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Abstract
Online packet scheduling with deadlines is one of the fundamental models in buffer man-

agement. Recently, the author together with Chrobak, Jeż, and Sgall (SODA 2019) designed
an optimal φ-competitive algorithm for this problem, where φ ≈ 1.618 is the golden ratio. In
this column, we sketch ideas that led us to the development of this algorithm and outline the
concepts in its analysis. We also highlight open questions in packet scheduling.

1 Introduction

In the online packet scheduling problem with deadlines (PacketSchD), packets arrive over time to a
buffer of unlimited capacity to be transmitted over a network link. Each packet is characterized by
its deadline dp, corresponding to its urgency, and weight wp, which represents its priority. In each
time step, only one packet can be selected for transmission, while all packets with expired deadlines
are dropped from the buffer. Naturally, the algorithm aims to maximize its profit, equal to the
total weight of transmitted packets. This problem is also referred to as the bounded-delay buffer
management in QoS switches and was introduced independently by Hajek [15] and Kesselman et
al. [18]; in the former paper, Hajek stated it equivalently as a scheduling problem on a single machine
with jobs of unit processing time characterized by weights, release times, and deadlines, where the
goal is to maximize the weighted throughput.

While in the offline setting the problem reduces to a weighted bipartite matching, we are naturally
interested in online algorithms and in particular, in determining the competitive ratio, which is the
worst-case ratio between the optimal profit, computed by an offline algorithm, and the profit of the
best online algorithm. Both Hajek [15] and Kesselman et al. [18] showed the 2-competitiveness of
the Greedy algorithm that always transmits the heaviest pending packet, where a pending packet is
any (non-expired) packet in the buffer. Hajek also discovered a lower bound of φ on the competitive
ratio of any deterministic algorithm, where φ = (1 +

√
5)/2 ≈ 1.618 is the famous golden ratio,

defined as the positive root of equation φ2 = φ + 1. The same lower bound was independently
proven by Andelman et al. [2, 25] and by Chin and Fung [9].

Improving upon the (very simple) 2-competitive Greedy is non-trivial. Chrobak et al. [10] were
the first to beat it by giving a 64/33 ≈ 1.939-competitive algorithm that selects either the heaviest
packet h or the earliest-deadline packet e with we ≥ (7/11) · wh. Li, Sethuraman, and Stein [20]
improved the ratio to 3/φ ≈ 1.854, and Englert and Westermann [13] pushed the ratio further to
2
√

2− 1 ≈ 1.828, which remained the best result for over 10 years. The latter two algorithms rely on
concepts similar to those described in Section 2. Many other papers made progress on this problem
by studying restricted instances or by designing randomized algorithms; we outline these results in
Section 6.
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Recently, the author together with Chrobak, Jeż, and Sgall [24, 23] determined the competitive
ratio by developing a deterministic φ-competitive algorithm, thus matching the aforementioned lower
bound. This article is mainly devoted to providing an insight into this result, in a more accessible
way than in the full paper [24, 23], necessarily skipping some technical details and proofs (in fact,
we only sketch the analysis of the algorithm, which would by no means fit into this column). Here,
concepts are presented in a slightly different way than in [24, 23], similarly as we discovered them
during 2016-2018. We refer an interested reader to the original paper [24] and its full version [23]
for details and formal proofs. We hope that such an insight inspires other researchers and will lead
to further exciting results!

Organization. Section 2 introduces the concept of a plan together with an algorithm, which is a
“linear combination” of Greedy and its opposite. We delve into the structure of plans in Section 3,
and we sketch why a certain monotonicity property is useful in Section 4, which also describes our
φ-competitive algorithm. Section 5 provides a bird’s eye view of the analysis. We close by giving
several open problems in packet scheduling in Section 6, together with more related work.

Preliminaries. We need a few simplifying assumptions. First, we assume that all packet weights
are distinct, which is without loss of generality (w.l.o.g.) by an infinitesimal perturbation of weights.
Second, in any step t and for any τ ≥ t, we assume that there is a pending packet with deadline τ
(or even more such packets if needed), which is w.l.o.g. by releasing virtual 0-weight packets with
deadline τ .1

2 Why Not Make a Plan?

The first idea that may come to mind when designing an algorithm is to select the heaviest pending
packet (i.e., the one with the largest weight) for transmission in each step. This Greedy algorithm is
2-competitive [15, 18], and its analysis is nearly as simple as the algorithm: The adversary profit is
amortized using a charging scheme, which charges the adversary profit of wj from transmitting a
packet j in step t to the algorithm’s profit in step t if j is pending for Greedy, and otherwise, to the
step t′ < t in which Greedy sends j; see Figure 1(a) for an illustration. It is not difficult to complete
the analysis, and we leave it as an exercise. Figure 1(a) also shows a tight instance, consisting of
just two packets.

Greedy transmits the heaviest packet regardless of its deadline, thus in a sense making an implicit
assumption that similarly heavy packets will arrive in subsequent steps. One may replace this
overly “optimistic” approach by a “pessimistic” one: Transmit a packet that maximizes the total
profit starting from the current step, assuming that no more packets arrive in subsequent steps. To
describe this pessimistic approach more precisely, we define plans:

Definition 1. A plan X at a certain time step t (w.r.t. an algorithm under consideration) is a
feasible subset of pending packets, where feasible means that packets in X can be scheduled in slots
t, t+ 1, . . . without violating their deadlines.

Among many plans at time t, of particular importance is the optimal plan, denoted P t, which is
the plan of the largest total weight of packets; see Figure 1(c) for an example. A useful property is
that P t can be computed by the (offline) greedy algorithm that adds pending packets in the order
of decreasing weights subject to the set remaining feasible; this works as the set of plans forms a

1In fact, by the first assumption, these virtual packets have distinct infinitesimal positive weights. Also, we gloss
over some technical issues in these assumptions, which are discussed in [23].
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Figure 1: In the tight examples, each packet p is depicted by a line segment, split into slots in which
the packet can be transmitted, and wp appears to the left of this segment. The slot in which the
algorithm transmits p (if any) is depicted by a red rectangle. In examples (a) and (b), the optimal
schedule transmits both heavy packets, implying that the ratio is 2. In (a), we also illustrate a
charging scheme for Greedy; note that packet p is pending in step t+ 1. In (c), the packet (of weight)
0.4 is not in the optimal plan P 1, and we show a particular schedule of P 1; note that, for example,
the slots of packets 1.6 and 0.5 can be swapped. As defined in Section 3, the tight slots of P 1 are 3,
4, and 5, and the segments are [1, 3], [4, 4], and [5, 5].

matroid (see [18] for a more general proof). Thus, the optimal plan is unique under the assumption
about distinct weights. Note that an (optimal) plan is only a set of pending packets and not a
schedule (i.e., an assignment of packets to time slots). The algorithms in [20, 13] rely on the optimal
provisional schedule, which is a schedule of the optimal plan with packets ordered by deadlines.

Now, the pessimistic algorithm, that we call PlanGreedy, is as follows: Transmit packet p ∈ P t
that maximizes the total weight of the optimal plan Qt+1

p in the next step after transmitting p,
assuming no packets arrive in the next step (ties are broken in favor of heavier packets). Naturally,
the algorithm is not aware of packets arriving in the next step, and p /∈ Qt+1

p . The idea is that
we are trying to “save” heavy packets for future steps, unless they are urgent. This algorithm can
also be defined in a different way: Select a packet with the smallest deadline in the optimal plan
P t. (These two formulations are not really equivalent but the details are beyond the scope of this
column.) As it turns out, PlanGreedy is also 2-competitive (by a more involved proof than for Greedy,
using some ideas from Section 5), and a tight instance is depicted in Figure 1(b).

As one can observe, the tight instances for Greedy and PlanGreedy are somewhat opposite. The
first key idea on the way to a φ-competitive algorithm is to consider a linear combination of these
“opposite” algorithms. Namely, for a parameter α ≥ 0, consider algorithm Plan(α) that transmits
packet p maximizing α · wp + w(Qt+1

p ), where Qt+1
p is defined in the same way as for PlanGreedy.

Observe that for α = 0, we get PlanGreedy, whereas for α→∞ we obtain an algorithm arbitrarily
close to Greedy. Naturally, the selected packet p is always in the optimal plan. An analysis of
2-bounded instances, where each packet can only be transmitted in one or two times steps, as well as
other examples reveal that one should set the parameter α to φ in order to obtain a φ-competitive
algorithm.

Unfortunately, Plan(φ) is not φ-competitive, and a (somewhat involved) counterexample is
described in Appendix C in [23]. In order to understand why and to be able to fix it, we first need
to describe the structure of the optimal plan and its changes after packet transmissions.
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3 Properties of Plans

As defined above, an (optimal) plan is not a schedule, just a feasible set of pending packets. Thus,
there is often some flexibility in assigning packets from P t into time slots, and our goal is to
understand this flexibility, using the following definition.

Definition 2. A slot τ is tight w.r.t. the optimal plan P t in step t if the number of packets in P t

with deadline at most τ equals τ − t+ 1.

Note that the number of slots t, t+ 1, . . . , τ is τ − t+ 1 and thus, P t could contain no more than
τ − t+ 1 packets with deadline at most τ . Let α1 < α2 < α3 < · · · be the tight slots in P t. Tight
slots naturally divide time slots t, t+ 1, . . . into intervals, called segments. Namely, the segments
are [α0 + 1, α1], [α1 + 1, α2], . . . , where slot α0 = t− 1 is also considered to be tight. A moment’s
thought reveals that in any schedule of P t, packets with deadline in [αi−1 + 1, αi] must be assigned
to slots [αi−1 + 1, αi]. Thus, packets in P t are also divided into the segments by their deadlines,
and a packet from one segment cannot be scheduled in another segment. Within a segment, there
exists some limited flexibility and in particular, any packet in P t can be assigned to the first slot of
its segment. See Figure 1(c) for an example.

The first step in understanding Plan(φ) (or any algorithm based on plans) is to figure out how
the optimal plan changes just after the transmission of a packet p and incrementing the time but
before new packets arrive in step t+ 1; as above, we denote this new optimal plan by Qt+1

p . We
distinguish two types of transmissions by Plan(φ) w.r.t. changes in the optimal plan:

“Ordinary” step: A packet p from the first segment [t, α1] is transmitted. Then we simply have
Qt+1
p = P t \ {p}, which can be proven using matroid properties of plans.

“Leap” step: The algorithm chooses a packet p with dp > α1. In this case, the change in the
optimal plan is more involved: Let ` be the lightest packet in the first segment, and let αi be
the tight slot such that dp ∈ [αi + 1, αi+1], i.e., p belongs to the segment just after αi. Finally,
let ρ be the heaviest pending packet not in P t with dρ > αi. Then the new optimal plan is
Qt+1
p = P t \ {`, p} ∪ {ρ}. Intuitively, ` is pushed out because of incrementing the time step

(as slot t cannot be used any more), while p is replaced by ρ. For this reason, ρ is called the
substitute packet for p.

The structure of the new optimal plan, i.e., the tight slots, may change. Namely, in both cases, the
first segment may be split into more segments as new tight slots may appear in (t, α1). Moreover,
for a leap step, the replacement of p by ρ may either cause new tight slots to appear in [dρ, dp) if
dρ ≤ dp, or in the case dρ > dp, all tight slots in [dp, dρ) (if there are any) are no longer tight in
Qt+1
p , i.e., the segments containing dp and dρ and any segments in between are merged. Otherwise,

tight slots are preserved between P t and Qt+1
p . See Figure 2 for an illustration. Similarly, we can

derive how the optimal plan changes after a packet arrival, but this is not going to be important in
this article. An interested reader is referred to Appendix A in [23] for a detailed treatment of these
changes in response to packet arrivals and transmissions.

4 It’s All About Monotonicity

The next key step that led us to obtaining the result was to consider the function that for a given
slot τ , captures the minimum weight that can appear in a slot τ ′ ≤ τ in a schedule of P t. More
precisely, for a plan P t in step t and a slot τ ≥ t, let nextts(P t, τ) = min{αi : αi ≥ τ} be the next
tight slot at or after τ , and define:
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Figure 2: Illustration of changes in the optimal plan in three cases: (a) an ordinary step, (b) a leap
step with dρ ≤ dp, and (c) a leap step with dρ > dp. Optimal plans are depicted by a rectangle,
with tight slots given by vertical line segments.
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Figure 3: An example of a graph of minwt on the left. Tight slots are depicted by vertical dashed
lines. The graph on the right shows how minwt changes after a leap step with dρ > dp, when some
segments get merged.

minwt(P t, τ) = min{wq : q ∈ P t & dq ≤ nextts(P t, τ)}.

We consider the next tight slot at or after τ because of the aforementioned flexibility in the schedules
of P t, namely, that any packet in P t may appear in the first slot of its segment. Observe that
minwt(P t, τ) for a fixed P t is non-increasing for increasing τ and constant within a segment; see
Figure 3 for an example.

This function is useful as it upper bounds the weights of packets not in the optimal plan P t, i.e.,
for any pending packet q /∈ P t, it holds that wq < minwt(P t, dq). Note that at any time step t, the
adversary may release a packet with weight just below minwt(P t, t) and deadline t (i.e., expiring
immediately) without modifying the optimal plan P t or the behavior of algorithm Plan(φ).

Our focus will be on how the value of minwt(P t, τ) for a fixed τ changes as packets arrive and
are transmitted. It is relatively easy to see that when a new packet arrives, minwt(P t, τ) does not
decrease for any τ , and the same holds when a packet from the first segment is transmitted, i.e., in
an ordinary step. However, after a leap step, the value of minwt(P t, τ) decreases for some τ , e.g.,
for τ = dρ, as the substitute packet ρ is not in P t, implying that wρ < minwt(P t, dρ), but ρ gets
added to Qt+1

p .

Slot-monotonicity. One major step in designing a φ-competitive algorithm was to prove φ-
competitiveness of Plan(φ) on instances in which the following slot-monotonicity property holds:
For any τ , the value of minwt(P t, τ) does not decrease in any step until τ . By the above discussion,
these are instances on which Plan(φ) doesn’t execute leap steps (so these are not some “natural”
instances as their definition is based on the behavior of a specific algorithm). This analysis of
Plan(φ) uses the concepts described in Section 5. On the other hand, in the aforementioned example
with a ratio over φ for Plan(φ), the algorithm executes a few leap steps, which cause significant
decreases of minwt(P t, τ) for some slots τ .

And here comes the main idea: While the slot-monotonicity property doesn’t hold on general
instances, our algorithm increases weights and decreases deadlines of pending packets so that
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Figure 4: Illustration of the “iterative shift” of packets h1, . . . , hk in a leap step with dtρ > dtp.

minwt(P t, τ) does not decrease for any τ , even in leap steps. Thus, for a packet p, wp and dp are
no longer constant during the computation, and by wtp and dtp we denote the weight and deadline,
respectively, of packet p in step t. Naturally, the actual profit of the algorithm from transmitting p
is w0

p, the original weight of p. However, the optimal plan P t is always computed w.r.t. the current
weights and deadlines of packets, i.e., taking the adjustments into account.

Figuring out the particular adjustments to maintain the slot-monotonicity property still requires
some care. As argued above, this is only needed in leap steps, and the most obvious adjustment
is to increase the weight of ρ to minwt(P t, dtρ). While this is sufficient when dtρ ≤ dtp, the value of
minwt(P t, τ) may still decrease if dtρ > nextts(P t, dtp) as at least two segments of p get merged into
one segment; see the right part of Figure 3. Hence, we want to avoid merging segments, and we
achieve this by decreasing deadlines.

One of the simplest options is to set the new deadline of ρ to min(dtp, dtρ), thus ensuring that
dt+1
ρ ≤ dtp (after the deadline adjustment), which prevents merging segments. In a way, we “shift”
ρ from its segment in P t to the segment of p. Unfortunately, this and other simple ways to avoid
merging segments in a leap step do not yield a φ-competitive algorithm (see Appendix C in [23]
for counterexamples). In a nutshell, the reason is that there may be a packet g that is nearly as
heavy as p and belongs to a segment somewhere in between the segments containing dtp and dtρ. If
we decrease the deadline of ρ (or of another packet from the segment containing dtρ) to dtp, then ρ
would become more urgent than a possibly much heavier packet g, and this is intuitively not right —
we should rather decrease the deadline of g.

Based on this observation, a right way to avoid merging segments is to do a rather involved
“iterative shift“ of certain, carefully selected heavy packets. Recall that tight slots of P t belonging
to [dtp, dtρ) would disappear after replacing p by ρ in the optimal plan unless we make suitable
adjustments of deadlines. Let τ0 = nextts(P t, dtp) and γ = nextts(P t, dtρ). First, if dtρ > τ0 (i.e.,
dtρ is in a later segment than dtp), we select the heaviest packet h1 in P t with deadline in (τ0, γ].
We decrease the deadline of h1 to τ0, which restores all tight slots of P t in [τ0, d

t
h1

).2 Next, we let
τ1 = nextts(P t, dth1

) and if τ1 = γ, then we’re done. Otherwise, we iterate the above, with h1 taking
the role of p. Namely, we select h2 as the heaviest packet in P t with deadline in (τ1, γ], decrease the
deadline of h2 to τ1, and let τ2 = nextts(P t, dth2

). Then, if τ2 < γ, we do another iteration, and so
on, until τi = γ. This iterative shift is illustrated in Figure 4.

This is not as simple as one would like and moreover, not even sufficient for the slot-monotonicity
property. One last bit is needed: When we shift packet hi to an earlier segment (by decreasing its
deadline to τi−1), it may happen that wthi

< minwt(P t, τi−1), i.e., hi is too light for its new segment.
To rectify this final issue, we increase the weight of hi to minwt(P t, τi−1). With all these adjustments,
the slot-monotonicity property holds and finally, it is possible to prove φ-competitiveness.

Algorithm 1 provides a pseudocode of the resulting algorithm PlanM. We use notation wtp
and dtp for the weight and deadline, respectively, of a packet p in step t, before the algorithm
transmits a packet (note that there are no adjustments done upon packet arrivals). We remark that

2One may ask why we don’t set the new deadline of h1 to dt
p, instead of τ0 ≥ dt

p. The reason is that a certain
argument in the analysis would not work, while using τ1 is sufficient for slot-monotonicity.
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line 1 corresponds to algorithm Plan(φ), and is stated in a different, but equivalent way compared
to [24, 23].

Algorithm 1 Algorithm PlanM(t)
1: transmit packet p ∈ P t that maximizes φ · wtp + wt(Qt+1

p ) . P t is the optimal plan
2: if dtp > α1 then . “leap step”
3: let ρ be the (only) packet in Qt+1

p \ P t
4: wt+1

ρ ←minwt(P t, dtρ) . increase wρ
5: γ← nextts(P t, dtρ) and τ0← nextts(P t, dtp)
6: i← 0
7: while τi < γ do
8: i← i+ 1
9: hi← the heaviest packet in P t(τi−1, γ]

10: τi← nextts(P t, dthi
)

11: dt+1
hi
← τi−1 and wt+1

hi
← max(wthi

,minwt(P t, τi−1)) . adjusting packet hi

5 A Few Bits of the Analysis

Intuition. Before we introduce the main concepts used to prove φ-competitiveness of PlanM, it is
helpful to consider the following two cases. The first case repeatedly appears in the lower bound
of φ in [15, 2, 25, 9]. Namely, suppose that in step t, PlanM selected a packet e with de = t, while
the adversary transmits a heavy packet h with dh > t that appears in the optimal plan P t, and we
have that we = wh/φ

2. (A calculation shows that if we < wh/φ
2, PlanM wouldn’t transmit e. Here,

we drop index t from weights and deadlines for simplicity.) In the analysis, the adversary’s profit of
wh in step t is split into two parts: wh/φ2 is charged to the algorithm’s profit of we = wh/φ

2 in
step t, while the remaining part of wh/φ (using φ−2 + φ−1 = 1) is charged to a future step t′ > t —
if h is eventually transmitted by PlanM in step t′′, then t′ = t′′; otherwise, t′ is a step when another
packet heavier than h is transmitted. See Figure 5(a) for an illustration.

Thus, the algorithm’s profit of φ · we (scaled up by φ to facilitate φ-competitiveness) is split
into we used to cover wh/φ2, while the rest (i.e., we/φ) covers a possible charge from an adversary
transmission before step t (which is the transmission of e or of a packet lighter than e). Intuitively,
in such situations, the algorithm is only “catching up” with the adversary, which transmits heavy
packets sooner. Consequently, the algorithm has a certain advantage in future steps, namely, still
having those heavy packets in the buffer, and this is naturally quantified by a suitable potential
function in the analysis.

Still, we are not done as the opposite case may happen: The algorithm transmits a relatively
heavy packet p in step t that the adversary saves for a future step t′ > t. As p is no longer pending
in step t′, the algorithm may select a very light packet at t′, even of weight below wp/φ

2. Thus, we
are not able to charge wp/φ2 to the algorithm’s profit in step t′. Instead, we amortize the adversary
profit so that it receives an additional profit of wp −minwt(P t, t′) in step t, while we decrease the
adversary profit in step t′ to minwt(P t, t′). As minwt(P t′ , t′) ≥ minwt(P t, t′), a packet of weight at
least minwt(P t, t′) is transmitted in step t′; here, we crucially rely on having the slot-monotonicity
property. This amortization of the adversary profit, illustrated in Figure 5(b), comes in handy also
in similar cases.

Such intuition (together with considering more involved examples) eventually led us to developing
the following three amortization techniques, which we use to show φ · w0(ALG) ≥ w0(OPT) for
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Figure 5: Illustrations of the schedules of PlanM and of OPT in the two cases described in Section 5.
The arrows depict our charging in these cases, and they are labeled with the amount being charged.

the schedule ALG computed by PlanM and the optimal schedule OPT (recall that w0 refers to the
original packet weights):

• In the analysis, the algorithm’s profit in step t is the current weight of the transmitted packet
that may have been increased in a previous step t′ < t. Thus, when the algorithm increases
the weight of a packet in a leap step t′, we decrease its profit at t′ by the weight increase
(see (1) below). This ensures that the algorithm’s profits sum up to w0(ALG).

• We amortize the optimal profit of w0(OPT) using function minwt and an “adversary stash”
At, briefly introduced below. Essentially, the adversary gets the profit from packets in At in a
future step.

• We use a potential function that quantifies a certain advantage of the algorithm over the
adversary in future steps. It is based on packets in a so-called “backup plan” Bt, which
is a feasible set of pending packets used in the analysis. We maintain the invariant that
Bt ∩ P t = P t \At and that Bt is feasible. Intuitively, packets in P t \At present an advantage
for the algorithm, since they are pending for the algorithm and relatively heavy as they belong
to the optimal plan, but the adversary won’t get any profit for them in future steps as they
do not appear in At. Furthermore, packets in Bt \ P t are available as potential substitute
packets ρ in leap steps and thus, also present an advantage for the algorithm. Considering
the first case above, where we charge wh/φ from step t to step t′ > t, we define the potential
function as Ψt := 1

φw
t(Bt).

Adversary stash and amortization of w0(OPT). We need to keep track of the adversary
future profit associated with already released packets. However, as suggested in the second example
above, we may need to partially charge the adversary future profit to the current step, thus effectively
decreasing its profit in a future step.

Another observation is that any released packet q in slot τ ≥ t of OPT with wq < minwt(P t, τ)
doesn’t need to be explicitly remembered. This is because of the slot-monotonicity property, i.e.,
that minwt(P t, τ) for the fixed τ does not decrease, and because in step τ , the adversary may release
and transmit a packet with weight just below minwt(P τ , τ) and deadline τ , which does not change
the algorithm’s behavior. As packets p of weight at least minwt(P t, dp) are in the optimal plan P t,
we only keep track of the adversary future packets that are in P t.

In particular, we use an adversary stash At, which is a subset of packets in P t together with
their assignment to slots t, t+ 1, t+ 2, . . . (i.e., At is not only a set of pending packets but also their
schedule). We maintain the invariant that At ⊆ P t and that no packet in At is assigned to a slot
after its current deadline. When a packet q arrives in step t, if it is added to P t and if it appears in
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a future step t′ > t in OPT, we add q to At and assign it to slot t′. Packet q may later be removed
from At or even replaced by a lighter packet; the latter modification is used under certain conditions
in a leap step for packets hi. Removal of q from At happens, for example, when the current time t
reaches t′, or when q is transmitted by the algorithm (as in the second example above), or when wtq
gets below minwt(P t, t′), i.e., when q is no longer in the optimal plan. There are also other cases in
which we modify At, however, their description is beyond the scope of this informal overview.

We now briefly explain the amortization of the adversary profit of w0(OPT). In the analysis
of step t, we consider two cases: If slot t of At contains a packet j, the adversary gets a credit
of wtj . Otherwise, slot t is empty in At and the adversary credit is minwt(P t, t). Furthermore,
whenever we remove a packet q in slot τ of At, we give the adversary a credit of wtq −minwt(P t, τ)
as a compensation for this change. Replacing a packet in At by another, lighter packet is also
appropriately compensated by the credit equal to the weight difference. Let advcreditt be the total
credit the adversary receives in step t, including all the compensations for adjustments in At. Using
the slot-monotonicity property, we can show that

∑
t advcreditt ≥ w0(OPT), as required.

The analysis continues by proving that the potential Ψt does not decrease when new packets
arrive, while we can maintain the feasibility of backup plan Bt and other invariants — this part is
relatively straightforward. The main part of the analysis is to analyze packet transmissions. We
need to preserve the invariants, while also showing the following inequality:

φ · wt(ALG[t])− φ · (∆tw) + ∆tΨ ≥ advcreditt , (1)

where ALG[t] is the packet transmitted by PlanM in step t, ∆tw is the total increase of packet
weights in step t, and ∆tΨ is the change of the potential in step t. Summing up this inequality over
all steps and using

∑
t advcreditt ≥ w0(OPT), the proof of φ-competitiveness follows.

Admittedly, the resulting algorithm is slightly complicated (one would hope for just a couple
of lines of pseudocode), and even worse, the full analysis in [23] with all the details and careful
explanations takes about 40 pages. Thus, it would be interesting to see a simpler optimal algorithm
or at least an algorithm admitting a simpler analysis. As mentioned in Section 4 and elaborated in
Appendix C of [23], our attempts at simplifying PlanM failed.

6 Open Problems in Packet Scheduling

We have summarized ideas behind the optimal deterministic algorithm for PacketSchD. However,
this is definitely not the end of the story of packet scheduling algorithms. Here, we list several open
problems for future work, together with more related work. A more comprehensive list of open
problems in packet scheduling and related models can be found in the author’s PhD thesis [22] as
well as in the excellent survey by Goldwasser [14] (also in SIGACT News), which is still mostly
up-to-date, even though it’s from 2010!

Memoryless algorithms. Apart from being a bit more complicated than one would wish, PlanM
uses memory to maintain adjustments of packet properties (packets stored in the buffer do not count
as a usage of memory). It is thus natural to ask if we can obtain the ratio of φ using a memoryless
algorithm. Such algorithms are likely to be simpler, more practical, and faster, due to requiring
less resources. A nice feature is that such algorithms make the same decision given the same buffer
contents, i.e., the same set of pending packets; this could be exploited to improve the lower bound
of φ for them. The 2-competitive Greedy is memoryless, and the only better such deterministic
algorithm is the 1.893-competitive algorithm by Englert and Westermann [13].
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Open Problem 1. Design a φ-competitive memoryless deterministic algorithm for PacketSchD, or
improve the lower bound for memoryless algorithms.

A promising approach for improving the lower bound is to try to adapt the lower bound of 1.633
by Bieńkowski et al. [6] for Item Collection, a more general model where the algorithm is only
aware of the ordering of packets by deadlines, not of actual values of the deadlines (before they
expire).

Randomized algorithms. There is quite a substantial gap in our understanding of the competi-
tive ratio of randomized algorithms. For both oblivious and adaptive adversaries, the best upper
bound is e/(e− 1) ≈ 1.582 [3, 8, 7, 21], and it was proven even for a more general problem of online
vertex-weighted bipartite matching [1, 11]. Chin and Fung [9] showed a lower bound of 1.25 for
the oblivious case, while Bieńkowski et al. [7] obtained a lower bound of 4/3 against the adaptive
adversary (both of these lower bounds only use simple 2-bounded instances, defined below). We
believe that the recent progress in the deterministic case may inspire new randomized algorithms
and in particular, it seems plausible that a better ratio can be attained in the oblivious case.

Open Problem 2. Improve the bounds on the competitive ratio of randomized algorithms.

Restricted variants of PacketSchD. Special cases considered in the literature are typically
defined by restricting the packet span, that is, an interval of time slots in which the packet can
be transmitted. In s-bounded instances, any packet span has at most s slots, for some s ≥ 2, i.e.,
dp − rp + 1 ≤ s for any packet p, where rp is the release time of p. Note that the lower bound of
φ for deterministic algorithms holds for s-bounded instances for any s ≥ 2 [15, 2, 25, 9]. Already
Kesselman et al. [18] presented a φ-competitive algorithm for 2-bounded instances, which was later
extended to the 3-bounded case by Chin et al. [8] and to 4-bounded instances by Böhm et al. [4].
These algorithms are based on selecting the earliest-deadline packet e with we ≥ wh/φ, where h
is the heaviest pending packet. However, we have some evidence that this algorithmic approach
cannot be extended to the general case.

In instances with agreeable deadlines, it holds that rp < rq implies dp ≤ dq for any packets p, q;
they contain 2-bounded instances, so the lower bound of φ holds for agreeable deadlines. A matching
φ-competitive algorithm for agreeable deadlines was given by Li et al. [19] (see also [16]). The lower
bound of φ does not apply to s-uniform instances, in which each packet has span of length exactly
s ≥ 2. For 2-uniform instances, the optimal competitive ratio is ≈ 1.377 as shown by Chrobak et
al. [10].

Finally, on instances without span restrictions but where packet weights increase with respect
to deadlines, Bieńkowski et al. [5] also proved an upper bound of φ (even for Item Collection
mentioned above). A more comprehensive overview of restricted variants, including results on
randomized algorithms, is given in [14, 22]. It appears that in the deterministic case, the main gaps
between lower and upper bounds are for s-uniform instances.

Open Problem 3. Design a better algorithm for s-uniform instances, ideally for any s, and
construct lower bounds on the competitiveness in the s-uniform case.

Additionally, one can consider instances in which the span of every packet is at least s ≥ 2; note
that the lower bound of φ does not apply in that case. To our best knowledge, such instances have
not been (explicitly) studied in the literature yet, only the lower bound of 1.25 for randomized
algorithms against the oblivious adversary carries over to instances with arbitrarily large spans [9, 4].
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Higher bandwidth. A straightforward generalization of PacketSchD is to let the algorithm
transmit m ≥ 1 packets in each step, instead of just one. This was already proposed by Kesselman et
al. [18], who show the 2-competitiveness of Greedy and a φ-competitive algorithm for 2-bounded
instances, both for any m ≥ 1. Chin et al. [8] designed an algorithm with ratio that tends to
e/(e− 1) ≈ 1.582 and noted that the randomized lower bound of 1.25 holds for any m. As results
for m = 1 translate to any m, our φ-competitive algorithm actually improves the state-of-the-art
ratio for any m < 13.

Surprisingly, not only the ratio for m → ∞ matches that of the currently best randomized
algorithms, but also the algorithms and their analyses share some similarities. Hence, a new
technique for higher bandwidth may translate into a better randomized algorithm, and vice versa.

Open Problem 4. For the case of higher bandwidth m > 1, design better (deterministic or
randomized) algorithms, and construct new lower bounds.

FIFO model. Kesselman et al. [18] also introduced the FIFO model, in which packets do not
have deadlines, but they are stored in a buffer of limited capacity and need to be transmitted in the
same order as they arrive. For deterministic algorithms allowed to preempt (evict) a packet from
the buffer, a simple greedy algorithm is 2-competitive [18], and there exists a better algorithm with
the ratio of

√
3 [12], while the lower bound is only 1.419 [17]. We refer to [14] for more results and

open problems in this model.
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