square, A is a subset of portals of R, and
2. {R;}i_, C cell(R),

the algorithm computes from the linear sketch a real number E such that with probability at least
1 — exp(—logk - poly(e~tlog A)),

MST(P) < E < (1+¢)-MST(P) + O (iiy;i) - MST(S),

where P = (U§:1 Rj> U A. The algorithm runs in time k? - poly(logk - e~ log A) per update and
the query time is also k? - poly(logk - e log A).
The general proof strategy is similar to that of [FISO8], hence we start with a review of [FIS08]

(with some adjustments suitable for our setting), and our description is with respect to a generic
point set V' C [A]2.

Review of [FIS08]. A key observation is that the cost of the MST of a point set V C [A]? can
be related to the number of components in the metric threshold graphs of different scales; a similar
observation was first given in [CRT05]. In particular, let Gy be the complete metric graph on V,
i.e., the vertex set is V, the edge set is {{u,v} : u # v € V}, and the edge weights are given by
dist(+,-). For ¢ > 0, let Gs) be the (1 + ¢)i-threshold graph, which only consists of edges of Gy

that have weight at most (1 4 ¢)’. Let cgﬁ) be the number of connected components in Gg/i). Then
for every W > diam(V') that is a power of (1 +¢),

logy . W—1 '
MST(V) < el —We- Y (1+e) o) <(1+e) MST(V). (3)
=0

It remains to estimate cgﬁ) for 0 <i <logy,. W — 1. For each i, Frahling et al. [FIS08] consider
the subdivision of [A]? into squares of side-length (1 4 ¢)” for a small enough i’ and round the
input points to to grid points formed by centers of these squares. Namely, ¢’ is the largest integer
satisfying (1 +¢)” < O(e - (1 + ¢)?). However, this is not convenient in our setting as we need to
restrict the MST query to a subset of quad-tree squares (with side-lengths of powers of 2). As it is
not possible to “align” squares of size (1 —l—s)il with quad-tree squares, the aforementioned rounding
could move a point not relevant to the MST query to a quad-tree square of the query (thus making
it appear relevant), or vice versa.

To avoid this issue, we adjust the rounding for MST cost estimation so that the grid points are
centers of squares in the randomly-shifted quad-tree we use in the DP computation. Recall from
Section 2 that the G is the set of centers of all level-i/ quad-tree squares. Namely, to estimate cg),
we round input points to the 27 -grid Gy, where i is the largest integer such that 27 < O(e-(1+¢)?),
that is,

i’ ==1logy O(e - (14 ¢)%). (4)

17

We require the constant hidden in the O notation to be sufficiently small so that an inequality in (8)
holds. (If i < 0 according to this definition, then we can of course take i = 0 and no rounding
is needed as we reach the granularity of the input data.) Our rounding is only finer compared
to [FISO8] (i.e., to centers of smaller squares), but within a constant factor, so the space bound
remains asymptotically the same. Note that while the squares of G;; are from the quad-tree, we still
need to show that we do not round to centers of larger squares than the cells of the MST query,
which will imply that indeed, our rounding does not move a point irrelevant for the query to a cell
of the query, or vice versa. We remark that for several consecutive indexes i € [0,log, . W — 1],
the index 4’ could be of the same value.

Similarly as in [FISO08], for each 4, define a W)

‘rounded” metric graph év as follows.

¢

1. Move each point = € V to the center y € G; of the quad-tree square that x belongs to, where
i’ is defined as in (4).

2. The vertex set of G%j) consists of non-empty grid points in Gy, i.e., for each vertex v at least
one point in V' was moved/rounded to the grid point corresponding to v, and the edge set
consists of pairs of vertices that are of distance at most (1 + ¢)".

We refer to the vertices of Gg) as non-empty grid points. Let ég) be the number of components in

ég), and let 7(¥) be the number of vertices in GE;) As shown in [FIS0§], cg) is well approximated

by 59, which we restate in Lemma 3.8. Strictly speaking, Lemma 3.8 ([FIS08, Claim 4.1]) is for the
rounding to centers of squares with side-length O(e - (14 ¢)%), but its proof more generally applies
to any rounding which moves points by at most O(e - (1 + €)") and thus, to our rounding as well.

Lemma 3.8 ([FIS08, Claim 4.1]). For every i, cg/i-ﬂ) < 53) < ng2)'

Therefore, we focus on estimating ég) ’s. Asin [FIS08], it suffices to account for small components
that have at most O(¢~2log A) non-empty grid points for each i. The reason is that the number

of large components that have more than e~2log A points is at most O(e?/log A - fzg)), which

contributes O(e?/log A - (1 +¢)* - n%})) in Equation (3). This contribution can be bounded using
the following lemma?.

Lemma 3.9 (Lower bound on MST [FIS08, Lemma 4]). For every i, MST(V) > Q((1+¢)*- n%ﬁ))

To estimate the number of small components, we use the BFS algorithm with a stochastic
stopping condition; this idea was first applied in [CRT05]. In particular, for each i, poly(¢~!log A)
samples are taken from the point set of égﬁ), which may be efficiently maintained and sampled using
fo-samplers. After that, we perform a stochastic-stopping BFS in Gg) starting from each sampled
point and using a random number of steps (but at most O(¢~2log A) steps). An estimate for the
number of small components, and thus for 53), is computed using the outcome of each BFS, i.e.,
whether the whole component is discovered or not. The random exploration is made possible by the
following modified ¢p-sampler designed in [FIS08], which also returns the non-empty neighborhood

when sampling a point. See also a survey about {y-samplers by Cormode and Firmani [CF14].

Lemma 3.10 (¢p-Sampler with neighborhood information [FIS08, Corollary 3|). There is an
algorithm that for 6 > 0, integer p, A > 1, every set of points S C [A]? presented as a dynamic

3Note that Lemma 4 in [FIS08] proves the lower bound only for the case when W > Q(e- (1 +¢)*), however, using
the argument of the first case of their proof implies our bound.

18

geometric stream, succeeds with probability at least 1 — § and, conditioned on it succeeding, returns
a point p € S such that for every s € S it holds that Pr[p = s] = 1/|S|. Moreover, if the algorithm
succeeds, it also returns all points from s € S such that dist(p, s) < p. The algorithm has space and
both update and query times bounded by poly(p-c~!-log A -logd~1), and its memory contents is a
linear sketch of S.

Handling subset queries. In our case, we need to apply Equation (3) with V' = P, recalling
that P is the point set of the query. To pick W in (3), we need an upper bound on diam(P).
Suppose in the query, the simple square R is of level-ig, then diam(P) < 2%. Hence, we pick W to
be the smallest power of (1 + ¢) that is no smaller than 2%, which implies

20 <W < (14¢)-2%, (5)

However, the query set P is given after the stream, and it is provided in a compact form as
a union of several cells and portals. On the other hand, what we can maintain is only a sketch
for S (the whole point set). Therefore, the above idea from [FIS08] cannot immediately solve our
problem, and as discussed in Section 3.2.3, we cannot count on adapting fy-samplers to directly
work on a subset unknown in advance either. Hence, we still have to maintain the sketch for the
whole S, and query the {p-samplers on S. Then naturally, the only way out seems to filter out
the irrelevant sampled non-empty grid points, which are those not corresponding to the query set,
and then we simulate the MST algorithm on the local query instance, by using those relevant
samples. Apart from filtering out irrelevant samples, we also need to restrict the neighborhoods
(from Lemma 3.10) to the query cells, i.e., filter out irrelevant point from the neighborhoods.

At a first glance, this idea makes sense and should generally work. However, we now discuss an
outstanding issue and present our new technical ideas for resolving it.

Additive error and failure probability. As mentioned in Section 3.2.3, the sampling idea may
not work if P has relatively few relevant grid points G;/, since it is difficult to collect enough relevant
grid points using a small number of samples, and in this case we need to suffer an additive error.
Luckily, we show that if the number of relevant grid points is indeed small relative to that of .S, then
the contribution of these points to the global MST cost is small after all; see Lemma 3.11. This
yields a small additive error that can be eventually charged to the global MST of S. A technical
issue here is that the algorithm does not know whether or not P contains very few relevant grid
points in advance. Hence, we introduce an additional sampling step to estimate this density, and we
use this estimate (S in Algorithm 6) to guide the algorithm. This works well for the algorithm,
but in the analysis, the random estimate cannot assert for sure whether or not P contains relatively
few relevant grid points. We thus need to do the case analysis based on the actual number of grid
points in P, which is not directly aligned with the case separation of the algorithm.

Finally, since we need to apply the query on all subproblems (in Section 3.3), this requires that
both the success probability and the additive error are as small as % (ignoring other factors). In
the original analysis by [FIS08], Chebyshev’s inequality was used to bound the failure probability,
which in our case only suffices for a k* space bound. Hence, we instead apply Hoeffding’s inequality,
and this saves a factor of k in space compared to the original calculation in [FIS08].

Algorithm description. We state the complete algorithm for maintaining the linear sketch
in Algorithm 5, and the query algorithm in Algorithm 6. In a nutshell, maintaining the sketch in
Algorithm 5 merely requires updating extended {p-samplers of Lemma 3.10 (including the associated
neighborhood information) together with keeping track of the £y norm for each level 0, ..., logy A

19

(more precisely, for each threshold i = 1,...,log;,. A, we maintain the {p-samplers and the £y norm
in level i’ of the quad-tree, where ¢’ is defined as in (4)). Note that Algorithm 5 indeed outputs
a linear sketch, since the extended £y-samplers of Lemma 3.10 is a linear sketch and the £y-norm
estimators as well (cf. [KNW10]).

In the query procedure (Algorithm 6), for each threshold i = 1,...,log;,. A, we start by
checking whether or not the query contains relatively few non-empty grid points, for which we use
the first o of fp-samplers; namely, we check if at least k of sampled grid points are relevant for the
query, and if not, our estimate for the number of components on that level is simply 0. Otherwise,
the query contains relatively large number of non-empty grid points with high probability, and
we query the remaining o of {y-samplers, execute the stochastic-stopping BFS from each relevant
sampled grid point, and use the outcomes of the BFS (i.e. whether or not the whole component
was discovered) to estimate the number of components on that level, as described above.

Algorithm 5 Algorithm for maintaining sketches for Lemma 3.7

1: procedure MST-SKETCH(.S) > S is provided as a dynamic geometric stream

2 let k < klogk - poly(e tlog A), o < kpoly(e tlogA) -k, I + e 2log A > as in (6)

3: for i <~ 0,...,log;,. A do

4 let 7/ be defined as in (4), i.e., the largest integer such that 2° < O(e - (1 +¢)?)

5 initialize 20 extended fy-samplers {IC]@ }; of Lemma 3.10 with frequency vector indexed
by G; and with neighborhoods containing all grid points from Gy at distance at most I'- (1 +¢)?

6: initialize an fp-norm estimator N (cf. [KNW10]) for the number of non-empty grid
points in G; with error parameter

7 end for

8: for each insertion/deletion of point z do

9: for i <- 0,...,log;,. A do

10: let i’ be defined as in (4)

11: let y € Gy be the center of the level-i’ quad-tree square containing x

12: increase/decrease the frequency of y by 1 for estimator N (@)

13: for all ¢p-samplers {K;Z)}j, increase/decrease by 1 the following:

e the frequency of y, and
e the frequency of y in the neighborhood of any grid point z € G with dist(z,y) < T'-(1+¢)°

(cf. [FISO08])
14: end for
15: end for > stream of S terminates

16: end procedure

Both Algorithms 5 and 6 use the following parameters

k= klogk -poly(ellogA), o =kpoly(e tlogA)-k, T =c2 logA. (6)
We additionally require that
2
> log k - poly(c ™' log A) (7)
o-12

where poly(e~!log A) in the RHS is the same as in the failure probability of Lemma 3.7. Note that
o = k?logk - poly(c'log A).

20

Algorithm 6 Algorithm for answering queries of Lemma 3.7

1. procedure QUERY(R,{Ry,..., R}, A) > assume the access to sketches in Algorithm 5
2: let k,0, " be the same parameters as in Algorithm 5
3: let W be as in 5, i.e., the smallest power of (1 + ¢) that is no smaller than 2%, where i is

the level of R in the quad-tree
for i <~ 0,...,log;,. W do
let 7/ be as in (4), i.e., the largest integer such that 2 < O(e - (1 +¢)?)

4

5

6: query N and record the value as an estimate ﬁg)
7

query the first o of fp-samplers {ICy)} j» and suppose the set of uniformly sampled points

is {pj}7-1 and {U;)}7_, are the associated neighborhoods in grid G

8: let S < {p; : Is-RELEVANT(#, p;) = TRUE} be the subset relevant to the query

9: if |S®| < k then

10: define estimator E{;) +~0

11: else A

12: query the remaining o of {p-samplers {ICJ@}]-, and use the same notations {p;}7_; as
well as {(U;)}7_;, to denote the outcome

13: for each pj, let 8, <~ BFS(i,7,p;,Uj)

14: define estimator E(]ﬁ) — (ﬁg)/a) > 5—1 I(Is-RELEVANT(7', p;) = TRUE) - 5,

15: end if

16: end for -

17: query the original MST sketch algorithm of [FIS08], and let MST(.S) be the outcome

18 retumn MST - © (BQ) MST(S) + 20 = w42 2%+ (14 2)7 -)

> the 1\//I§T(S) term is used to make sure MST is never an underestimation w.h.p.
19: end procedure
20: procedure BFS(i,i,p,U)
21: let U' < {q € U : Is-RELEVANT(?’, ¢) = TRUE} be the restriction of the neighborhood of

p to the query > recall that U contains all non-empty grid points of G, at distance
<T'-(1+¢)" fromp
22: sample integer Y according to distribution Pr[Y’ > m] = L

23: if Y > T or the component in the (1 + £)’threshold graph on U’ that contains p has more
than Y vertices, set 8 « 0, otherwise set 8 «+ 1

24: return

25: end procedure

26: procedure IS-RELEVANT(#, p)

27: return TRUE if (i) 3z € A s.t. portal 2 belongs to the level-i’ quad-tree square corresponding
to p, or (ii) 3R; (which is a query cell) s.t. p € R;; otherwise return FALSE

28: end procedure

Space and time analysis. As can be seen from Algorithm 5, the space is dominates by the 20
extended fp-samplers of Lemma 3.10 with I' = e 2log A for each 0 < i < logy,. W. Thus, the
space bound follows from Lemma 3.10 and from the value of o, defined in (6).

The update time is also dominated by maintaining 20 extended {p-samplers of Lemma 3.10,
which can be done in time poly(logk-I'-e~1log A)) for each sampler, including the updates to the
associated neighborhoods. Thus, the total update time is k2 - poly(logk - e *log A). Finally, the
query time is bounded by querying all £g-samplers and executing the stochastic-stopping BFS from

21

at most o sampled points, each with at most I' steps, which overall takes time of k2 - poly(logk -
-1
e log A).

3.4.1 Error Analysis

We analyze the error of the query procedure (Algorithm 6), using the notation defined in Algorithms 5
and 6. First, we show that procedure IS-RELEVANT captures the points in P exactly, i.e., for every
i and p € é’g), it holds that p € CO}S,-Z,), i.e., it is relevant to the query P, if and only if Is-
RELEVANT(4/, p) returns TRUE. As we round to the centers of level-i’ quad-tree squares, it suffices
to shows that these level-i’ squares are not larger than the cells of the query. Recall that the simple
square containing these cells is of level iy and that i <log, . W <log; . ((1+¢)-2%) by (5). As
the cells have side-length (at least) ©(2" - ¢) (see Section 2.2), we have

2 <O (L+)) SOl (14¢)-27) < O@2"), (8)

using the definition of ¢’ in (4) and that the constant hidden in the O notation in (4) is sufficiently

small, compared to the constant hidden in © in cell side-length. This enables us to filter out the

irrelevant samples from S and work only on Co?g), i.e., the points in P rounded to the 2¢-grid G;r.
Fix some 7. We bound the error for the estimators E{Ii). First, by the guarantee of the £y-norm

estimator N (see Line 6), we know that it uses space poly(logk - e~'log A) to achieve with

probability at least 1 — exp(—logk - poly(¢~1log A)),
Y e (1+e)-al. (9)

We assume this happens, and the probability that it does not happen can be charged to the total
()

failure probability. Similarly, we assume the success of all other sketches, namely le ’s, and we

require the failure probability to be at most exp(—logk - poly(c~!log A)).
~(i)

We have two cases for cli in Algorithm 6 depending on whether or not we collect enough
samples S that pass the relevance test. However, whether or not enough samples are collected is
a random event, which is not easy to handle if we do the case analysis on it. Therefore, we turn
our attention to a tightly related quantity fzgﬁ) / ﬁg), which is the fraction of non-empty grid points
of Gy in the query instance P. We analyze in Lemma 3.11 the error for the estimator when this
fraction is small (and most likely, not enough samples are collected), and then, in Lemma 3.12, the

estimation when ﬁg) / ﬁg) is large.

Lemma 3.11. For every A > 0, if ﬁg) <)\-ﬁg), then (1+¢)! ~é§§) < O(N-MST(S)), which implies
that the estimator E(Ii) = 0 satisfies

(1+e) - — O\ -MST(S)) < (1+e) - & < (14e)f- &,
Proof. Using Eg) < fzg) and the condition of the lemma, we get
(1+e) - <(14e)-al) <(1+e)-A-a¥ <O MST(S)),
where the last inequality follows from Lemma 3.9. O
Lemma 3.12. For every A > 0, z’fﬁg) >)\-ﬁg), then with probability at least 1—exp (—Q(U) . (%)2) ,
the estimator E(Ii) in line Line 14 of Algorithm 6 satisfies

i o (i o (i MST(P
|E<P>—c;)y§0(g).c§)+o< ST()).

- (1+4¢)

22

Proof. We use some of the notations from Algorithm 6, and suppose p; and U; are those from
Line 12. For the ease of notation, let £ be the event that IS-RELEVANT(¢', p;) = TRUE. Using a
similar calculation as in [FIS08], we observe that for every p;,

E[I(&;) - By,] = Prl&;] - Pr[By, = 1] &j]
. ()
=L 3 Prlp; € H |] -Pr[Y > |H|AY <T]
g

component H in Gc(i)

° (i) ’

_ |
=0 NO)

Pr[Y > |H|AY <T]

nS component H in é() p
1
- . . > .
0 > | |H|-Pr[Y > |H|AY <T] (10)
S component H in GQS?
Then, we get an upper bound on E[E(]ﬁ)] using (9),
E[el)] = Z E[I(&)) - By,]
- ”S Z 3 \H| - Pr[Y > |H|AY <T]
anS)

component H in Gog)

ESS Y jE ey 2]

J=1 component H in ég)
— (1+¢)- &7,

IN

where the last step follows from the distribution of Y. Similarly, we also get a lower bound

Be] - "S- ZE) Byy)
ﬁ(z o
— S Z > |H|-Pr[Y > |[HIAY <T]
‘7”5 j=1 i)

component H in GS:,

Y

1—e 11

X ()
J=1 component H in Gog)

1—c¢ ﬁ(i)

Next, we apply Hoeffding’s inequality. To this end, consider random variables Z; = ﬁg) [o-1(E5)-Bp,

for j = 1,...,0 and note that they are independent and we have that E(]i) = Z;le Zj. Therefore,

23

by Hoeffding’s inequality, it holds that

Q) 5 () 2
&0 gt np oo™ L[
ey —E[ep]|>Q<F>]§2exp 2Q<F> > (ﬁ(i)>
S
NORN 2
=exp | —Q(0) - n~P(.) <exp | —Q(0)- <A> .
Fnsl r

where in the second inequality, we use ﬁg) > M- ﬁg) >A-(1—¢)- ﬁg) by the assumption of the
lemma and by (9). Combining the expectation bound and the above concentration inequality, we
conclude that with probability at least 1 — 2exp <—Q(a) . (%)2>,

)
i o(i i NG MST(P
20—) < o(e) <)+0(F)§O(s)-c§)+o<s().>,

Pr

r-(1+e¢)y
where the last inequality follows from Lemma 3.9. O

Next, we do the following case analysis. Let A\; := £, and Ao := =&; note that A1 < Ao.

Case I: ﬁg) < A1 ng) We claim that with high probability, |S | < k. This can be done by

using Hoeffding’s inequality, as shown in Claim 3.13.
Claim 3.13. If ﬁg) <\ -ﬁg), then Pr[|S®W| > k] < exp(—logk - poly(s~!log A)).
Proof. Let Z; be the {0,1} random variable, that takes 1 if Is-RELEVANT(¢’,p;) = TRUE. Then

72I‘S
So [SW| = >_j—1Zj, and hence,
- oil) K
E[S(l)] = 7P <oA= —.
ﬁg) 2
By Hoeffding’s inequality,
Pr(|89] > k] = Pr[|SY| — E[ISV]] = & — E[S]]
i K
< PrfjsO| - E[ISV)) > 7]

2
< exp(*%) = exp(—log k - poly(e " log A)),

where the last inequality follows from (7). O

Then, we assume |S®| < k happens in Case I, and by using Lemma 3.11 with A\ = \;, we
~(i)

conclude that the estimator ¢’ = 0 satisfies
(1+e) &) —OMMST(S) < (1+¢e) - &% < (1+e) -l (11)

The case |S (i)\ > k only happens with a very small probability, and we charge it to the total failure
probability of Lemma 3.7.

24

Case II: ﬁg) > Ag - ng) Similar to Case I, we claim that with probability 1 — exp(—logk -
poly(e~tlogA)), |S®| > k. This can be done again by using Hoeffding’s inequality, and we
omit the details since it is very similar to that in Claim 3.13. Then, assuming |S®)| > & and

2
using Lemma 3.12 with A = Ao, we conclude that with probability 1 — exp (—Q(J) . (’%2)), the

estimator in line Line 14 of Algorithm 6 satisfies

(12)

i o (i o (i MST(P
|E<P>—c;)y§0(g).c§)+o< ST()).

Case III: None of the other two cases happens, so Aq - ﬁg) < ﬁg) < Ao - ng) Then we cannot

decide with high probability which type of estimate for E(]i) the algorithm uses. However, since we

have both an upper and lower bound for ﬁg) / ﬁg), Lemmas 3.11 and 3.12 can both be applied with
a reasonable guarantee. In particular, we apply Lemma 3.11 with A = Ay, which for the estimator

E{;) = 0 implies

(1+e)) — O MST(S)) < (1+2) &) < (1+2) -).

2
Next, Lemma 3.12 with A = Ay yields with probability at least 1 — exp (—Q(U) : (%) >,

i) _ o)) <) MST(P)
lcp —¢p| < O(e)-¢p +0 (I‘-(l—i—e)i

for the estimator in line Line 14 of Algorithm 6. Since we do not know which estimator the algorithm
actually uses, to bound the error, we need to take the worse bound for both directions of these two
inequalities, and for the failure probability as well. There, it always holds with probability at least

| — exp (_Q@ - (})2>

1+e) -2 <(1+0() (1+e)-& 10 <MS§(P)> (13)
and that
T - MST(P
(1+e)-d)>1-0@) (1+e) -V -0 <SF()> — O(\2 MST(9)). (14)
Conclusion of the error analysis. Overall, we bound E{If,) using the worse bound in both

directions (similarly as in Case III). Namely, using Equations (11) to (14) and the union bound,
with failure probability at most

2
O(logy .. W) - (exp(—log’f poly(e” log A4)) + exp <_Q(U)‘ (AF1> >>

oT?
< exp(—logk - poly(e 1log A)), (15)

2
< exp(—log k - poly(e ' log A)) + exp <—Q < n >>

25

where the inequality follows from (7), for any i = 0,...,log; . W, it holds that

1 7 i o1 MST P
1+e)-d)<(1+0@e) -1+ -9 +0 <F()) , (16)
and that
_— _— MST(P
1+e)-d>1-0@) (1+e) - -0 <SF()> — O\ MST(S)). (17)
Summing over i, with failure probability bounded as in (15), we have
10g1+sW) .
Z (1+¢) -Eﬁ?
1=0
log; . W
- MST(P
> 1-0@)-(1+e)-&) -0 (SF()> — O(\2 MST(S))
=0
10g1+sW
i o) log A Ao log A
> (1-0()) - Z; (1+e)t-ép —0(—) -MST(P)—O(= - MST(S)
gLre W G ki log A
>1-06e)-[Y +e-dY| -0 MST(P) -0 (gf) - MST(S)
=1
log; . W 1 ()
i o(i) polyl\e
> _ . . — . _ .
> (1-0(e)) ; (14¢)"-ép O(e) - MST(P) — O (klOgA) MST(S),

where we use W < O(A), T' = ¢72 - log A, and the last inequality is by the definition of o =
kpoly(e~tlog A) - k; similarly, for the other direction,

logy . W logy . W
i i e MST(P
S o+t Y (1+O(5))-(1+6)l-c§3)+0<r()>
=0 =0
g1 W e log A
<a+o@E)| Y+ +0< fr >-MST(P)
=1
logy . W 4 A
<@+0E) | Y +et & | +0e) MST(P),
=1

where the last inequality is by the definition of I' = £~ 2log A. By combining the above bounds
and plugging in our estimate MST in line 18 of Algorithm 6, we conclude the analysis of the error.
This completes the proof of Lemma 3.7

4 Lower Bound: (k) Bits are Necessary

In this section we demonstrate that any streaming algorithm for SFP achieving any finite approximation
ratio for SFP requires Q(k) bits of space.

26

Theorem 4.1. For every k > 0, every randomized streaming algorithm achieving a finite approxi-
mation ratio for SFP with k color classes of size at most 2 must require Q(k) bits of space. This
holds even for insertion-only algorithms and even when points are from the one-dimensional line R.

Proof. The proof is a reduction from the INDEX problem on k bits, where Alice holds a binary
string = € {0,1}*, and Bob has an index i € [k]. The goal of Bob is to compute the bit x; in the
one-way communication model, where only Alice can send a message to Bob and not vice versa.
It is well-known that Alice needs to send (k) bits for Bob to succeed with constant probability
[KNR99] (see also [KN97, JKS08]). Our reduction is from INDEX to SFP on the (discretized) one-
dimensional line [2k]. Consider a randomized streaming algorithm ALG for SFP that approximates
the optimal cost and in particular can distinguish whether the optimal cost is 0 or 1 with constant
probability. We show that it can be used to solve the INDEX problem, implying that ALG needs
to use (k) bits of space.

Indeed, Alice applies ALG on the following stream: For each bit x;, she adds to the stream a
point of color j at location 2j + x;. So far OPT = 0. She now sends the internal state of ALG
to Bob. Then, Bob continues the execution of ALG (using the same random coins) by adding one
more point to the stream: Given his index ¢ € [k], he adds a point of color ¢ at location 2i. After
that, OPT = 0 + z;, which is either 0 or 1. It follows that if ALG achieves a finite approximation
with constant probability, then Bob can discover x; and solve INDEX. O

5 Composing MST Sketches: kF-time k2-space Algorithm

As outlined in the introduction, one can solve SFP in a simple way with query time O(k¥)-poly log A.
In this section, we provide details of this approach and prove the following theorem:

Theorem 5.1. For any integers k,A > 1 and any 0 < ¢ < 1/2, one can with high probability
(g + €)-approzimate SFP cost of an input X C [A]? presented as a dynamic geometric stream,
using space and update time of O(k?-poly(e~1-log A)) and with query time O(k¥)-poly(e~!-log A).

The proof uses the streaming algorithm for MST from [FIS08] in a black box manner. Namely,
we use the following result*:

Theorem 5.2 (Theorem 6 in [FIS08]). There is an algorithm that for every ,6 € (0,1), integer
A > 1, given a (multi)set X C [A]? of points presented as a dynamic geometric stream, computes
a (1 4 e)-approzimate estimate for the cost of the Fuclidean minimum spanning tree of X with
probability at least 1 — 8, using space O (log(l/é) -poly(e~! - log A)) and with both update and
query times bounded by the same quantity. Furthermore, the algorithm returns a linear sketch from
which the estimate can be computed.

Proof of Theorem 5.1. First, we compute the MST sketch K; for each color i separately, by using
Theorem 5.2 with the same e, with § = 27%/3, and also with the same random bits used (so that
we are able to add up the sketches for different colors). After processing the stream and obtaining
sketches IC;, we enumerate all subsets of k£ colors and estimate the MST cost for all colors in the
subset. Namely, for each subset S C [k], we first merge (copies of) sketches KC; for i € S, using
that they are linear sketches, to get an MST sketch Kg for all points of colors in S. Running the
estimation procedure from [FISO8] on sketch Kg, we get an estimate of the MST cost for S and
store this estimate in memory. Then, we enumerate all O(k*) partitions of k& colors and for each

4While Theorem 6 in [FISO08] does not explicitly state that the algorithm produces a linear sketch, this follows as
the data structures maintained in the algorithm are all linear sketches. We describe the MST sketch in Section 3.4.

27

partition Iy,..., I, C [k], we estimate its cost by summing up the estimates for subsets I1,..., I,
computed in the previous step. Finally, the algorithm returns the smallest estimate of a partition.

By the union bound, all estimates for subsets of [k] are (1 + €)-approximate with probability at
least 1 — ¢ - 2F > %, by the choice of §. Conditioning on this, the cost of any partition is at least
1 — ¢ times the optimal cost. Consider an optimal solution F' of SFP. After removing all Steiner
points, we obtain an ag-approximate solution F’, by the definition of the Steiner ratio as. The
partition of colors into components in F’ is considered by the algorithm and the estimated cost of
this partition is at most (1+¢)-w(F’) < (1+¢)-az-w(F) with probability at least 2, which implies
the correctness of the algorithm. The space and time bounds follow from the choice of § = O(27)
and from Theorem 5.2. 0

6 Future Directions

Our paper makes a progress in the understanding of geometric streaming algorithms and of applica-
bility of Arora’s framework for low-space streaming algorithms for geometric optimization problems.
Still, our work leaves a number of open problems which we will discuss here.

Our approximation ratio ag + € matches the current approximation ratio for the Steiner tree
problem in geometric streams. Hence, any improvement to our approximation ratio would require
to first improve the approximation for Steiner tree, even in insertion-only streams. This naturally
leads to the main open problem of obtaining a (1 + ¢)-approximation for Steiner tree in geometric
streams using only poly (e ! log A) space.

Our naive algorithm for the Steiner forest problem given in Theorem 5.1 is also an (ag + ¢€)-
approximation with poly(ke~!log A) space, but its running time is exponential in k& because it
queries an (approximate) MST-value oracle on all possible subsets of color classes to find the
minimum. We do not know if a smaller number of queries suffices here, but it is known that in
a similar setup for coverage problems any oracle-based O(1)-approximation requires exponentially
many queries to an approximate oracle [BEM17]. Thus, it would not be surprising if a similar lower
bound holds for our problem.

Our Theorem 4.1 shows that for SFP with color classes of size at most 2 one cannot achieve any
bounded approximation ratio using space that is sublinear in n < 2k. This strongly suggests that
SFP with pairs of terminals (i.e., C; = {si,t;}) does not admit a constant-factor approximation in
the streaming setting, although our lower bound construction does not extend to this case (as it
requires having some size-1 color classes). We leave it as an open problem whether a constant-factor
approximation in sublinear (in n = 2k) space is possible for this version. We notice however that
for the case where both points of each terminal pair are inserted/deleted together, it is possible to
get an O(logn)-approximation using the metric embedding technique of Indyk [Ind04].

The main focus of this paper is on the study of SFP for the Euclidean plane, but in principle,
our entire analysis can be extended to the Euclidean space R?, for any fixed d > 2. However, this
would require extending the arguments of [BH12, BKM15], namely, the structural result that we
restate in Theorem 2.2, and these details were not written explicitly in the two papers.

The techniques developed in this paper seem to be general enough to be applicable to other
problems/objectives with connectivity constraints, where the connectivity is specified by the colors
and a solution is feasible if the points of the same color are connected. One such closely related
problem is the sum-of-MST objective, i.e., the problem of minimizing the sum of the costs of trees
such that points of the same color are in the same tree (see also [AGLNO03, ZNI05] for related
problems). We hope that the approach developed in our paper can lead to a (1 + ¢)-approximation
of the geometric version of this problem, using poly(ke~!log A) space and time (while for space

28

only, one can use similar techniques as in Theorem 5.1). Moreover, it may be possible to apply
our approach to solve the connectivity-constrained variants of other classical problems, especially
those where dynamic programming has been employed successfully, like r~-MST and TSP [Aro98].
For example, the TSP variant could be to find a collection of cycles of minimum total length such
that points of the same color are in the same cycle.

At a higher level, the connectivity constraints may be more generally interpreted as grouping
constraints. For instance, in the context of clustering, our color constraints may be viewed as
must-link constraints, where points of the same color have to be placed in the same cluster. Such
constrained clustering framework is of significant interest in data analysis (see, e.g., a highly-cited
paper [WCRSO01]). Our framework, combined with coreset techniques [FS05] and Arora’s quad-tree
methods (see [ARR98]), may be used to design streaming algorithms for such clustering problems.

Finally, we believe that the framework of optimization problems with connectivity and grouping
constraints is interesting on its own, going beyond the streaming setup. Such problems may
be studied also in the setting of standard (offline) algorithms, as well as of online algorithms,
approximation algorithms, fixed-parameter tractability, and heuristics.

References

[ABIW(09] Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient sketches for
earth-mover distance, with applications. In Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 324-330, 2009.

[AGLNO03] Mattias Andersson, Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan.
Balanced partition of minimum spanning trees. International Journal of Computational
Geometry and Applications, 13(4):303-316, 2003.

[ATKOS] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. FEarth mover distance over high-
dimensional spaces. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 343-352, 2008.

[AKR95] Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation algorithm
for the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440-456,

1995.

[AN12] Alexandr Andoni and Huy L. Nguyen. Width of points in the streaming model. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 447-452,
2012.

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing (STOC), pages 574-583, 2014.

[Aro98| Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM, 45(5):753-782, 1998.

[ARR98] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean
k-medians and related problems. In Proceedings of the 13th Annual ACM Symposium on the
Theory of Computing (STOC), pages 106-113, 1998.

[Bar96] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In
Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 184-193, 1996.

[BEM17] MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Almost optimal
streaming algorithms for coverage problems. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 13-23, 2017.

29

[BFL+17]

[BH12]

[BHM11]

[BKM15]

[BZ16]

[CF14]

[CFH*21]

[CGS5]

[CGK16]

[Cha02]

[Cha06]
[Chal6]
[CHJ18]

[CLMS13]

[CMO6]

[CRTO05]
[EJ15]

[FISO8]

Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F. Yang.
Clustering high dimensional dynamic data streams. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 576-585, 2017.

MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean prize-collecting Steiner
forest. Algorithmica, 62(3-4):906-929, 2012.

MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Déniel Marx. Approximation
schemes for Steiner forest on planar graphs and graphs of bounded treewidth. Journal of the
ACM, 58(5):21:1-21:37, 2011.

Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-time approximation
scheme for Euclidean Steiner forest. ACM Transactions of Algorithms, 11(3):19:1-19:20, 2015.

Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 51-60, 2016.

Graham Cormode and Donatella Firmani. A unifying framework for ¢p-sampling algorithms.
Distributed Parallel Databases, 32(3):315-335, 2014.

Kuan Cheng, Alireza Farhadi, MohammadTaghi Hajiaghayi, Zhengzhong Jin, Xin Li, Aviad
Rubinstein, Saeed Seddighin, and Yu Zheng. Streaming and small space approximation
algorithms for edit distance and longest common subsequence. In Proceedings of the 48th
International Colloquium on Automata, Languages, and Programming (ICALP), pages 54:1—
54:20, 2021.

F. R. K. Chung and R. L. Graham. A new bound for Euclidean Steiner minimal trees. Annals
of the New York Academy of Sciences, 440(1):328-346, 1985.

Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucky. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing (STOC), pages 712-725, 2016.

M. Charikar. Similarity estimation techniques from rounding algorithms. In 84th annual ACM
Symposium on Theory of Computing, pages 380-388. ACM Press, 2002. doi:http://doi.acnm.
org/10.1145/509907 .509965.

Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions.
Computation Geometry, 35(1-2):20-35, 2006.

Timothy M. Chan. Dynamic streaming algorithms for e-kernels. In Proceedings of the 32nd
International Symposium on Computational Geometry (SoCG), pages 27:1-27:11, 2016.

T.-H. Hubert Chan, Shuguang Hu, and Shaofeng H.-C. Jiang. A PTAS for the Steiner forest
problem in doubling metrics. SIAM Journal on Computing, 47(4):1705-1734, 2018.

Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian Sohler. (1 + ¢)-
approximation for facility location in data streams. In Proceedings of the 24th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1710-1728, 2013.

Graham Cormode and S. Muthukrishnan. Combinatorial algorithms for compressed sensing. In
Proceedings of the 13th International Colloguium on Structural Information and Communication
Complexity (SIROCCO), pages 280294, 2006.

Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning
tree weight in sublinear time. STAM Journal on Computing, 34(6):1370-1379, 2005.

Funda Ergiin and Hossein Jowhari. On the monotonicity of a data stream. Combinatorica,
35(6):641-653, 2015.

Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams and
applications. International Journal of Computational Geometry and Applications, 18(1/2):3-28,
2008.

30

https://doi.org/http://doi.acm.org/10.1145/509907.509965
https://doi.org/http://doi.acm.org/10.1145/509907.509965

[FKZ05]

[FS05]

[GGK*1§]

[GJKKO7]

[GK15]
[GP6S]
[GW95]

[HMO04]

[HSYZ19]
[Ind04]

[1T03]
[Jai01]

[TKS08]
[KN97]

[KNPW11]

[KNR99)]

[KNW10]

[LNNT19]

[LS08]

Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the streaming
and sliding-window models. Algorithmica, 41(1):25-41, 2005.

Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages 209
217, 2005.

Martin Grofl, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie
Schmidt, and José Verschae. A local-search algorithm for Steiner forest. In Proceedings of the
9th Innovations in Theoretical Computer Science Conference (ITCS 2018), pages 31:1-31:17,
2018.

Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Estimating the
sortedness of a data stream. In Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 318-327, 2007.

Anupam Gupta and Amit Kumar. Greedy algorithms for Steiner forest. In Proceedings of the
47th Annual ACM Symposium on Theory of Computing (STOC), pages 871-878, 2015.

Edgar N. Gilbert and Henry O. Pollak. Steiner minimal trees. SIAM Journal on Applied
Mathematics, 16(1):1-29, 1968.

Michel X. Goemans and David P. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24(2):296-317, 1995.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
291-300, 2004.

Wei Hu, Zhao Song, Lin F. Yang, and Peilin Zhong. Nearly optimal dynamic k-means clustering
for high-dimensional data, 2019. arXiv:1802.00459.

Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing (STOC), pages 373-380, 2004.

Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In ICCV, 2003.

Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39-60, 2001.

T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication complexity of
Hamming distance. Theory of Computing, 4(6):129-135, 2008.

Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation in
data streams in optimal space. In Proceedings of the 43rd Annual ACM Symposium on Theory
of Computing (STOC), pages 745-754, 2011.

Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity.
Computational Complexity, 8(1):21-49, 1999.

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pages 41-52, 2010.

Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hitters via
cluster-preserving clustering. Commaunications of the ACM, 62(8):95-100, 2019.

Christiane Lammersen and Christian Sohler. Facility location in dynamic geometric data
streams. In Proceedings of the 16th Annual European Symposium on Algorithms (ESA), pages
660671, 2008.

31

http://arxiv.org/abs/1802.00459

[Mit99] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. STAM
Journal on Computing, 28(4):1298-1309, 1999.

[MW95] Thomas L. Magnanti and Laurence A. Wolsey. Chapter 9: Optimal trees. In Network
Models, volume 7 of Handbooks in Operations Research and Management Science, pages 503-615.
Elsevier, 1995.

[Pol90] David Pollard. Empirical Processes: Theory and Applications, chapter 4: Packing and Covering
in Euclidean Spaces, pages 14-20. IMS, 1990.

[Sch16] Guido Schéfer. Steiner Forest. In Ming-Yang Kao, editor, Encyclopedia of Algorithms, pages
2099-2102. Springer, New York, NY, 2016.

[Soh12] Christian Sohler. Problem 52: TSP in the streaming model. https://sublinear.info/52,
2012.

[SS13] Michael E. Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to

monotonicity and asymmetric edit distance. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1698-1709, 2013.

[SWOT] Xiaoming Sun and David P. Woodruff. The communication and streaming complexity of
computing the longest common and increasing subsequences. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 336-345, 2007.

[WCRSO01] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrodl. Constrained k-means clustering
with background knowledge. In Proceedings of the 18th International Conference on Machine
Learning (ICML), pages 577-584, 2001.

[ZNI105] Liang Zhao, Hiroshi Nagamochi, and Toshihide Ibaraki. Greedy splitting algorithms for
approximating multiway partition problems. Mathematical Programming, Series A, 102(1):167—
183, 2005.

A Technical Lemmas

Lemma A.1. There exists an algorithm that, given an integer n, a stream of dynamic updates
to a frequency vector U € [—n,n]™, and an (integer) threshold T > 1, with probability at least
1 —1/poly(n) it reports YES if 0 < ||Ullo < T and NO if ||[Ullo > 2T (otherwise, the answer may
be arbitrary), and if the answer is YES, it returns all the non-zero coordinates of U, using space
O(T - poly logn) and the same time per update.

Proof. The algorithm maintains an ¢yp-norm estimator for U (see e.g. [KNW10]) with relative error
e = 0.5 using space polylogn, and a compressed sensing structure that recovers 27" non-zero
elements of U (see e.g. [CMO06]) using space O(T polylogn), each succeeding with probability at
least 1 — 1/ poly(n). When the stream ends, the algorithm queries the fy-norm estimator, which
is accurate enough to distinguish whether ||U|lg < T or ||U|lo > 2T'. conditioned on this estimator
succeeding, if it is determined that ||U||o < 27T, the algorithm uses the compressed sensing structure
to recover the at most 27" non-zero coordinates of U. This finishes the proof of Lemma A.1. O

We remark that an alternative algorithm is to maintain O(7T - poly logn) independent instances
of an fy-sampler (cf. Lemma 3.10) and applying a coupon collector argument to both estimate
the £y norm and recover the non-zero coordinates. The connection goes also the other way: An
fo-sampler may be designed using this lemma together with an appropriate subsampling of the
domain.

32

https://sublinear.info/52

	Introduction
	Our Contribution
	Technical Contribution: Adapting Arora's Framework to Streaming

	Could Other Approaches Work?
	Related Work
	Future Directions

	Preliminaries
	Notations
	Review of Dynamic Programming (DP) DBLP:journals/algorithmica/BateniH12,DBLP:journals/talg/BorradaileKM15

	Streaming Dynamic Programming: k3-time-and-space Algorithm
	Offline Algorithm
	Building Blocks for Streaming Algorithm
	Constructing Simple Squares in the Streaming Setting
	Approximate Compatibility Checking
	Evaluating Basic Subproblems in the Streaming Setting

	Proof of thm:main-precise
	Proof of lemma:streamingmstadd
	Error Analysis

	Lower Bound: (k) Bits are Necessary
	Composing MST Sketches: kk-time k2-space Algorithm
	Future Directions
	References
	Technical Lemmas

