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Abstract
In a dynamic data structure problem we wish to maintain an encoding of some data in memory,
in such a way that we may efficiently carry out a sequence of queries and updates to the data. A
long-standing open problem in this area is to prove an unconditional polynomial lower bound of
a trade-off between the update time and the query time of an adaptive dynamic data structure
computing some explicit function. Ko and Weinstein provided such lower bound for a restricted
class of semi-adaptive data structures, which compute the Disjointness function. There, the data
are subsets x1, . . . , xk and y of {1, . . . , n}, the updates can modify y (by inserting and removing
elements), and the queries are an index i ∈ {1, . . . , k} (query i should answer whether xi and y are
disjoint, i.e., it should compute the Disjointness function applied to (xi, y)). The semi-adaptiveness
places a restriction in how the data structure can be accessed in order to answer a query. We
generalize the lower bound of Ko and Weinstein to work not just for the Disjointness, but for any
function having high complexity under the smooth corruption bound.
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1 Introduction

In a dynamic data structure problem we wish to maintain an encoding of some data in
memory, in such a way that we may efficiently carry out a sequence of queries and updates
to the data. A suitable computational model to study dynamic data structures is the cell
probe model of Yao [21]. Here we think of the memory divided into registers, or cells, where
each cell can carry w bits, and we measure efficiency by counting the number of memory
accesses, or probes, needed for each query and each update — these are respectively called
the query time tq and update time tu. The main goal of this line of research is to understand
the inherent trade-off between w, tq and tu, for various interesting problems. Specifically,
one would like to show lower bounds on t = max{tq, tu} for reasonable choices of w (which
is typically logarithmic in the size of the data).
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23:2 Lower Bounds for Semi-adaptive Data Structures via Corruption

The first lower bound for this setting was proven by Fredman and Saks [8], which proved
t = Ω

(
logn/ log logn

)
for various problems. These lower bounds were successively improved

[15, 17, 13, 14], and we are now able to show that certain problems with non-Boolean
queries require t = Ω

(
(logn/ log logn)2), and certain problems with Boolean queries require

t = Ω
(
(logn/ log logn)3/2).

The major unsolved question in this area is to prove a polynomial lower bound on t. For
example, consider the dynamic reachability problem, where we wish to maintain a directed
n-vertex graph in memory, under edge insertions and deletions, while being able to answer
reachability queries (“is vertex i connected to vertex j?”). Is it true that any scheme for the
dynamic reachability problem requires t = Ω(nδ), for some constant δ > 0? Indeed, such
a lower bound is known under various complexity-theoretic assumptions1, the question is
whether such a lower bound may be proven unconditionally.

In an influential paper [18], Mihai Pătraşcu proposed an approach to this unsolved question.
He defines a data structure problem, called the multiphase problem. Let us represent partial
functions f : {0, 1}n × {0, 1}n → {0, 1} as total functions f ′ : {0, 1}n × {0, 1}n → {0, 1, ∗}
where f ′(x, y) = ∗ if f(x, y) is not defined. Then associated with a partial Boolean function
f : {0, 1}n ×{0, 1}n → {0, 1, ∗}, and a natural number k ≥ 1, we may define a corresponding
multiphase problem of f as the following dynamic process:
Phase I - Initialization. We are given k inputs x1, . . . , xk ∈ {0, 1}n, and are allowed to

preprocess this input in time nk · tp.
Phase II - Update. We are then given another input y ∈ {0, 1}n, and we have time n · tu to

read and update the memory locations from the data structure constructed in Phase I.
Phase III - Query. Finally, we are given a query i ∈ [k], we have time tq to answer the

question whether f(xi, y) = 1. If f(xi, y) is not defined, the answer can be arbitrary.
Typically we will have k = poly(n). Let us be more precise, and consider randomized
solutions to the above problem.

I Definition 1 (Scheme for the multiphase problem of f). Let f : {0, 1}n×{0, 1}n → {0, 1, ∗}
be a partial Boolean function. A scheme for the multiphase problem of f with preprocessing
time tp, update time tu and query time tq is a triple D =

(
E, {Uy}y∈{0,1}n , {Qi}i∈[k]

)
, where:

E :
(
{0, 1}n

)k → (
{0, 1}w

)s maps the input x to the memory contents E(x), where
each of the s memory locations holds w bits. E must be computed in time nk · tp by a
Random-Access Machine (RAM).
For each y ∈ {0, 1}n, Uy :

(
{0, 1}w

)s → (
{0, 1}w

)u is a decision-tree of depth ≤ n · tu,
which reads E(x) and produces a sequence Uy

(
E(x)

)
of u updates.2

For each i ∈ [k], Qi :
(
{0, 1}w

)s × ({0, 1}w)u → {0, 1} is a decision-tree of depth ≤ tq.3

For all x ∈
(
{0, 1}n

)k, y ∈ {0, 1}n, and i ∈ [k],

f(xi, y) 6= ∗ =⇒ Qi
(
E(x), Uy(E(x))

)
= f(xi, y).

1 See [16, 1]. Strictly speaking, these conditional lower bounds only work if the preprocessing time, which
is the time taken to encode the data into memory, is also bounded. But we will ignore this distinction.

2 In the usual way of defining the update phase, we have a read/write decision-tree Uy which changes the
very same cells that it reads. But when w = Ω(log s), this can be seen to be equivalent, up to constant
factors, to the definition we present here, where we have a decision-tree Uy that writes the updates on a
separate location. In order to simulate a scheme that uses a read/write decision-tree, we may use a hash
table with O(1) worst-case lookup time, such as cuckoo hashing. Then we have a read-only decision-tree
U ′

y(E(x)) whose output is the hash table containing all the i ∈ [s] which were updated by Uy(E(x)),
associated with their final value in the execution of Uy(E(x)). Note that the hash table itself is static.

3 All our results will hold even if Qi is allowed to depend arbitrarily on xi. This makes for a less natural
model, however, so we omit this from the definitions.
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In a randomized scheme for the multiphase problem of f , each Uy and Qi are distributions
over decision trees, and it must hold that for all x ∈

(
{0, 1}n

)k, y ∈ {0, 1}n, and i ∈ [k],

f(xi, y) 6= ∗ =⇒ Pr
Qi,Uy

[
Qi
(
E(x), Uy(E(x))

)
= f(xi, y)

]
≥ 1− ε.

The value ε is called the error probability of the scheme.

Pătraşcu [18] considered this problem where f = DISJ is the Disjointness function:

DISJ(x, y) =
{

0 if there exists i ∈ [n] such that xi = yi = 1
1 otherwise

He conjectured that any scheme for the multiphase problem of DISJ will necessarily have
max{tp, tu, tq} ≥ nδ for some constant δ > 0.

Pătraşcu shows that such lower bounds on the multiphase problem for DISJ would imply
polynomial lower bounds for various dynamic data structure problems. For example such
lower bounds would imply that dynamic reachability requires t = Ω(nδ). He also shows
that these lower bounds hold true under the assumption that 3SUM has no sub-quadratic
algorithms.

Finally, Pătraşcu then defines a 3-player Number-On-Forehead (NOF) communication
game, such that lower bounds on this game imply matching lower bounds for the multiphase
problem. The game associated with a function f : {0, 1}n × {0, 1}n → {0, 1} is as follows:
1. Alice is given x1, . . . , xk ∈ {0, 1}n and i ∈ [k], Bob gets y ∈ {0, 1}n and i ∈ [k] and

Charlie gets x1, . . . , xk and y.
2. Charlie sends a private message of `1 bits to Bob and then he is silent.
3. Alice and Bob communicate `2 bits and want to compute f(xi, y).
Pătraşcu [18] conjectured that if `1 is o(k), then `2 has to be bigger than the communication
complexity of f . However, this conjecture turned out to be false. The randomized com-
munication complexity of DISJ is Ω(n) [19, 10, 3], but Chattopadhyay et al. [6] construct
a protocol for f = DISJ where both `1, `2 = O

(√
n · log k

)
. They further show that any

randomized scheme in the above model can be derandomized.
So the above communication model is more powerful than it appears at first glance.4

However, a recent paper by Ko and Weinstein [11] succeeds in proving lower bounds for a
simpler version of the multiphase problem, which translate to lower bounds for a restricted
class of dynamic data structure schemes. They manage to prove a lower bound of Ω(

√
n)

for the simpler version of the multiphase problem which is associated with the Disjointness
function f = DISJ. Our paper generalizes their result:

We generalize their lower bound to any function f having large complexity according
to the smooth corruption bound, under a product distribution. Disjointness is such a
function [2], but so is Inner Product, Gap Orthogonality, and Gap Hamming Distance [20].
The new lower-bounds we obtain (for Inner-product, Gap Orthogonality, and Gap
Hamming Distance) are stronger — Ω(n) instead of the lower-bound Ω(

√
n) for disjointness.

As far as was known before our result, it could well have been that every function
had a scheme for the simpler version of the multiphase problem using only O(

√
n)

communication.

4 The conjecture remains that if `1 = o(k), then `2 has to be larger than the maximum distributional
communication complexity of f under a product distribution. This is Θ̃

(√
n
)
for Disjointness [2].

CVIT 2016
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Ko and Weinstein derive their lower-bound via a cut-and-paste lemma which works
specifically for disjointness. This cut-and-paste lemma is a more robust version of the
one appearing in [3], made to work not only for protocols, where the inputs x and y are
independent given the transcript z of the protocol, but also for random-variables that are
“protocol-like”, namely any (x,y, z) where I(x : y | z) is close to 0. Instead, we directly
derive the existence of a large nearly-monochromatic rectangle, from the existence of such
protocol-like random-variables, which is what then allows us to use the smooth corruption
bound. This result is our core technical contribution, and may be of independent interest.

All of the above lower bounds will be shown to hold also for randomized schemes, and
not just for deterministic schemes.

1.1 Semi-adaptive Multiphase Problem
Let us provide rigorous definitions.

I Definition 2 (Semi-adaptive random data structure [11]). Let f : {0, 1}n×{0, 1}n → {0, 1, ∗}
be a partial function. A scheme D =

(
E, {Uy}y∈{0,1}n , {Qi}i∈[k]

)
for the multiphase problem

of f is called semi-adaptive if any path on the decision-tree Qi :
(
{0, 1}w

)s × ({0, 1}w)u →
{0, 1} first queries the first part of the input (the E(x) part), and then queries the second
part of the input (the U(E(x)) part). If D is randomized, then this property must hold for
every randomized choice of Qi.

We point out that the reading of the cells in each part is completely adaptive. The restriction
is only that the data structure cannot read cells of E(x) if it already started to read cells of
U(E(x)). Ko and Weinstein state their result for deterministic data structures, i.e., ε = 0
thus the data structure always returns the correct answer.

I Theorem 3 (Theorem 4.9 of Ko and Weinstein [11]). Let k ≥ ω(n). Any semi-adaptive
deterministic data structure that solves the multiphase problem of the DISJ function, must
have either tu · n ≥ Ω

(
k/w

)
or tq ≥ Ω

(√
n/w

)
.

To prove the lower bound they reduce the semi-adaptive data structure into a low correlation
random process.

I Theorem 4 (Reformulation of Lemma 4.1 of Ko and Weinstein [11]). Let x1, . . . ,xk be
random variables over {0, 1}n and each of them is independently distributed according to
the same distribution µ1 and let y be a random variable over {0, 1}n distributed according
to µ2 (independently of x1, . . . ,xk). Let D be a randomized semi-adaptive scheme for the
multiphase problem for a partial function f : {0, 1}n×{0, 1}n → {0, 1, ∗} with error probability
bounded by ε. Then, for any p ≤ o(k) there is a random variable z ∈ {0, 1}m and i ∈ [k] such
that:
1. Pr

[
f(xi,y) 6= ∗, zm 6= f(xi,y)

]
≤ ε.

2. I
(
xi : y z

)
≤ tq · w + o(tq · w).

3. I
(
y : z

)
≤ tq · w.

4. I
(
xi : y | z

)
≤ O

(
tu·n·w
p

)
.

Above, I stands for mutual information between random variables, see Section 2.2 for the
definition. The random variable z consists of some xj ’s and transcripts of query phases of D
for some j ∈ [k]. The theorem can be interpreted as saying that the last bit of z predicts
f(xi,y), z has little information about xi and y, and the triple (xi,y, z) is “protocol-like”,
in the sense that xi and y are close to being independent given z. Ko and Weinstein [11]



P. Dvořák and B. Loff 23:5

proved Theorem 4 for the deterministic schemes for the DISJ function and in the case where
µ1 = µ2. However, their proof actually works for any (partial) function f and for any two,
possibly distinct distributions µ1 and µ2. Moreover, their proof also works for randomized
schemes. The resulting statement for randomized schemes for any function f is what we
have given above. To complete the proof of their lower bound, Ko and Weinstein proved
that if we set p (and k) large enough so that I

(
xi : y | z

)
≤ o(1) then such random variable

z cannot exist when f is the DISJ function. It is this second step which we generalize.
Let f : X × Y → {0, 1} be a function and µ be a distribution over X × Y . A set

R ⊆ X × Y is a rectangle if there exist sets A ⊆ X and B ⊆ Y such that R = A×B. For
b ∈ {0, 1} and 0 ≤ ρ ≤ 1, we say the rectangle R is ρ-error b-monochromatic for f under µ if
µ
(
R ∩ f−1(1− b)

)
≤ ρ · µ

(
R
)
. We say the distribution µ is a product distribution if there are

two independent distribution µ1 over X and µ2 over Y such that µ(x, y) = µ1(x)× µ2(y).
For 0 ≤ α ≤ 1

2 , the distribution µ is α-balanced according to f if µ
(
f−1(0)

)
, µ
(
f−1(1)

)
≥ α.

We will prove that the existence of a random variable z given by Theorem 4 implies that, for
any b ∈ {0, 1}, any balanced product distribution µ and any function g which is “close” to
f , there is a large (according to µ) ρ-error b-monochromatic rectangle for g in terms of tq.
This technique is known as smooth corruption bound [4, 5] or smooth rectangle bound [9].
We denote the smooth corruption bound of f as scbρ,λµ . Informally, scbρ,λµ (f) ≥ s if there is
b ∈ {0, 1} and a partial function g : X × Y → {0, 1, ∗} which is close5 to f such that any
ρ-error b-monochromatic rectangle R ⊆ X × Y for g has size (under µ) at most 2−s. We will
define smooth corruption bound formally in the next section. Thus, if we use Theorem 4 as
a black box we generalize Theorem 3 for any function of large corruption bound.

I Theorem 5 (Main Result). Let λ, ε̃, α̃ ≥ 0 such that α ≥ 2ε for ε = ε̃+λ, α = α̃−λ. Let µ
be a product distribution over {0, 1}n×{0, 1}n such that µ is α̃-balanced according to a partial
function f : {0, 1}n × {0, 1}n → {0, 1, ∗}. Any semi-adaptive randomized scheme for the
multiphase problem of f , with error probability bounded by ε̃, must have either tu ·n ≥ Ω

(
k/w

)
,

or

tq · w ≥ Ω
(
α · scbO(ε/α),λ

µ (f)
)
.

We point out that Ω and O in the bound given above hide absolute constants independent of
α, ε and λ.

As a consequence of our main result, and of previously-known bounds on corruption,
we are able to show new lower-bounds of tq = Ω( nw ) against semi-adaptive schemes for the
multiphase problem of the Inner Product, Gap Orthogonality and Gap Hamming Distance
functions (where the gap is

√
n). These lower-bounds hold assuming that tu = o( k

wn ). They
follow from the small discrepancy of Inner Product, and from a bound shown by Sherstov on
the corruption of Gap Orthogonality, followed by a reduction to Gap Hamming Distance
[20]. This result also gives an alternative proof of the same lower-bound proven by Ko and
Weinstein [11], for the Disjointness function, of tq = Ω(

√
n
w ). This follows from the bound on

corruption of Disjointness under a product distribution, shown by Babai et al. [2].
The paper is organized as follows. In Section 2 we give important notation, and the basic

definitions from information theory and communication complexity. The proof of Theorem 5
appears in Section 3. The various applications appear in Section 4.

5 “Closeness” is measured by the parameter λ ∈ R, see Section 2.1 for the formal definition.

CVIT 2016



23:6 Lower Bounds for Semi-adaptive Data Structures via Corruption

2 Preliminaries

We use a notational scheme where sets are denoted by uppercase letters, such as X and Y ,
elements of the sets are denoted by the same lowercase letters, such as x ∈ X and y ∈ Y , and
random variables are denoted by the same lowercase boldface letters, such as x and y. We
will use lowercase greek letters, such as µ, to denote distributions. If µ is a distribution over
a product set, such as X×Y ×Z, and (x, y, z) ∈ X×Y ×Z, then µ(x, y, z) is the probability
of seeing (x, y, z) under µ. We will sometimes denote µ by µ(x, y, z), using non-italicized
lowercase letters corresponding to X ×Y ×Z. This allows us to to use the notation µ(x) and
µ(y) to denote the x and y-marginals of µ, for example; then if we use the same notation
with italicized lowercase letters, we get the marginal probabilities, i.e., for each x ∈ X and
y ∈ Y

µ(x) =
∑
y,z

µ(x, y, z) µ(y) =
∑
x,z

µ(x, y, z).

If y ∈ Y , then we will also use the notation µ(x | y) to denote the x-marginal of µ conditioned
seeing the specific value y. Then for each x ∈ X and y ∈ Y , we have

µ(x | y) =
∑
z

µ(x, y, z).

We will also write (x,y, z) ∼ µ to mean that (x,y, z) are random variables chosen according to
the distribution µ(x, y, z), i.e., for all (x, y, z) ∈ X×Y ×Z, Pr[x = x,y = y, z = z] = µ(x, y, z).
Naturally if A ⊆ X × Y × Z, then µ(A) =

∑
(x,y,z)∈A µ(x, y, z). We let supp(µ) denote the

support of µ, i.e., the set of (x, y, z) with µ(x, y, z) > 0.
We now formally define the smooth corruption bound and related measures from commu-

nication complexity, and refer the book by Kushilevitz and Nisan [12] for more details. At
the end of this section we provide necessary notions of information theory which are used in
the paper, and for more details on these we refer to the book by Cover and Thomas [7].

2.1 Rectangle Measures
Let f : X × Y → {0, 1, ∗} be a partial function, where f(x, y) = ∗ means f is not defined
on (x, y). Let µ(x, y) be a distribution over X × Y . We say that f is λ-close to a partial
function g : X × Y → {0, 1, ∗} under µ if

Pr
(x,y)∼µ

[
f(x, y) 6= g(x, y)

]
≤ λ.

For b ∈ {0, 1}, ρ ∈ [0, 1], let

Rρ,bµ (f) =
{
R ⊆ X × Y rectangle | µ

(
R ∩ f−1(1− b)

)
≤ ρ · µ

(
R
)}

be the set of ρ-error b-monochromatic rectangles for f under µ. The complexity measure
mono quantifies how large almost b-monochromatic rectangles can be for both b ∈ {0, 1}:

monoρµ(f) = min
b∈{0,1}

max
R∈Rρ,bµ (f)

µ(R)

Using mono we can define the corruption bound of a function as cbρµ(f) = log 1
monoρµ(f) and

the smooth corruption bound as

scbρ,λµ (f) = max
g: λ-close to f under µ

cbρµ(g).

Thus, if scbρ,λµ (f) ≥ s then there is a b ∈ {0, 1} and a function g which λ-close to f under µ
such that for any ρ-error b-monochromatic rectangle for g under µ it holds that µ(R) ≤ 2−s.
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I Remark. In Razborov’s paper where an Ω(n) lower-bound for disjointness is first proven
[19], the (implicitly given) definition of a ρ-error b-monochromatic rectangle is µ(R∩ f−1(1−
b)) ≤ ρ · µ(R ∩ f−1(b)). Later, a strong direct product theorem for corruption (under
product distributions) was proven by Beame et al. [4], which uses instead the condition
that µ(R \ f−1(b)) ≤ ρ · µ(R). The definition we present above comes from [20], where the
condition is (we repeat it here) that µ(R ∩ f−1(1− b)) ≤ ρ · µ(R). So we have three different
definitions of ρ-error b-monochromatic rectangle, and thus three different corruption bounds.
Now, if the distribution µ is supported on the domain of f , all these three definitions result
in (roughly) equivalent complexity measures. But if µ attributes some mass to inputs where
f is undefined (which is sometimes useful if µ is a product distribution, as in our case), then
the definitions are no longer equivalent. Our lower-bound will hold for any of the definitions,
but the proof is somewhat simpler for the definition used in Sherstov’s paper [20], which is
the only corruption-based lower-bound we use, where µ attributes mass to undefined inputs.

The notion monoρµ is related to the discrepancy of a function:

discµ(f) = max
R : rectangle of X × Y

∣∣∣µ(R ∩ f−1(0)
)
− µ

(
R ∩ f−1(1)

)∣∣∣.
It is easy to see that for a total function f holds that discµ(f) ≥ (1− 2ρ) ·monoρµ(f) for any
ρ. Thus, Theorem 5 will give us lower bounds also for functions of small discrepancy.

2.2 Information Theory
We define several measures from information theory. If µ′(z), µ(z) are two distributions such
that supp(µ′) ⊆ supp(µ), then the Kullback-Leibler divergence of µ′ from µ is

DKL
(
µ′ ‖ µ

)
=
∑
z

µ′(z) log µ
′(z)
µ(z) .

With Kullback-Leibler divergence we can define the mutual information, which measures
how close (according to KL divergence) is a joint distribution to the product of its marginals.
If we have two random variables (x,y) ∼ µ(x, y), then we define their mutual information to
be

I
(
x : y

)
= DKL

(
µ(x, y) ‖ µ(x)× µ(y)

)
= E
y∼µ(y)

[
DKL

(
µ(x | y) ‖ µ(x)

)]
.

If we have three random variables (x,y, z) ∼ µ(x, y, z), then the mutual information of x
and y conditioned by z is

I
(
x : y | z

)
= E
z∼µ(z)

[
I
(
x : y | z = z

)]
= E
z∼µ(z)

[
DKL

(
µ(x, y | z) ‖ µ(x | z)× µ(y | z)

)]
We present several facts about mutual information, the proofs can be found in the book of
Cover and Thomas [7].

I Fact 6 (Chain Rule). For any random variables x1,x2,y and z holds that

I
(
x1x2 : y | z

)
= I
(
x1 : y | z

)
+ I
(
x2 : y | z,x1

)
.

Since mutual information is never negative, we have the following corollary.

I Corollary 7. For any random variables x,y and z holds that I
(
x : y

)
≤ I
(
x : y z

)
.

CVIT 2016
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The `1-distance between two distributions is defined as∥∥µ′(z)− µ(z)
∥∥

1 =
∑
z

∣∣µ′(z)− µ(z)
∣∣.

There is a relation between `1-distance and Kullback-Leibler divergence.

I Fact 8 (Pinsker’s Inequality). For any two distributions µ′(z) and µ(z), we have∥∥µ′(z)− µ(z)
∥∥

1 ≤
√

2 · DKL
(
µ′(z) ‖ µ(z)

)
3 The Proof of Theorem 5

Let f : {0, 1}n × {0, 1}n → {0, 1, ∗} be a partial function. Suppose there is a semi-adaptive
random scheme D for the multiphase problem of f with error probability bounded by ε̃
such that tu · n ≤ o

(
k/w

)
. Let µ(x, y) = µ1(x) × µ2(y) be a product distribution over

{0, 1}n × {0, 1}n, such that µ(x, y) is α̃-balanced according to f . Let b ∈ {0, 1} and
g : {0, 1}n × {0, 1}n → {0, 1, ∗} be a partial function which is λ-close to f under µ. We will
prove there is a large almost b-monochromatic rectangle for g.

Let x1, . . . ,xk be independent random variables each of them distributed according to
µ1 and y be an independent random variable distributed according to µ2. Let the random
variable z ∈ {0, 1}m and the index i ∈ [k] be given by Theorem 4 applied to the random
variables x1, . . . ,xk,y and the function f . For simplicity we denote x = xi.

We will denote the joint distribution of (x1, . . . ,xk,y, z) by µ(x1, . . . , xk, y, z). Note
that here the notation is consistent, in the sense that µ(xi, y) = µ1(xi) × µ2(y) for all
i ∈ [k], x, y ∈ {0, 1}n. We will then need to keep in mind that µ(z) is the z-marginal of the
joint distribution of (x1, . . . ,xk,y, z).

By f(x,y) 6=∗ zm we denote the event that the random variable zm gives us the wrong
answer on an input from the support of f , i.e. f(x,y) 6= ∗ and f(x,y) 6= zm hold simultane-
ously. By Theorem 4 we know that Pr

[
f(x,y) 6=∗ zm

]
≤ ε̃. Since f and g are λ-close under

µ, we have that µ is still balanced according to g and g(x,y) 6=∗ zm with small probability,
as stated in the next observation.

I Observation 9. Let α = α̃− λ and ε = ε̃+ λ. For the function g it holds that
1. The distribution µ(x, y) is α-balanced according to g.
2. Pr

[
g(x,y) 6=∗ zm

]
≤ ε.

Proof. Let b′ ∈ {0, 1}. We will bound µ
(
g−1(b′)

)
.

α̃ ≤ Pr
[
f(x,y) = b′

]
= Pr

[
f(x,y) = b′, f(x,y) = g(x,y)

]
+ Pr

[
f(x,y) = b′, f(x,y) 6= g(x,y)

]
≤Pr

[
g(x,y) = b′

]
+ λ.

Thus, by rearranging we get µ
(
g−1(b′)

)
≥ α̃ − λ = α. The proof of the second bound is

similar:

Pr
[
g(x,y) 6=∗ zm

]
= Pr

[
f(x,y) 6=∗ zm, f(x,y) = g(x,y)

]
+ Pr

[
g(x,y) 6=∗ zm, f(x,y) 6= g(x,y)

]
≤ ε̃+ λ = ε. J

Let c be the bound on I
(
x : y z

)
and I

(
y : z

)
given by Theorem 4. Since I

(
x : z

)
≤

I
(
x : y z

)
, we have I

(
x : z

)
, I
(
y : z

)
≤ tq ·w+ o(tq ·w) = c. We will prove that if we assume
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that tu · n < o
(
k/w

)
and we choose p large enough (p of Theorem 4) then we can find a

rectangle R ⊆ X × Y such that R is O
(
ε/α

)
-error b-monochromatic for g and µ(R) ≥ 1

2c′

for c′ = O
( tq·w

α

)
. Thus, we have monoO(ε/α)

µ (g) ≥ 2−c′ and consequently

scbO(ε/α),λ
µ (f) ≤ O

(
tq · w
α

)
.

By rearranging, we get the bound of Theorem 5.
Let us sketch the proof of how we can find such a rectangle R. We will first fix the

random variable z to z such that x and y are not very correlated conditioned on z = z,
i.e., the joint distribution µ(x, y | z) is very similar to the product distribution of the
marginals µ(x | z)× µ(y | z). Moreover, we will pick z in such a way the probability of error
Pr
[
g(x,y) 6=∗ zm|z = z

]
is still small. Then, since µ(x, y | z) is close to µ(x | z)× µ(y | z),

the probability of error under the latter distribution will be small as well, i.e., if (x′,y′) ∼
µ(x | z)× µ(y | z), then Pr

[
g(x′,y′) 6=∗ zm

]
will also be small. Finally, we will find subsets

A ⊆ supp
(
µ(x | z)

)
, B ⊆ supp

(
µ(y | z)

)
of large mass (under the original distributions µ1

and µ2), while keeping the probability of error on the rectangle R = A×B sufficiently small.
Let us then proceed to implement this plan. Let β = α − ε. We will show that β is a

lower bound for the probability that zm is equal to b. Let γ be the bound on I
(
x : y | z

)
given by Theorem 4, i.e., I

(
xi : y | z

)
≤ γ = O

(
tu·n·w
p

)
.

I Lemma 10. There exists z ∈ Z such that
1. zm = b.
2. I

(
x : y | z = z

)
≤ 5

β · γ.
3. DKL

(
µ(x | z) ‖ µ(x)

)
,DKL

(
µ(y | z) ‖ µ(y)

)
≤ 5

β · c.
4. Pr

[
g(x,y) 6=∗ zm | z = z

]
≤ 5

β · ε.

Proof. Since µ is α-balanced according to g, we find that

α ≤ Pr
[
g(x,y) = b

]
= Pr

[
g(x,y) = b, zm = b

]
+ Pr

[
g(x,y) = b, zm 6= b

]
≤ Pr

[
zm = b

]
+ ε.

Thus, by rearranging we get Pr
[
zm = b

]
≥ α − ε = β. By expanding the information

I
(
x : y | z

)
we find

γ ≥ I
(
x : y | z

)
= E
z∼µ(z)

[
I
(
x : y | z = z

)]
and by the Markov inequality we get that

Pr
z∼µ(z)

[
I
(
x : y | z = z

)
≥ 5
β
· γ
]
≤ β

5 .

Similarly, for the information I
(
x : z

)
:

c ≥ I
(
x y : z

)
≥ I
(
x : z

)
= E
z∼µ(z)

[
DKL

(
µ(x | z) ‖ µ(x)

)]
and so

Pr
z∼µ(z)

[
DKL

(
µ(x | z) ‖ µ(x)

)
≥ 5
β
· c
]
≤ β

5 .
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The bound for I
(
y : z

)
is analogous. Let ez = Prµ

[
g(x,y) 6=∗ zm|z = z

]
. Then,

ε ≥ Pr
[
g(x,y) 6=∗ zm

]
=
∑
z∈Z

µ(z) · ez = E
z∼µ(z)

[
ez
]

Pr
z∼µ(z)

[
ez ≥

5
β
· ε
]
≤ β

5 .

Thus, by a union bound we may infer the existence of the sought z ∈ Z. J

Let us now fix z ∈ Z from the previous lemma. Let µz(x, y) = µ(x, y | z) be the
distribution µ(x, y) conditioned on z = z, and let µ′z(x, y) = µ(x | z)×µ(y | z) be the product
of its marginals. Let S be the support of µz(x, y), and let Sx and Sy be the supports of µ′z(x)
and µ′z(y), respectively, i.e., Sx and Sy are the projections of S into X and Y .

Then Pinsker’s inequality will give us that µz and µ′z are very close. Let δ =
√

10
β · γ.

I Lemma 11.
∥∥∥µz(x, y)− µ′z(x, y)

∥∥∥
1
≤ δ

Proof. Indeed, by Pinsker’s inequality,∥∥∥µz(x, y)− µ′z(x, y)
∥∥∥

1
≤
√

2 · DKL
(
µz(x, y) ‖ µ′z(x, y)

)
.

The right-hand side is
√

2 · DKL
(
µ(x, y | z) ‖ µ(x | z)× µ(y | z)

)
, which by definition of mu-

tual information equals
√

2 · I
(
x : y | z = z

)
, and by Lemma 10 this is ≤

√
10
β · γ = δ. J

For the sake of reasoning, let (x′,y′) ∼ µ′z(x, y) be random variables chosen according to
to µ′z. Let ε′ = 5

β · ε+ δ. It then follows from Lemma 10 and Lemma 11 that:

I Lemma 12. Pr
[
g(x′,y′) 6=∗ zm

]
≤ ε′.

Proof. We prove that∣∣∣Pr
[
g(x,y) 6=∗ zm | z = z

]
− Pr

[
g(x′,y′) 6=∗ zm

]∣∣∣ ≤ δ.
Since Pr

[
g(x,y) 6=∗ zm | z = z

]
≤ 5

β · ε by Lemma 10, the lemma follows. Let

B =
{

(x, y) ∈ Sx × Sy : g(x, y) 6= zm, g(x, y) 6= ∗
}
.

∣∣∣Pr
[
g(x,y) 6=∗ zm | z = z

]
− Pr

[
g(x′,y′) 6=∗ zm

]∣∣∣
=
∣∣∣ ∑
(x,y)∈B

µz(x, y)− µ′z(x, y)
∣∣∣

≤
∑

(x,y)∈B

∣∣∣µz(x, y)− µ′z(x, y)
∣∣∣ ≤ δ by the triangle inequality and Lemma 11

J

Let c′ = 5
β · c. We will prove the ratio between µ′z(x′) and µ(x′) is larger than 2O(c′) with

only small probability (when x′ ∼ µ′z(x)). The same holds for µ′z(y′) and µ(y′).

I Lemma 13. Pr
[
µ′z(x′) ≥ 26c′ · µ(x′)

]
,Pr

[
µ′z(y′) ≥ 26c′ · µ(y′)

]
≤ 1

6 .
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Proof. We prove the lemma for µ′z(x′), the proof for µ′z(y′) is analogous. By Lemma 10 we
know that DKL

(
µ(x | z) ‖ µ(x)

)
= DKL

(
µz(x) ‖ µ(x)

)
= DKL

(
µ′z(x) ‖ µ(x)

)
≤ c′. We expand

the Kullback-Leibler divergence:

c′ ≥ DKL
(
µ′z(x) ‖ µ(x)

)
=
∑
x∈Sx

µ′z(x) log µ
′
z(x)
µ(x) = E

[
log µ

′
z(x′)
µ(x′)

]
,

and then use the Markov inequality:

Pr
[
µ′z(x′) ≥ 26c′

· µ(x′)
]

= Pr
[
log µ

′
z(x′)
µ(x′) ≥ 6c′

]
≤ 1

6 . J

We now split Sx and Sy into buckets Cx
` and Cy

` (for ` ≥ 1), where the `-th buckets are

Cx
` =

{
x ∈ Sx

∣∣∣ (`− 1)
2c′ <

µ′z(x)
µ(x) ≤

`

2c′

}
,

Cy
` =

{
y ∈ Sy

∣∣∣ (`− 1)
2c′ <

µ′z(y)
µ(y) ≤

`

2c′

}
.

In a bucket Cx
` there are elements of Sx such that their probability under µ′z(x) is approxi-

mately `
2c′ -times bigger than their probability under µ(x). By Lemma 13, it holds that with

high probability the elements x ∈ Sx, y ∈ Sy are in the buckets Cx
`1

and Cy
`2

for `1, `2 ≤ 27c′ .
Thus, if we find a bucket Cx

`1
for `1 ≤ 27c′ which has probability at least 1

2O(c′) under µ′z(x),
then it has also probability at least 1

2O(c′) under µ(x). The same holds also for buckets Cy
` .

In the next lemma we will show that there are buckets Cx
`1

and Cy
`2

of large probability under
µ′z such that the probability of error on Cx

`1
× Cy

`2
is still small.

I Lemma 14. There exist buckets Cx
`1

and Cy
`2

such that
1. 1 < `1, `2 ≤ 27c′ .
2. Pr

[
x′ ∈ Cx

`1

]
,Pr
[
y′ ∈ Cy

`2

]
≥ 1

6·27c′ .
3. Pr

[
g(x′,y′) 6=∗ zm, (x′,y′) ∈ Cx

`1
× Cy

`2

]
≤ 6ε′ · Pr

[
(x′,y′) ∈ Cx

`1
× Cy

`2

]
.

Proof. We prove that `1, `2 exist via the probabilistic method. Let `1 and `2 be the buckets
of x′ and y′, respectively. Thus Pr

[
`1 = `

]
= Pr

[
x′ ∈ Cx

`

]
and Pr

[
`2 = `

]
= Pr

[
y′ ∈ Cy

`

]
.

Let B1, B2 ⊆ L′ = {1, . . . , 27c′} be sets of indices of small probability, i.e., for i ∈ {1, 2}

Bi =
{
` ∈ L′

∣∣ Pr[`i = `] ≤ 1
6 · 27c′

}
.

We will prove that with high probability we have 27c′ ≥ `1 > 1 and `1 6∈ B1. The proof for
`2 is analogous.

Pr
[
`1 = 1

]
= Pr

[
x′ ∈ Cx

1
]

=
∑
x∈Cx

1

µ′z(x) ≤
∑
x∈Cx

1
µ(x)

2c′ ≤ 1
2c′

By Lemma 13, we get Pr
[
`1 > 27c′] = Pr

[
µ′z(x′) ≥ 26c′ · µ(x′)

]
≤ 1

6 . There is only small
probability that `1 is in B1.

Pr
[
`1 ∈ B1

]
=
∑
`∈B1

Pr[`1 = `] ≤ |L′|
6 · 27c′ = 1

6

Thus, we have that `i ∈ Bi or `i = 1 or `i > 27c′ with probability at most 2
3 + 2

2c′ .
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By Lemma 12, we have that Pr
[
g(x′,y′) 6=∗ zm

]
≤ ε′. By expanding the probability and

by Markov inequality we will now get the last inequality for Cx
`1

and Cy
`2
. Let

e(`1, `2) = Pr
[
g(x′,y′) 6=∗ zm | x′ ∈ Cx

`1
,y′ ∈ Cy

`2

]
.

We will prove there is `1 and `2 such that e(`1, `2) ≤ 6ε′. This is equivalent to the third
bound of the lemma. We have: ε′ ≥ Pr

[
g(x′,y′) 6=∗ zm

]
= E

[
e(`1, `2)

]
and thus, by Markov,

Pr
[
e(`1, `2) > 6ε′

]
≤ 1

6 . By a union bound we conclude that there must exist 1 < `1, `2 ≤ 27c′

such that Pr[`1 = `1],Pr[`2 = `2] ≥ 1
6·27c′ and e(`1, `2) ≤ 6ε′. J

As a corollary we will prove that the rectangle Cx
`1
×Cy

`2
(given by the previous lemma) is

a good rectangle under the original distribution µ. We remark that the proof of the following
corollary is the only place where we use the fact that x and y are independent.

I Corollary 15. There exists a rectangle R ⊆ Sx × Sy such that
1. Pr

[
(x,y) ∈ R

]
≥ 1

36·226c′ .

2. Pr
[
g(x,y) 6=∗ zm, (x,y) ∈ R

]
≤ 24ε′ · Pr

[
(x,y) ∈ R

]
.

Proof. Let R = Cx
`1
×Cy

`2
where Cx

`1
and Cy

`2
are buckets given by Lemma 14. By Lemma 14,

we get

1
6 · 27c′ ≤ Pr

[
x′ ∈ Cx

`1

]
=
∑
x∈Cx

`1

µ′z(x) ≤
∑
x∈Cx

`1

`1 · µ(x)
2c′ = Pr

[
x ∈ Cx

`1

]
· `12c′ .

By rearranging we get

Pr
[
x ∈ Cx

`1

]
≥ 2c′

6`1 · 27c′ ≥
1

6 · 213c′

The bound for Pr
[
y ∈ Cy

`2

]
is analogous, thus we have Pr

[
(x,y) ∈ R

]
≥ 1

36·226c′ . (Here and
below, we crucially use the fact that x,y are given by a product distribution.) Now we prove
the second bound for R. Let B =

{
(x, y) ∈ R : g(x, y) 6= zm, g(x, y) 6= ∗

}
.

6ε′ · Pr
[
(x,y) ∈ R

]
· `1`222c′ ≥ 6ε′ · Pr

[
(x′,y′) ∈ R

]
by definition of buckets

≥ Pr
[
(x′,y′) ∈ B

]
by Lemma 14

≥ Pr
[
(x,y) ∈ B

]
· (`1 − 1)(`2 − 1)

22c′ by definition of buckets

Thus, by rearranging we get

Pr
[
(x,y) ∈ B] ≤ 6ε′ · Pr

[
(x,y) ∈ R

]
· `1`2

(`1 − 1)(`2 − 1) ≤ 24ε′ · Pr
[
(x,y) ∈ R

]
,

as `1`2
(`1−1)(`2−1) ≤ 4 for `1, `2 > 1 by Lemma 14. J

Proof of Theorem 5. Suppose that tu · n ≤ o
(
k/w

)
. Let R be the rectangle given by

Corollary 15. It holds that the rectangle R is 24ε′-error b-monochromatic for g under µ.
Therefore, for the function g holds that

mono24ε′

µ (g) ≥ Pr
[
(x,y) ∈ R

]
≥ 1

36 · 226c′ . (1)

We need to argue that ε′ is O(ε/α). By definition,

ε′ = 5
α− ε

· ε+ δ.
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We recall that

δ = O

(√
tu · n · w

p

)
≤

√
o(k)
p
.

Thus, we can set p to be large enough so that δ is smaller than arbitrary constant and
still p ≤ o(k). By the assumption we have 2ε < α. Thus, ε

α−ε ≤
2ε
α and we conclude

that ε′ is O
(
ε/α

)
. Since c′ = O

( tq·w
α·(1−ε)

)
= O

( tq·w
α

)
, we get the result by rearranging

Inequality (1). J

4 Applications

In this section we apply Theorem 5 to derive lower bounds for several explicit functions
– Inner Product (IP), Disjointness (DISJ), Gap Orthogonality (ORT) and Gap Hamming
Distance (GHD):

IP(x, y) =
∑
i∈n

xi · yi mod 2,

GHDn(x, y) =
{

1 if ∆H(x, y) ≥ n
2 +
√
n,

0 if ∆H(x, y) ≤ n
2 −
√
n.

The function ∆H is the Hamming Distance of two strings, i.e., ∆H(x, y) is a number of
indices i ∈ [n] such that xi 6= yi. For IPR(x, y) =

∑
i∈[n](−1)xi+yi we define

ORTn,d(x, y) =
{

1 if
∣∣IPR(x, y)

∣∣ ≥ 2d ·
√
n

0 if
∣∣IPR(x, y)

∣∣ ≤ d · √n.
The standard value for d is 1, thus we denote ORTn = ORTn,1. Note that ∆H(x, y) =
n−IPR(x,y)

2 and IPR(x, y) is the Inner Product of x′, y′ over R where x′ and y′ arise from x and
y by replacing 0 by 1 and 1 by −1. We present previous results with bounds for measures of
interest under hard distributions.

I Theorem 16 ([12]). Let µ1 be a uniform distribution on {0, 1}n × {0, 1}n. Then,

discµ1(IP) ≤ 1
2n/2

.

I Theorem 17 (Babai et al. [2]). Let ρ < 1/100 and µ2 be a a uniform distribution over
S × S, where S consists of n-bit strings containing exactly

√
n 1’s. Then,

monoρµ2
(DISJ) ≤ 1

2Ω(
√
n) .

Sherstov [20] provided a lower bound of communication complexity of GHD by lower bound
of corruption bound of ORTn, 1

8
following by reduction to GHD.

I Theorem 18 (Sherstov [20]). Let ρ > 0 be sufficiently small and µ3 be a uniform distribution
over {0, 1}n × {0, 1}n. Then,

cbρµ3
(ORTn, 1

8
) ≥ ρ · n.
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By this theorem and Theorem 5 we get a lower bound for data structures for ORTn, 1
8
.

By reductions used by Sherstov [20] we also get a lower bounds for ORT and GHD.

ORTn, 1
8
(x, y) = ORT64n

(
x64, y64)

ORTn(x, y) = GHD10n+15
√
n

(
x10115

√
n, y10015

√
n
)

∧ ¬GHD10n+15
√
n

(
x10015

√
n, y10015

√
n
)

Where si denote i copies of s concatenated together. Let D be a semi-adaptive random
scheme for the multiphase problem of the presented functions with sufficiently small error
probability. By the theorems presented in this section and by Theorem 5, we can derive the
following lower bounds for tq · w, assuming that tu · n ≤ o

(
k/w

)
.

Function f Ballancedness Lower bound
of the hard distribution of tq · w

IP 1
2 Ω(n)

DISJ ∼ 1
e

Ω(
√
n)

ORTn Θ(1) Ω(n)
GHDn N/A (lower-bound is via reduction) Ω(n)
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