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Abstract

For any T ≥ 1, there are constants R = R(T ) ≥ 1 and ζ = ζ(T ) > 0 and a randomized
algorithm that takes as input an integer n and two strings x, y of length at most n, and runs in
time O(n1+

1
T ) and outputs an upper bound U on the edit distance of dedit(x, y) that with high

probability, satisfies U ≤ R(dedit(x, y) + n1−ζ). In particular, on any input with dedit(x, y) ≥
n1−ζ the algorithm outputs a constant factor approximation with high probability. A similar
result has been proven independently by Brakensiek and Rubinstein [13].
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1 Introduction

The edit distance (or Levenshtein distance) [21] between strings x, y, denoted by dedit(x, y), is
the minimum number of character insertions, deletions, and substitutions needed to convert x into
y. It has numerous applications in various fields from text processing to bioinformatics so algorithms
for edit distance computation attract lot of attention. It was recently shown independently that edit
distance can be approximated within a constant factor in truly subquadratic time in the quantum
computation model [11, 12], and in the classical model [15, 16]. The running time for a classical
algorithm obtained in [15,16] is Õ(n12/7), which was improved by Andoni [4] to O(n3/2+ε).

This raises the natural question: what is the best possible running time of a constant factor
approximation classical algorithm. We make progress on this problem by developing a nearly linear
time algorithm that gives a constant factor approximation when restricted to inputs whose edit
distance is not too small:

Theorem 1.1. For every T ≥ 1 there are constants ζ = ζ(T ) and R = R(T ) and a randomized
algorithm FAST-ED-UBT that takes as input an integer n and two strings x and y, with |x|, |y| ≤
n, over an (arbitrary) alphabet Σ, and runs in time Õ(n1+ 1

T ) and outputs an upper bound U on
dedit(x, y), such that with probability at least 1− 1/n, U ≤ R · (dedit(x, y) + n1−ζ).

In particular, on any input x, y with dedit(x, y) ≥ n1−ζ the algorithm gives a constant factor
approximation. This is arguably the hardest case of edit distance. For example, it is known that
one can exactly compute dedit(x, y) in subquadratic time on instances of small edit distance [20,23];
in particular when dedit(x, y) ≤

√
n there is a linear time algorithm. The additive n1−ζ term in

our algorithm arises from some technical limitations in our algorithm and analysis. We expect that
these technical limitations will eventually be overcome (but this may require a substantially different
algorithm.)

Brakensiek and Rubinstein [13] independently obtained essentially the same theorem. While
both our work and theirs builds on the techniques of [11, 12, 15, 16], the algorithms have quite
different structure.
Other prior work. Because of the importance of the edit distance for various applications there is
a large body of literature on computing it. Wagner and Fischer [24] gave the well-known quadratic
time algorithm for computing it exactly using dynamic programming. Masek and Paterson [22]
improved the running time slightly to O(n2/ log n), and the current asymptotically fastest algo-
rithm (Grabowski [19]) runs in time O(n2 log logn/ log2 n). Backurs and Indyk [7] showed that
a truly sub-quadratic algorithm (O(n2−δ) for some δ > 0) would imply a 2(1−γ)n time algorithm
for CNF-satisfiabilty, contradicting the Strong Exponential Time Hypothesis (SETH). Their proof
proceeds by reducing the CNF-satisfiabilty to high range edit distance problem (on exponentially
long strings). Abboud et al. [3] showed that even shaving an arbitrarily large polylog factor from
the O(n2) running time would have the plausible, but apparently hard-to-prove, consequence that
NEXP does not have non-uniform NC1 circuits. Other “barrier” results are covered in [2, 14].

There is a long line of work on approximating edit distance. The exact O(n+ dedit(x, y)2) time
algorithm of Landau et al. [20] yields a linear time

√
n-factor approximation. This approximation

factor was improved, first to n3/7 [8], then to n1/3+o(1) [10] and later to 2Õ(
√

logn) [6], all with slightly
superlinear runtime. The strongest result of this type is the (log n)O(1/ε) factor approximation (for
every ε > 0) with running time n1+ε of Andoni et al. [5]. In a somewhat different direction, Batu
et al. [9] obtained a non-trivial O(n1−α)-factor approximation algorithm running in sublinear time
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O(nmax{α
2
,2α−1}). Most recently, Goldenberg et al. [18] give an algorithm for distinguishing whether

the edit distance is at most t or at least t2 in time Õ(nt + t3). Abboud and Backurs [1] showed that
a truly sub-quadratic deterministic time (1 +o(1))-factor approximation algorithm for edit distance
would imply new circuit lower bounds.

Lots of algorithmic work focuses also on other variants of edit distance such as Ulam distance,
edit distance with block moves, etc. Often algorithmic properties of these measures are not quite
comparable to the standard edit distance.

There are several open problems that remain to be resolved. The foremost question is whether
there is a near-linear time (or perhaps even quasi-linear time) algorithm for a constant factor
approximation of edit distance for the whole range of edit distance. Although this paper makes
a step in that direction for the seemingly hardest case of the high edit distance we do not know
how to extend the result to the whole range. Perhaps one needs a completely different technique
to do that. The other intriguing question we would like to mention is the question of improving
the approximation factor. The approximation factor R(T ) of our algorithm grows with T as the
running time O(n1+1/T ) decreases. Indeed, we do not know of any truly sub-quadratic algorithm
which would give approximation factor better than 2. Is there a truly sub-quadratic algorithm with
approximation factor (1 + ε), for any ε > 0?

Reduction to a Gap-Algorithm. We will review now our basic approach to designing our
approximation algorithm. For simplicity we will assume that the bound n on the length max(|x|, |y|)
is a power of 2 and |x| = |y| = n. It is easy to reduce the general case to this case: on input x′, y′, let n
be the least power of 2 that is at least max(|x′|, |y′|) and pad both x′ and y′ using a single new symbol
to obtain strings x, y of length n. It is easy to verify that dedit(x

′, y′) ≤ dedit(x, y) ≤ 2dedit(x
′, y′),

and so it suffices to approximate dedit(x, y).
Following a common paradigm for approximation algorithms, our approximation algorithm is

built by reducing to a gap algorithm. In this paper, we consider randomized gap algorithms for edit
distance. These algorithms take as input (n, θ, δ;x, y) where n is an integral power of 2, x and y
are strings of length n, θ ∈ (0, 1] is a nonnegative power of 1/2 and δ ∈ (0, 1). The triple (n, θ, δ)
are referred to as the input parameters and x, y as the input strings. We say that the algorithm has
quality Q with respect to (n, θ, δ) provided that for all strings x, y of length n:

Gap Algorithm Soundness. If dedit(x, y) > Qθn then the algorithm returns reject.

Gap Algorithm Completeness. If dedit(x, y) ≤ θn then the algorithm returns accept with
probability at least 1− δ.

We say that the algorithm satisfies gap-condition(T, ζ,Q), where T,Q ≥ 1 and ζ ≥ 0 provided
that for n a power of 2, and for all θ ≥ n−ζ

• The algorithm has quality Q with respect to (n, θ, δ),

• The running time of the algorithm on any input (n, θ, δ;x, y) is Õ(n1+1/T log(1/δ)) with prob-
ability 1. Here Õ hides powers of log(n) whose exponent may depend on T .

We will prove:

Theorem 1.2. For every T ≥ 1 there are constants ζ = ζ(T ) > 0 and Q = Q(T ) ≥ 1, and a
gap-algorithm GAP-EDT that satisfies gap-condition(T, ζ,Q).

In Section 5 we present the (routine) construction of the algorithm FAST-ED-UBT from
GAP-EDT , which proves Theorem 1.1. The focus of the paper is on proving Theorem 1.2.
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1.1 Speed-up routines

Our algorithm, like that of [15] is built from a core speed-up algorithm having access to an existing
"slow" gap algorithm. The speed-up algorithm produces a faster gap algorithm, with worse (but
still constant) approximation quality, while making queries to the slow algorithm on pairs of "short"
substrings. Given such a speed-up algorithm, one can build up a sequence of increasingly faster
gap algorithms A0, A1, . . . , where A0 is just the quadratic exact edit distance algorithm, and Aj
is obtained by using the core speed-up algorithm with Aj−1 playing the role of the "slow" algo-
rithm. If the core speed-up algorithm involves some free parameters that may be optimized for best
performance, this optimization can be done separately for each Aj

The core speed-up algorithm designed in [15], gives an algorithm A1 that has running time
Õ(n12/7). The algorithms Aj are successively faster, but do not get below nφ where φ = 1.61 · · · .
The core speed-up algorithm we design in this paper gives a sequence of gap-algorithms where the
exponent of n in the run-time converges to 1.

1.2 High-level overview

We explain here the basic ideas behind the core speed-up algorithm for the gap problem. This
section is meant as a high-level intuitive overview where a more detailed technical overview is in
Sections 3 and 4. Our new algorithm builds on ideas from [15] so we review that algorithm first
and explain how we extend it further.

The algorithm of [15] gets two input strings x and y, it assumes that x and y are at edit distance
at most θn, and it attempts to verify this assumption by constructing a good alignment (match)
between the two strings. If x and y are indeed at edit distance at most θn then the algorithm finds
an alignment of cost at most Qθn, for some fixed constant Q > 1. If the algorithm fails to find any
such alignment then it declares x and y to be at distance larger than θn. So we focus now on how
we build the match between x and y. We will divide x into blocks of size w, for suitably chosen
parameter w = nΩ(1). For each of the blocks we will find a matching block in y (Fig. 1a) and we will
assemble a good overall match from those matches (Fig. 2b). If the overall cost of the alignment
between x and y is at most θn, then on average a block u of size w in x is matched to a block v
in y which is at edit distance at most θw from u. Hence, such a v is of size between (1 − θ)w and
(1 + θ)w. Thus, for a small loss in approximation factor we can assume that each block of x of size
w is matched to a block of size exactly w in y. (These blocks in y might be overlapping by up-to
θw symbols.) Furthermore, we can assume that the matching blocks in y start at positions that are
multiples of say θw/8. (This worsens the approximation factor further but allows for a smaller set
of blocks to focus on.) There is a bit of asymmetry between blocks in x which are non-overlapping
and block in y which might overlap.

Let us assume for a moment that in the optimal alignment between x and y, each block of x
is matched to a block of size w in y for the cost of θn. Our algorithm could find for each block u
in x of size w all blocks in y that are at edit distance at most θw from u, and then from among
these pieces select ones which together give the best overall match between x and y. The latter
step of assembling the right pieces can be done in quasilinear time in the total number of pieces
using standard techniques. There are n

w blocks in x so if finding all the matching blocks in y could
be done quickly, we could assemble the overall match in time Õ(n2/w). For w polynomial in n this
represents a substantial speed-up.

Thus the problem reduces to the question how to find quickly for each (non-overlapping) block
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(b) Two-dimensional representation.

Figure 1: Searching for a good match for u of size w in y using a short sub-string u′ of length w′.

u of size w in x all blocks in y (perhaps overlapping) that are at edit distance εw from u, for any
ε ∈ [θ, 1]. A standard solution to this problem, which is known as the approximate pattern matching,
takes times O(nw). Hence, identifying all the matches in y to all the blocks in x would take time
O( nw · nw) = O(n2).
Easy (sparse) case. Consider a block u of size w in x. We want to find blocks of size w in y that
are at edit distance at most εw from u. Let v be such a block. The main idea of [15] is to find v
as follows: Partition u into sub-blocks of size w′ � w, pick one of them at random, call it u′, and
find all blocks in y of size w′ that are at distance at most O(εw′) from u′. With high probability
over the choice of u′, one of these blocks from y is the sub-block of v to which u′ is matched in
the optimal alignment of u and v. Finding these matches of size w′ takes time O(nw′) instead of
O(nw). So if there are not that many matches in y for u′ (u′ is sparse) we can afford to expand
each of the matches of size w′ into size w by adding its neighborhood and verify by edit distance
calculation which of those expanded strings is a good match to u. (See Fig. 1a and 1b.)
Dense case. We call u′ of size w′ dense (with respect to ε) if its number of matches in y of distance
at most εw′ is more than some designated threshold d, and we call it sparse otherwise. In the sparse
case we will need to check at most d possible matches for u which is relatively cheap assuming d is
small. However, in the dense case we would have too many expanded blocks to check individually
for a possible match. But in the dense case we have learned a lot of information about y, we found
that many parts of y look similar to u′. To leverage this information we find also all blocks of size
w′ in x that are similar to u′. By the triangle inequality for edit distance we conclude that all pairs
of blocks from x and y that are similar to u′ are similar to each other (Fig. 2a). By tweaking the
similarity threshold appropriately, for each block u′′ in u (and x) of size w′ that is similar to u′

we obtain for free all blocks in y of the same size that are at distance at most εw′ from u′′. In
particular, we don’t need to process any such u′′ ever again and we can declare it dense. Hence,
we can be picking blocks u′ of size w′ in u at random, removing the dense ones, until we sample
a sparse block u′. If we exhaust all blocks u′ in u without finding a sparse one, then we collected
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Figure 2: Matching x to y.

information on matches in y for all blocks u′ in u. From these matches we can assemble all matches
for u in y in almost linear time.

The actual implementation of this idea proceeds by enumerating blocks u′ of u systematically
one by one, classifying each whether it is sparse or dense, removing the dense ones together with
similar blocks in x from further consideration, and only then sampling from the remaining sparse
blocks in u. One needs to argue that in this way we will find all good matches for u if there are
some. This is non-obvious and will be shown in later sections.

To test whether a given block u′ is dense or sparse we sample a Õ(1/d)-fraction of blocks in y
and see if there are any similar to u′. This is by a factor roughly 1/d cheaper then trying all the
blocks of y. Similarly, when we process a dense block u′ and remove all the similar blocks from x we
save a factor of roughly 1/d of edit distance operations on strings of length w′ that would need to
be performed. Setting the parameters d = n2/7, w = n3/7 and w′ = n1/7 leads to the running time
O(n12/7) obtained in [15]. Different parts of the algorithm depend on those parameters differently
and this particular setting gives the best possible trade-off.
Improving the running time. One can speed-up the algorithm of [15] by implementing the edit
distance checks on strings of length w and w′ by the approximation algorithm we just designed.
Doing this recursively leads to faster and faster algorithms with worse and worse approximation
guarantee. Nevertheless, this recursion does not give an algorithm that would run in time better
than O(n1.61···). Subsequently, Andoni [4] gave for each ε > 0 an algorithm that runs in time
O(n3/2+ε). This algorithm uses the same technique as [15], but for the recursion it uses a stronger
primitive. Andoni’s algorithm works for any edit distance.

Our algorithm. To achieve a faster algorithm we will perform a non-black-box recursion of the
technique from [15] to more block lengths, and implement the recursion iteratively. To find all
blocks v′ of length w′ in y that are similar to some block u′ in x we will recursively sub-divide u′
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Figure 3: Idealized multi-level search for matches between x and y. (Not to scale.)

into blocks of length w′′ and search for matching strings in y that will help to identify candidate v′.
We iterate this for k levels.

To implement this, we will pick block lengths w1 =
√
n < w2 < · · · < wk < n and density

thresholds
√
n > d1 > d2 > · · · > dk = 1. The block length wi and density di is picked so that the

amount of work for each level i would be roughly the same. Multiple levels provide more freedom
to set the parameters, yet, to get an algorithm with running time close to linear one still needs to
recurse the resulting algorithms as done in [15]. We will elaborate on that at the end of this section.

The main idea which we want to implement in the new algorithm is when looking for matches
of a block ui of size wi, we sub-divide the block into sub-blocks of size wi−1, we recursively find all
good matches to a randomly selected (presumably sparse) sub-block of ui of size wi−1, and we use
those matches to identify small set of candidates for the matches of ui which we prune by checking
their actual edit distance from ui. At the bottom of the recursion we look for matches to blocks
of size w1 naïvely. Then we repeatedly expand and prune those matches as we go up the recursion
levels (Fig. 3). The challenge is that as we progress up in the recursion at some level i we might get
more than di candidates to check their edit distance since di’s are decreasing. On the other hand
since we are pruning the candidate strings at some later level the number of the candidates could
fall back below the corresponding density threshold. So being dense is not a monotone property
with respect to the recursion level. It is not clear how to define being dense, how to test it, and
how to deal with it in the multi-level context.
Data structure approach. Our approach to implement the above idea is to “slice the recursion
horizontally” and proceed iteratively. For each level i = 1, . . . , k, we will build a data structure that
allows to quickly enumerate matches in y (and x) to any block of length wi in x. We query this
data structure via the procedure EnumerateClose which is the central component of our algorithm.
EnumerateClose gets as its input a level index i, a substring u of x of length wi and a similarity
threshold ε, and it must enumerate all matches to ui in y (and x) at distance at most εwi. The
data structure for level i will consist of information on which blocks of size wi−1 in x are dense and
which are sparse with respect to di−1. For the dense blocks we will also keep the complete list of
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similar blocks in y. This will be maintained for all similarity thresholds ε ∈ [θ, 1], where ε is a power
of 1/2.

When building the data structure for level i, for each block u in x of size wi, we will first find
all blocks in y at distance at most εwi from u that can be inferred from the information on dense
blocks of size wi−1. That is we use the stored information on matches between (dense) blocks of
size wi−1 to identify some matches between blocks of size wi, by assembling together the known
matches of size wi−1. This can be done efficiently in time almost linear in the total number of stored
matches. This identifies some of the matches in y for each u. All the other matches to u can be
identified with high probability by sampling a sparse sub-block of u of length wi−1, enumerating all
its matches in y, expanding them and pruning them as usually. (The fact that this works is a non-
trivial technical fact which requires a careful argument.) However, the other matches are calculated
only during each query to the data structure. Thus our procedure EnumerateClose returns a union
of blocks inferred from the dense sub-blocks together with blocks identified from the sampled sparse
sub-block. Calling the procedure EnumerateClose leads to recursive calls on sub-blocks from lower
levels that we already know are sparse. This eliminates the problem with non-monotonicity of
sparseness.

Hence, the key parts of the data structure for level i are the classification of blocks of level i− 1
into sparse and dense, complete information on matches for the dense blocks of level i − 1, and a
list Bbelow of matches for strings at level i that can be inferred from the dense blocks at level i− 1.

During the initialization of the data structure for level i, we compute the list Bbelow. Once that
is computed, the procedure EnumerateClose can be safely called with any block of size wi. We
use the procedure EnumerateClose to determine which blocks of size wi are dense and which are
sparse in order to prepare the data structure for next level i+ 1. However, enumerating all blocks
in y that are similar to each of the blocks u in x of size wi to determine the density of u would be
too expensive. So we allow the procedure EnumerateClose to get as an extra input a list of blocks
in y on which to focus. When checking the density of u we sample Õ(1/di) blocks from y from
which EnumerateClose selects the close matches. If there are Õ(1) matches, the block u is sparse
otherwise it is dense and we run EnumerateClose again to identify all the matches to u, and also
to identify all blocks in x similar to u. Similarly to [15] we take all pairs of such blocks and store
them as the relevant information for the dense blocks of size wi. The Õ(1/di) savings in running
the density tests is matched by Õ(1/di) savings in processing the dense blocks (as we do not have
to process blocks in x deemed similar to some already processed block u). These savings are key to
the overall savings of the algorithm.

Although the overall idea looks quite simple substantial care has to be taken to fit all the parts
of the algorithm together. By a careful choice of parameters wi and di we can speed-up a base
(approximate) edit distance algorithm running in time O(n1+1/T ) into an algorithm that runs in
time O(n1+1/(T+1/6)). The approximation factor gets worse by a constant factor. We can repeat
this any number of times to get an algorithm running in time O(n1+ε) for an arbitrary ε > 0.

One unfortunate feature of the algorithms is that they work only in the high edit distance regime
≥ n1−ζ . The problem is that the parameter θ affects the running time of the algorithm. For small
edit distance, [15] actually uses an exact edit distance algorithm running in time O(n+ (θn)2). The
approximation algorithm is run only for large enough θ. As we recursively apply the approximation
algorithm to build the faster one, the working range of the algorithm actually shrinks. As we do
not have near linear time algorithm for gap edit distance for medium range θ such as θ = n−1/3 we
cannot fall back on standard algorithms for this range. We do not know how to extend the range
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of our near linear time algorithm.
In what follows we provide a more specific description of the algorithm. We will look at the

problem as the problem of finding a shortest path in the edit distance graph (grid graph) associated
with x and y. As we need to look for similarities between blocks of x and y and also between blocks
of x, it is convenient to define z = xy and build the edit distance graph for x and z. We will identify
blocks in x by intervals of positions denoted by I and blocks in z by J . We will introduce this
terminology in next section. In Section 3 we provide a more quantitative overview of the algorithm
from [15], and in Section 4 we describe the new algorithm.

2 Preliminaries

Many definitions and routine claims are adapted (with some modifications) from [16]. The edit dis-
tance of strings u, v is denoted dedit(u, v) and the normalized edit distance of u, v, denoted ∆edit(u, v)
is defined to be dedit(u, v)/|u|.

Throughout the paper x, y denote two input strings of length n, where n is a power of 2, and z
denotes the concatenation xy.

Intervals, Decompositions, aligned intervals, and δ-aligned intervals. We consider
intervals in {0, . . . , 2n} which are as usual, subsets consisting of consecutive integers. The width of
interval I, µ(I) is equal to max(I) − min(I) = |I| − 1. Most intervals we consider have width a
power of 2. An interval of width w is a w-interval. Intervals index substrings of z, where zI denotes
the substring indexed by the set I \ {min(I)}. (Note that zmin(I) is not part of zI . In particular,
z = z{0,...,2n}, and x = z{0,...,n} and y = z{n,...,2n}.)

A decomposition of an interval I is a sequence I1, . . . , Ik of intervals with min(I1) = min(I),
max(Ik) = max(I) and min(Ij+1) = max(Ij) for j ∈ {1, . . . , k−1}. Note that zI1 , . . . , zIk partitions
the string zI .

Let w be a power of 2 that is at most n, and let δ be a power of 2 that is at most 1. An interval
of width w is aligned if min(I) is a multiple of w (and consequently max(I) is also a multiple of w).
The interval is δ-aligned if min(I) is a multiple of max(δw, 1) (and consequently so is max(I)). In
particular a 1-aligned interval is aligned. We define:

• Intervals(w) is the set of aligned intervals of width w, subsets of {0, . . . , n}.

• Intervals(w, δ) to be the set of δ-aligned intervals of width w, subsets of {0, . . . , 2n}.

• For an interval I, Intervals(w; I) = {I ′ ∈ Intervals(w) : I ′ ⊆ I}, and Intervals(w, δ; I) = {I ′ ∈
Intervals(w, δ) : I ′ ⊆ I}.

Since n and w are powers of 2, Intervals(w) is a decomposition of {0, . . . , n}. When we use the
notation Intervals(w; I), I will be an aligned interval of width a power of 2, so that Intervals(w; I)
is a decomposition of I.

The grid {0, . . . , n}×{0, . . . , 2n}, boxes and stacks. Consider the grid {0, . . . , n}×{0, . . . , 2n}
lying in the coordinate plane. For S ⊆ {0, . . . , n} × {0, . . . , n}, the horizontal projection πH(S) is
the set of first coordinates of elements of S, and the vertical projection of S, πV (S) is the set of
second coordinates.

A box is a set I×J ⊆ {0, . . . , n}×{0, . . . , 2n} for intervals I, J , and it represents the pair xI , zJ
of substrings. Since I ⊆ {0, . . . , n}, zI = xI . Note that if J ⊆ {0, . . . , n} then zI , zJ is a pair of
substrings of x and if J ⊆ {n, . . . , 2n}, it is a pair (substring of x, substring of y). I×J is a w-box if
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µ(I) = µ(J) = w. The lower left hand corner is (min(I),min(J)) and the upper right hand corner
is (max(I),max(J)). Note that πH(I×J) = I and πV (I×J) = J . Box I×J is horizontally aligned
if I is aligned, and it is vertically δ-aligned or simply δ-aligned if J is δ-aligned; we have no need to
refer to horizontally δ-aligned boxes. Box I × J is square if µ(I) = µ(J).

A stack is a set of boxes all having the same horizontal projection. For interval I and set of
intervals J , I × J is the stack {I × J : J ∈ J }.

Grid graphs. The grid graph of z, Gz, is a directed graph with edge costs, having vertex set
{0, . . . , n} × {0, . . . , 2n} and all edges of the form (i − 1, j) → (i, j) (H-edges), (i, j − 1) → (i, j)
(V -edges) and (i− 1, j− 1)→ (i, j) (D-edges). Every H-edge and V-edge costs 1, and a D-edge has
cost 1 if zi 6= zj and 0 otherwise. Gz is acyclic, with edges moving "up and to the right". A directed
path τ joins a pair of vertices source(τ) and sink(τ) with source(τ) ≤ sink(τ). The box spanned by τ
is the unique minimal box I ×J that contains τ ; this is equal to πH(τ)×πV (τ). We say τ traverses
I × J if I × J is the box spanned by τ , which is equivalent to source(τ) = (min(I),min(J)) and
sink(τ) = (max(I),max(J)). A traversal of I × J is any path that traverses I × J .

For I ⊆ πH(τ), let τI denote the minimal subpath of τ whose horizontal projection is I.
Cost and normalized cost. The cost of a directed path τ , cost(τ) is the sum of the edge costs,
and the normalized cost is ncost(τ) = cost(τ)

µ(πH(τ)) . The cost of box I × J , cost(I × J), is the min-cost
of a traversal of I × J and ncost(I × J) = 1

µ(I)cost(I × J).
It is well known (and easy to see) that for any box I × J , a traversal of I × J corresponds to

an alignment from a = zI to b = zJ , i.e. a set of character deletions, insertions and substitutions
that changes a to b, where an H-edge (i − 1, j) → (i, j) corresponds to "delete ai", a V-edge
(i, j− 1)→ (i, j) corresponds to "insert bj between ai and ai+1" and a D-edge (i− 1, j− 1)→ (i, j)
corresponds to replace ai by bj , unless they are already equal. Thus:

Proposition 2.1. The cost of an alignment corresponding to path τ is cost(τ). Thus for any I, J ⊆
{0, . . . , 2n}, dedit(zI , zJ) = cost(I × J). In particular dedit(x, y) = cost({0, . . . , n} × {n, . . . , 2n}).

Displacement of a box relative to a path or box. The following easy fact (noted in [15])
relates the cost of two boxes having the same horizontal projection:

Proposition 2.2. For intervals I, J, J ′ ⊆ {0, . . . , n}, |cost(I × J) − cost(I × J ′)| ≤ |J∆J ′|, where
∆ denotes symmetric difference.

Let τ be a path whose horizontal projection includes I. The displacement of the square box
I × J with respect to τ , disp(I × J, τ) is the smallest K such that (min(I),min(J)) is within K
vertical units of source(τI) and (max(I),max(J)) is within K vertical units of sink(τI).

We make a few easy observations.

Proposition 2.3. Let τ be a path whose horizontal projection includes I and let I × J be a box.
Then cost(I × J) ≤ cost(τI) + 2disp(I × J, τ).

Proof. Let J ′ be the vertical projection of τI . Then: cost(I × J) ≤ cost(I × J ′) + |J∆J ′| ≤
cost(τI) + |J∆J ′| ≤ cost(τI) + 2disp(I × J, τ).

The following fact (which is essentially the same as Proposition 3.4 of [16]) says that every path
τ with projection I ′ can be approximately covered by a δ-aligned box whose cost is close to cost(τ)
and whose displacement from τ is small:
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Proposition 2.4. Let I ′ and J be intervals and suppose δ ∈ (0, 1]. Let τ be a path lying inside
of I ′ × J whose horizontal projection is I ′. There is a δ-aligned interval J ′ of width µ(I ′) so that
disp(I ′ × J ′, τI′) ≤ δµ(I ′) + cost(τI′) and ncost(I ′ × J ′) ≤ 2ncost(τI′) + δ.

Proof. Let J be the vertical projection of τI′ . If µ(J) ≥ µ(I ′) then let Ĵ be the interval of width
µ(I ′) with min(Ĵ) = min(J). Otherwise let Ĵ be any interval of width µ(I ′) that contains J .

The box I ′ × Ĵ has displacement at most cost(τI′) from τI′ , and has cost at most 2cost(τI′).
Finally, let J ′ be obtained by shifting Ĵ up or down to the closest δ-aligned interval. This shift is
at most δ/2 units. This increases both the displacement and the cost by at most δµ(I ′).

The diagonal of a square box I×J is the diagonal path joining (min(I),min(J)) to (max(I),max(J)).
Let I×J and I ′×J ′ be square boxes with I ′ ⊆ I. The displacement of I ′×J ′ with respect to I×J ,
disp(I ′ × J ′, I × J) is the displacement of I ′ × J ′ with respect to the diagonal of I × J , which is
just the number of vertical units one needs to shift I ′ × J ′ so that its diagonal is a subpath of the
diagonal of I × J .

Proposition 2.5. Suppose τ traverses the square box I × J of width w. Then every point of τ is
within vertical distance cost(τ)/2 of the diagonal of I × J .

Proof. Consider a point of τ expressed as P = (min(I) + u,min(J) + v). Then τ can be split into
two parts τ1, ending at P and τ2 starting at P . Then cost(τ) = cost(τ1) + cost(τ2) ≥ 2|v−u| which
is twice the vertical distance of P to the diagonal of I × J .

Weighted boxes and stacks, certified boxes and stacks, shortcut graphs.
A weighted box is a pair (I × J, κ) where κ ≥ 0. If ncost(I × J) ≤ κ we say that (I × J, κ) is a

certified box. A weighted stack (I × J , κ) is a pair where I × J is a stack and κ ≥ 0. We associate
(I × J , κ) with the set {(I × J, κ) : J ∈ J }. If every box in (I × J , κ) is certified, we call it a
certified stack.

Let G̃ be the digraph on {0, . . . , n} × {0, . . . , 2n} with arc set {(i, j) → (i′, j′) : i ≤ i′, j ≤
j′, (i, j) 6= (i′, j′)} The edges with i < i′ and j < j′ are called shortcuts. Associated to any weighted
box (I × J, κ) there is a weighted shortcut edge (min(I),min(J))→ (max(I),max(J)) with weight
κµ(I). Given a set R of weighted boxes, we define the weighted shortcut graph G̃(R) to be the
weighted directed graph consisting of all H-edges and V-edges with weight 1, and all of the shortcut
edges corresponding to the boxes in R. For a box I × J , let costR(I × J) denote the minimum cost
of a traversal of I × J in G̃(R).

If every box in R is certified we say that G̃(R) is a certified shortcut graph. A certified shortcut
graph Ḡ(R) provides upper bounds on the edit distance. We omit the proof of the following easy
fact:

Proposition 2.6. Let R be a set of certified boxes. For any box I × J , dedit(zI , zJ) ≤ costR(I × J).

3 The core speed-up algorithm of [15]

As discussed in Sections 1.1 and 1.2, the main ingredient in [15] is a core speed-up algorithm that has
access to a slow edit distance approximation algorithm and uses it to build a faster approximation
algorithm. We give here a more quantitative review of the core speed-up algorithm in [15], which
provides the starting point for ours. To simplify the description we assume that the slow edit
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distance algorithm is just the quadratic exact edit distance algorithm. In their work, they reduce to
the case θ > n−1/5 and build a subquadratic time algorithm for the gap-problem where θ ≥ n−1/5.
The algorithm operates in two phases. The discovery phase generates a setQ of certified boxes which
represent known matches between x and y. In the shortest path phase the algorithm assembles these
boxes together to evaluate the cost of ({0, . . . , n} × {n, . . . , 2n}) in the shortcut graph G̃(R) where
R is a set of certified boxes obtained by a minor modification of Q. Proposition 2.6 implies that this
is an upper bound on dedit(x, y). The main work is to define the discovery phase to ensure that this
upper bound is not too much bigger than the true value. The shortest path phase is implemented
by a straightforward variant of dynamic programming.

The discovery phase is defined in terms of parameters w1 < d < w2, which are powers of 2 that
are, respectively, approximately n1/7, n2/7 and n3/7. The set Q consists of certified w1-boxes and
certified w2-boxes, and satisfies with high probability: for every horizontally aligned w2-box I × J ,
costR(I × J) ≤ C · [cost(I × J) + θw2] for some constant C. It is not difficult to show that this
implies that the upper bound on dedit(x, y) output by the shortest path inference phase will be at
most C · [dedit(x, y) + θn], which is enough to solve the gap-problem.

The algorithm generates boxes of width w1 iteratively for i from 0, . . . , log(1/θ) and ε(i) = 2−i.
For each horizontally aligned I, let Nε(i)(I) be the set of J that are ε(i+ 3)-aligned and satisfy
ncost(I × J) ≤ ε(i). Iteration i starts by classifying each of the n/w1-aligned w1-intervals, as dense
or sparse subject to the requirement that every I with Nε(i)(I) ≥ 2d is classified as dense, and every
I with Nε(i)(I) ≤ d/2 is classified as sparse; this classification of I is done with high probability by
sampling J at a rate log(n)/d and calling I dense (resp. sparse) if at least (resp. at most) log(n)
of the sample are within distance ε(i) of I. Next for each dense interval I a set J (I) of ε(i+ 3)-
aligned w1-intervals J is constructed such that ncost(I × J) ≤ 5ε(i) and Nε(i)(I) ⊆ J (I). For any
given I we can construct J (I) by computing its edit distance with every ε(i)/8-aligned interval,
in time O(nw1/ε(i)). If we do this for all n/w1-aligned intervals the time is Θ(n2/ε(i)), but the
restriction to dense intervals allows a savings of a factor of ε(i)d: Initialize D to be the set of dense
aligned w1-intervals. While D 6= ∅ choose I ∈ D (the pivot for the current round) and construct
X = N2ε(i)(I) and Y = N3ε(i)(I) and certify all boxes (I ′ × J ′, 5ε(i)) for I ′ ∈ X and J ′ ∈ Y. Delete
X from D and continue. The number of pivots is thus only O(n/w1ε(i)d) since the sets Nε(i)(I) are
of size at least d and are disjoint for different pivots.

The rest of the discovery phase constructs a (relatively small) set of w2-boxes. For each horizon-
tally aligned w2-interval I ′, the w1-subintervals of I ′ that were declared sparse (over all iterations
of i) are used to select a small subset J ′(I ′) of the w2-intervals, and we certify each box I ′ × J ′
for J ′ ∈ J ′(I ′) by computing their edit distance exactly. The set J ′(I ′) is obtained as follows: For
each i ∈ {0, . . . , log(1/θ)}, select a polylog(n) size subset Si(I ′) of the subintervals of I ′ that were
declared sparse in iteration i, and for each I ′′ ∈ Si(I ′) exactly compute cost(I ′′, J) for all ε(i+ 3)-
aligned intervals J to determine Nε(i)(I ′′) (which has size at most 2d). For each box I ′′ × J , let J ′
be the unique w2-interval such that the diagonal of I ′′× J is a subset of the diagonal of I ′× J ′ and
add J ′ to J ′(I ′). The size of J ′(I ′) is Õ(d) and so the total cost of evaluating the edit distance of
boxes I ′ × J ′ for I ′ ∈ Intervals(w2; {0, . . . , n}) and J ′ ∈ J ′(I ′) is Õ(ndw2).

The parameters w1, d, w2 are adjusted to minimize the run time at Õ(n12/7). The key claim
in [15] is that for every horizontally aligned w2-box I×J , the boxes from the discovery phase imply
an upper bound ncost(I×J) that is at most C ·ncost(I×J)+C ′θ which is sufficient for the shortcut
phase to succeed. The claim is proved by showing that if the set of certified w1-boxes does not imply
a sufficiently good upper bound on ncost(I × J), then with high probability, one of the w2-boxes
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I ×J ′ constructed in the second part of the discovery phase is within a small vertical shift of I ×J ,
and therefore can be used in the inference phase to imply a good upper bound on cost(I × J).

4 The new core speed-up algorithm

The main new ingredient of the new core speed-up algorithm presented here is the replacement of
the pair w1 < w2 of widths from [15] by a hierarchy w1 < · · · < wk of widths. While the idea
of such an extension is natural, it is not a priori clear how to extend the ideas of [15] to such a
hierarchy. Our new algorithm proceeds in k iterations. During iteration j the algorithm builds a
data structure that supports approximate distance queries between substrings of width wj . Each
successive data structure recursively uses the data structure from the previous iterations. Iteration
j is accomplished by a suitable variant of the algorithm from [15].

The algorithm of [15] splits neatly into a discovery phase and an inference phase. In the new
algorithm, each iteration begins with an inference phase (using boxes discovered in the previous
phase) followed by a discovery phase.

Here is our main speed-up theorem.

Theorem 4.1. Suppose that SLOW-GED is a gap algorithm for edit distance satisfying gap-condition(T ′, ζ ′, Q′)
where T ′ ≥ 1, ζ ′ > 0 and Q′ ≥ 1. There is an algorithm FAST-GED (using SLOW-GED as a sub-
routine) that satisfies gap-condition(T, ζ,Q) with T = T ′ + 1/6 where ζ > 0 and Q ≥ 1 are suitably
chosen (depending only on T ′,ζ ′ and Q′).

Applying this theorem inductively with A0 being the exact edit distance algorithm, we get a
sequence of algorithms Aj where Aj satisfies gap-condition(1 + j/6, ζj , Qk) for suitable constants
ζj > 0 and Qj , and taking j = 6(T − 1) gives Theorem 1.2.

The proof of Theorem 4.1 is the heart of the paper. We describe the algorithm in the following
order:

1. The parameters used by the algorithm (Section 4.1).

2. The overall architecture, including data objects, of the algorithm (Section 4.2).

3. Some basic functions used in the algorithm (Section 4.3).

4. The mechanics of the algorithm. (Section 4.4).

5. The use of randomness in the algorithm (Section 4.5).

6. The properties enforced by the algorithm (Section 4.6 and 4.7).

7. The proof that FAST-GED satisifes the gap-algorithm Soundness and Completeness require-
ments (Section 4.8).

8. The running time analysis in terms of the parameters (Section 4.9).

9. The choice of parameters that attain the run time claims for FAST-GED (Section 4.10).

10. Tying up the proof of Theorem 4.1 (Section 4.11).
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4.1 The algorithm parameters

Recall that a gap-algorithm takes as input (n, θ, δ;x, y) where n is a power of 2 and |x| = |y| = n,
and θ ∈ (0, 1] is a power of 1/2.

In our description of the algorithm, we fix the input parameter δ in the algorithm FAST-GED
to δ = 1/2. For δ < 1/2, we execute the algorihm with δ = 1/2 independently for r = dlog2(1/δ)e
times, and reject only if every run returns reject. This compound algorithm will reject
every input x, y such that dedit(x, y) ≥ Qθn, since every run will reject. The probability that
the compound algorithm incorrectly returns reject on input with dedit(x, y) ≤ θn is at most
(1/2)r ≤ δ, as required.

Second, we fix the value of δ for all calls of SLOW-GED within FAST-GED, to δ = n−12 where
n is the length of the global input to FAST-GED. Since the number of calls to SLOW-GED will
be bounded above (easily) by Õ(n2), a union bound implies that the probability that every call to
SLOW-GED is correct is at least 1− n−8.

The algorithm FAST-GED takes as input n, θ;x, y where n is a power of 2, x and y are strings
of length n and the gap parameter θ ∈ (0, 1] is a power of 1/2. The algorithm sets z to be the
concatenation of xy and treats z as a global variable.

The number of iterations (levels) of FAST-GED is a parameter k. For each j ∈ 1, . . . , k + 1,
there is a width parameter wj and for each j ∈ {0, . . . , k}, there is a density parameter dj . These
parameters are integer powers of 2 satisfying:1

w1 = b
√
nc2 < w2 < · · · < wk < wk+1 = n.

d0 = b
√
nc2 > d1 > · · · > dk = 1.

Furthermore, for 1 ≤ j ≤ k:

n

wj
≥ dj . (1)

These parameters will be chosen in Section 4.10 to optimize the time analysis. For now we note
a technical assumption, that will be verified in Section 4.10, that is needed in the analysis. For
1 ≤ j ≤ k:

wj
wj+1

≤ θ/2. (2)

For each j ∈ {0, . . . , k}, there are quality parameters qj that satisfy the recurrence:

q0 = log(Q′) (where Q′ is the quality of SLOW-GED)
qj = 3qj−1 + 21 for j > 1.

The quality of the final approximation is Q = 2qk+6

We also define, for integers i, ε(i) = 2−i. In most cases, i ∈ {0, . . . , log(1/θ)} so 1 ≥ ε(i) ≥ θ.
There is a constant c0 used in the definition of the procedure ProcessDense. (See Section 4.5.)

1We denote by b·c2 the closest power of two of size smaller or equal.
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4.2 The architecture of the algorithm, and the neighborhood data structure

FAST-GED consists of k iterations (levels), and a final post-processing step. During iteration j, the
algorithm examines pairs 〈i; I×J〉, called candidates, where i ∈ {0, . . . , log(1/θ)}, I ∈ Intervals(wj)
and J ∈ Intervals(wj , ε(i+ 3)). (Hence, a candidate is any 〈i; I × J〉 that satisfies some weak
consistency requirements.) The pair I ×J is called a level j box and 〈i; I ×J〉 is a level j candidate.
Iteration j implicitly classifies all level j-candidates as close or far. This classification satisfies:

• If ncost(I × J) ≤ ε(i) then 〈i; I × J〉 is classified as close.

• If ncost(I × J) > ε(i− qj−1 − 6) then 〈i; I × J〉 is classified as far.

If ε(i) < ncost(I×J) ≤ ε(i− qj−1 − 6) then 〈i; I×J〉 may be classified as either close or far.
This implicit classification is accomplished by a data structure, called the neighborhood data

structure. The data structure implements a query EnumerateClose which takes as input (j, I×J , i)
where:

• j ∈ {1, . . . , k} is the level,

• I × J is a stack satisfying I ∈ Intervals(wj) and J ⊆ Intervals(wj , ε(i+ 3)),

• i ∈ {0, . . . , log(1/θ)},

and returns the set of J ∈ J for which 〈i; I × J〉 is close. In particular, EnumerateClose(j, I ×
{J}, i) returns {J} if 〈i; I × J〉 is close and returns ∅ otherwise. The pair 〈i; I × J 〉 is called a
level j candidate stack.

The queries with level parameter j are the level j queries. Initially the data structure is unable
to answer any queries. During iteration j the algorithm constructs the part of the data structure
that determines the classification of level j candidates as close or far, and thereby enabling level
j queries.

At the start of iteration j, queries up to level j−1 have been enabled. To enable EnumerateClose(j, ·)
the algorithm constructs families of sets for each I ∈ Intervals(wj) and each i ∈ {0, . . . , log(1/θ)}
as follows:

• A subset of Intervals(wj , ε(i+ 3)) denoted Bbelow(j, I, i).

• A subset of Intervals(wj−1; I) denoted SparseSample(j, I, i).

The query EnumerateClose(j, ·) uses these sets, as well as calls to EnumerateClose(j−1, ·). Thus
the level j neighborhood data structure consists of all of the sets Bbelow(j′, ·) and SparseSample(j′, ·)
for 1 ≤ j′ ≤ j.

During iteration j, subroutines Preprocess and ProcessDense are called with parameter j. The
purpose of Preprocess(j) is to create the sets Bbelow(j, ·) and SparseSample(j, ·). The construction
of these sets involves some random choices, which affect the close/far classification; but once
the choices are made the close/far classification is fixed. The creation of these sets activates
EnumerateClose(j, ·). While the data structure grows during each iteration to enable higher level
queries, once EnumerateClose(j, ·) is enabled, the portion of the data structure used to handle level
j queries is static.

The other procedure in iteration j of FAST-GED() is ProcessDense(j). ProcessDense(j) creates
the following sets for each i ∈ {0, . . . , log(1/θ)}:
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• Sparse(j, i) ⊆ Intervals(wj).

• For each I 6∈ Sparse(j, i), a subset of Intervals(wj , ε(i+ 3)) denoted Bdense(j, I, i).

• A set R(j) of weighted boxes (which we will prove are all certified).

The sets Bdense(j, ·) are local variables within ProcessDense(j), used to create R(j).
The set R(j) and Sparse(j, ·) are global variables but, with the exception of the final iteration

j = k, they are used only in Preprocess(j+1), and then never used again. Following iteration k, the
setR(k) is used in the post-processing step to generate the final output which is costR(k)({0, . . . , n}×
{n, . . . , 2n}).

4.3 Elementary primitives

We describe some elementary functions used within the algorithm.

The function Round. Round(J, ε) where J is an interval and ε ≤ 1 is a power of 2, is equal to
the ε-aligned interval J ′ of width µ(J) obtained by shifting J down (decreasing its two endpoints)
at most εµ(J)− 1 units.

The function ZoomIn. Recall the definition of displacement in Section 2. The function
ZoomIn takes as input a box I × J , and a subinterval I ′ of I and some additional parameters,
and outputs a set of suitably aligned intervals J ′ of width µ(I ′) so that each box I ′ × J ′ has small
displacement from I × J . More precisely, for a box I × J , a subinterval I ′ ⊆ I, and 0 ≤ i′ ≤ i ≤
log(1/θ), ZoomIn(j, I × J, i, I ′, i′) is the set of all ε(i′ + 3)-aligned intervals J ′ ⊆ J of width µ(I ′),
for which the displacement of I ′ × J ′ from I × J is at most 2ε(i)µ(I).

Proposition 4.2. Let I be an interval of width w and I ′ ⊆ I of width w′ a divisor of w. Let
i′ ≤ i ∈ {0, . . . , log(1/θ)}.

1. For J of width w, |ZoomIn(j, I × J, I ′, i′)| has size at most 1 + 32ε(i− i′)w/w′.

2. Let I ′ × J ′ be a box. The number of ε(i+ 3)-aligned width-w intervals J such that J ′ ∈
ZoomIn(j, I × J, i, I ′, i′) is at most 33.

Proof. Set ∆ = min(I ′)−min(I). If J ′ ∈ ZoomIn(j, I × J, i, I ′, i′) then |min(J ′)−∆−min(J)| ≤
2ε(i)w.

Proof of (1). Holding J fixed, we have min(J ′) ∈ [min(J) + ∆− 2ε(i)w,min(J) + ∆ + 2ε(i)w].
This is an interval of width 4ε(i)w, and the number of ε(i′ + 3)-aligned intervals of width w′ that
start in this interval is at most 1 + 32ε(i− i′)w/w′.

Proof of (2). Holding J ′ fixed, we have min(J) ∈ [min(J ′)−∆− 2ε(i)w,min(J ′)−∆ + 2ε(i)w].
This is an interval of width 4ε(i)w, and the number of ε(i+ 3)-aligned intervals of width w that
start in this interval is at most 33.

Calling ZoomIn(j, I×J , i, I ′, i′) with a stack I×J returns the union of results
⋃
J∈J ZoomIn(j, I×

J, i, I ′, i′).

The function InducedBoxes. This is a function that takes as input a set of weighted square
boxes Q and outputs a collection of weighted boxes induced by Q. For an interval J , and t ≤ µ(J)/2
let J/[t] denote the interval [min(J) + t,max(J) − t]. For each (I × J, κ) in Q, InducedBoxes(Q)

includes (I×J, κ) together with boxes of the form (I×J/[2i], κ+ 2i+1

µ(I) ) for i ∈ {0, . . . , log(µ(J))−1}.
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Proposition 4.3. If all boxes of Q are certified boxes then so are all boxes of InducedBoxes(Q).

Proof. Note that |J∆(J/[2i])| = 2i+1 and apply Proposition 2.2.

The function APM (Approximate pattern match). Recall from Section 2 that costR(I×J)
is the length of the min-cost traversal of I × J in the shortcut graph G̃(R). APM takes as input a
stack I × J , κ > 0 and a set R of certified boxes, and outputs a subset S of J that satisfies:

Completeness of APM. For all J ∈ J satisfying costR(I × J) ≤ κµ(I), J ∈ S

Soundness of APM. For all J ∈ J satisfying cost(I × J) > 2κµ(I), J 6∈ S.

The running time is Õ(µ(I) + |J |+ |R|). (Notice, the subtle distinction between costR and cost in
Soundness and Completeness.) The implementation, described in Section 6, is a customized variant
of dynamic programming that closely follows [16,17].

4.4 The mechanics of the algorithm

We are now ready to present the pseudocode for FAST-GED and the three main subroutines:
Preprocess and ProcessDense, and EnumerateClose.

Algorithm 1 FAST-GED(n, θ;x, y)

Input: n is a power of 2. |x| = |y| = n. θ ∈ (0, 1] is a power of 1/2.
Output: If ∆edit(x, y) ≥ Qθ then return reject. If ∆edit(x, y) ≤ θ then return accept with

probability at least 1/2.
1: z ←− xy.
2: for j ∈ {1, . . . , k} do
3: Preprocess(j).
4: ProcessDense(j).
5: end for
6: Return accept if APM({0, . . . , n} × {{n, . . . , 2n}}, θ2qk+5,R(k)) is non-empty, otherwise re-

turn reject.

The algorithm FAST-GED. This algorithm inputs an integer n which is a power of 2, θ ∈ (0, 1]
a power of 1/2, and two strings x, y of length n, and returns accept or reject. (Recall that the
error parameter δ is fixed to 1/2.) The algorithm consists of iterations indexed by j ∈ {1, . . . , k}.
Preprocess(j) creates the sets Bbelow(j, I, i) and SparseSample(j, I, i) that enable the level j queries
EnumerateClose(j, ·). ProcessDense(j) creates sets R(j) and Sparse(j, i) needed for Preprocess(j+
1).
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Algorithm 2 Preprocess(j)

Input: j ∈ [k]. Levels j = 1, . . . , j − 1 were already processed. Uses sets Sparse(j − 1, i) and
R(j − 1) constructed by ProcessDense(j − 1), where R(0) = ∅.

Output: Bbelow(j, I, i), and SparseSample(j, I, i) for (I, i) ∈ Intervals(wj)× {0, . . . , log(1/θ)}.
1: Partition R(j− 1) into {R(j− 1, I) : I ∈ Intervals(wj)} where I ′× J ′ is in R(j− 1, I) if I ′ ⊆ I.

2: for i ∈ {0, . . . , log 1/θ} do
3: for I ∈ Intervals(wj) do
4: if j = 1 then
5: SparseSample(j, I, i)←− ∅; Bbelow(j, I, i)←− ∅
6: else
7: if Intervals(wj−1; I) ∩ Sparse(j − 1, i) = ∅ then
8: SparseSample(j, I, i)←− ∅
9: else

10: Make 30 log n independent uniform selections from Intervals(wj−1; I)∩Sparse(j− 1, i)
to obtain SparseSample(j, 1, i)

11: end if
12: Bbelow(j, I, i)←− APM(I × Intervals(wj , ε(i+ 3)), ε(i− qj−1 − 5),R(j − 1, I))
13: end if
14: end for
15: end for

The subroutine Preprocess. On input j, the sets Sparse(j − 1, i) and R(j − 1) created by
ProcessDense(j − 1) are used to produce the sets Bbelow(j, I, i) and SparseSample(j, I, i) for I ∈
Intervals(wj) and i ∈ {0, . . . , log(1/θ)}. To begin, the set of weighted wj−1-boxes R(j − 1) is
partitioned into sets R(j − 1, I), with I ′ × J ′ assigned to R(j − 1, I) for I ′ ⊆ I. For each i and I:

1. The set Sparse(j−1, i) ⊆ Intervals(wj−1) was produced by ProcessDense(j−1). SparseSample(j, I, i) =
∅ if Sparse(j − 1, i) contains no subintervals of I, and otherwise is an independent random
sample (multiset) of size log(n)θ(1) selected from the subsets of I belonging to Sparse(j−1, i).

2. Run APM with input stack I × Intervals(wj , ε(i+ 3)) and R(j − 1, I) to determine the set
of intervals J ∈ Intervals(wj , ε(i+ 3)) that are suitably close to I in the shortcut graph
G̃(R(j − 1, I)).

The subroutine EnumerateClose. The creation of Bbelow(j, I, i) and SparseSample(j, I, i) by
Preprocess enables the query EnumerateClose(j, ·), which implicitly classifies all level j candidates
〈i; I × J〉 as close or far subject to:

Completeness of EnumerateClose. If ncost(I × J) ≤ ε(i) then with high probability 〈i; I × J〉
is close.

Soundness of EnumerateClose. If ncost(I × J) > ε(i− qj−1 − 6) then 〈i; I × J〉 is far.
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Algorithm 3 EnumerateClose(j, I × J , i)
Input: j ∈ [k], I ∈ Intervals(wj), J ⊆ Intervals(wj , ε(i+ 3)), i ∈ {0, . . . , log(1/θ)}, levels 1, . . . , j−

1 were already processed, and level j was preprocessed.
Output: Returns S = {J ⊆ J : 〈i; I × J〉 is close}
1: if j = 1 then
2: Initialization: S ←− ∅.
3: for J ∈ J do
4: if SLOW-GED(zI , zJ , ε(i)) returns accept then
5: Add J to S. // 〈i; I × J〉 is classified as close //
6: end if
7: end for
8: else
9: // j > 1 //

10: Initialization: S ←− Bbelow(j, I, i) ∩ J , J ←− J \ S, K ←− ∅.
11: for i′ ∈ {0, . . . , i} do
12: for I ′ ∈ SparseSample(j, I, i′) do
13: J ′ ←− ZoomIn(j, I × J , i, I ′, i′).
14: S ′ ←− EnumerateClose(j − 1, I ′ × J ′, i′).
15: for J ∈ J do
16: if ZoomIn(j, I × J, i, I ′, i′) ∩ S ′ 6= ∅ then
17: Add J to K
18: end if
19: end for
20: end for
21: end for
22: for J ∈ K do
23: if SLOW-GED(zI , zJ , ε(i)) returns accept then
24: Add J to S. // 〈i; I × J〉 is classified as close //
25: end if
26: end for
27: end if
28: Return S.

EnumerateClose(j, ·) takes a stack I × J and i ∈ {0, . . . , log(1/θ)} with I ∈ Intervals(wj)
and J ⊆ Intervals(wj , ε(i+ 3)) and returns {J ∈ J : 〈i; I × J〉 is close}. S accumulates the
set of intervals to be output. For j = 1, SLOW-GED(zI , zJ , ε) is run for each J ∈ J and S
is the set of accepted J . For j > 1, S is the union of two sets. The first is Bbelow(j, I, i) ∩ J
found by Preprocess(j). The second is obtained by identifying (as described below) a small subset
K ⊆ J , testing each J ∈ K using SLOW-GED, and adding J to S if zJ is suitably close to zI . To
identify K, for each (I ′, i′) ∈ SparseSample(j, I, i) × {0, . . . , i} use ZoomIn to identify the set J ′
of J ′ ∈ Intervals(wj−1, ε(i

′ + 3)) such that I ′ × J ′ has displacement at most 2ε(i)µ(I) from I × J .
Recursively use EnumerateClose(j − 1, I ′ × J ′, i′) to select S ′ = {J ′ ∈ J ′ : 〈i′; I ′ × J ′〉 is close}.
K consists of those J for which I × J has small displacement from I ′ × J ′ for some J ′ ∈ S ′.

The loops on i′, I ′ (line 11-21) produce K ⊆ J . For each J ∈ K, SLOW-GED is run on zI , zJ .
The loop on I ′ is over SparseSample(j, I, i′). The subset K of J depends on the random sample
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SparseSample(j, I, i′) of Sparse(j−1, i′)∩Intervals(wj−1; I). The following definitions highlight this
dependence.

• For 〈i; I × J〉, let I ′ ∈ Intervals(wj−1; I) and i′ ∈ {0, . . . , i}. The pair (I ′, i′) is a marker2 for
the candidate 〈i; I × J〉 if I ′ ∈ Sparse(j− 1, i′) and there is some J ′ ∈ ZoomIn(j, I × J, i, I ′, i′)
such that 〈i′; I ′ × J ′〉 is classified as close. When lines (13-18) are executed for a marker
(I ′, i′), J is added to K in line 17. Ideally, K will consist of all intervals J identifiable by their
markers.

• M(j, I×J, i, i′) = {I ′ ∈ Sparse(j−1, i′)∩ Intervals(wj−1; I) : (I ′, i′) is a marker for 〈i; I×J〉}.
We will be interested in situations when for some i′ ≤ i there will be many markers, namely,
|M(j, I × J, i, i′)| ≥ 1

3 |Sparse(j − 1, i′) ∩ Intervals(wj−1; I)|, so that with high probability
SparseSample(j − 1, I, i′) will contain a marker that will identify J .

The procedure ProcessDense. This takes as input a level number j. The procedure corre-
sponds closely to the procedure Dense Strip Removal in [16].

For each i ∈ {0, . . . , log(1/θ)} the procedure builds a set Sparse(j, i) ⊆ Intervals(wj) and also
builds sets Bdense(j, I, i) ⊆ Intervals(wj , ε(i+ 3)) for every I ∈ Intervals(wj) \ Sparse(j, i). This is
done by processing the intervals of Intervals(wj); when interval I is processed it is either assigned
to Sparse(j, i) or the set Bdense(j, I, i) is constructed. We keep track of a subset T ⊆ Intervals(wj)
of unprocessed intervals. This set is initialized to Intervals(wj) and the iteration ends when T = ∅.
We proceed in rounds. In a round we select an arbitrary I from T . We perform a test (see ”Testing
potential pivots in ProcessDense” in Section 4.5) to decide whether to put it in Sparse(j, i). If I is
not placed in Sparse(j, i) then I is designated the pivot for that round. We then call EnumerateClose
on the stack I × T (with suitable parameters) to determine the subset X of Intervals(wj), we call
EnumerateClose on the stack I × Intervals(wj , κ) (for a suitable κ ≥ ε(i)) to determine Y ′ ⊆
Intervals(wj , κ) and we let Y be the set of intervals from Intervals(wj , ε(i+ 3)) which round to an
interval in Y ′. We then define Bdense(j, I ′, i) = Y for all I ′ ∈ X , and remove X from T , to complete
the round.

The parameters used in the above calls are expressed in terms of h1 and h2 introduced in the
pseudocode. The particular choice h1 and h2 is motivated by both the correctness analysis and the
time analysis (Section 4.9).

In the sequel, we will need the following definition and observation.

Approved Candidate. A candidate 〈i; I × J〉 is said to be approved if I 6∈ Sparse(j, i) and
J ∈ Bdense(j, I, i). Note that the boxes in Q(j) are in one-to-one correspondence with the approved
candidates, with (I × J, ε(i− qj)) ∈ Q(j) if and only if 〈i; I × J〉 is approved. All candidates of the
form 〈i; I × J〉 are approved for i ≤ qj .

Proposition 4.4. At level k, the sets Sparse(k, i) are empty for all i ∈ {0, . . . , log(1/θ)}.

Proof. Since dk = 1, the set S created in line (10) is all of Intervals(wj , ε(i+ 3)) which, in particular
includes I. The set returned by EnumerateClose in line (11) includes I and so the if condition fails,
and I is not added to Sparse(k, i).

2We call it marker as in genomics, where a short DNA sequence identifies a gene. Similarly here, a marker for zI
is its substring zI′ which is relatively rare in z, i.e., I ′ belongs to Sparse(j − 1, i′).
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Algorithm 4 ProcessDense(j)

Input: j ∈ [k]. Levels 1, . . . , j − 1 were already processed, and level j was preprocessed.
Output: For each i ∈ {0, . . . , log(1/θ)}, specify the set Sparse(j, i) ⊆ Intervals(wj) and specify the

sets Bdense(j, I, i) for all intervals I ∈ Intervals(wj) \ Sparse(j, i).
1: for i = 0, . . . , log 1/θ do
2: Initialization: T = Intervals(wj).
3: Initialization: Sparse(j, i) = ∅.
4: if i ≤ qj then
5: Set Bdense(j, I, i) = Intervals(wj , ε(i+ 3)) for every I ∈ T .
6: else
7: // i > qj //
8: while T is non-empty do
9: Pick I ∈ T .

10: Let S be the subset of Intervals(wj , ε(i+ 3)) obtained by including each element inde-
pendently with probability p := min(1, (c0 log n)/dj).

11: if EnumerateClose(j, I × S, i) has less than p · dj elements then
12: Add I to Sparse(j, i), and T = T \ {I}. // I is declared sparse. //
13: else
14: // I is declared dense and used as a pivot. //
15: h1 ←− i− qj−1 − 7; h2 ←− i− 2qj−1 − 14. // Since i > qj, h1, h2 > 0. //
16: X ←− EnumerateClose(j, I × Intervals(wj), h1).
17: Y ′ ←− EnumerateClose(j, I × Intervals(wj , ε(h2 + 3)), h2).
18: Y ←− {J ∈ Intervals(wj , ε(i+ 3)) : Round(J, ε(h2 + 3)) ∈ Y ′}.
19: Bdense(j, I ′, i)←− Y for each I ′ ∈ X .
20: T ←− T \ X .
21: end if
22: end while
23: end if
24: end for
25: // Convert stack of close boxes into weighted boxes. //
26: Q(j)←− {(I × J, ε(i− qj)) : i ∈ {0, . . . , log(1/θ)}, I ∈ Intervals(wj), J ∈ Bdense(j, I, i)}.
27: R(j)←− InducedBoxes(Q(j)).

4.5 The use of randomization

Randomization is used in three parts of the algorithm: the subroutine SLOW-GED, the construction
of SparseSample during Preprocess and in ProcessDense, each time we test a selected I ∈ T to decide
whether it is a pivot. We discuss each of these uses below.

The subroutine SLOW-GED. SLOW-GED takes calling parameters (n′, θ′, δ′;x′, y′). By
our assumption δ′ is fixed to n−12 for all calls. The gap-soundness and completeness conditions
for SLOW-GED guarantee that if ∆edit(x

′, y′) > Q′θ′n′ then SLOW-GED returns reject, and if
∆edit(x

′, y′) ≤ θ′n′ then SLOW-GED returns accept with probability at least 1− n−12. Say that
an execution of SLOW-GED(n′, θ′, n−12;x′, y′) fails if ∆edit(x

′, y′) ≤ θ′n′ and SLOW-GED returns
reject. We will introduce an event SG that no call to SLOW-GED fails.
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To simplify the analysis, we make the following assumption: when we run FAST-GED we
pregenerate a single string BSG of b random bits where b is an upper bound on the number of
random bits used in any call to SLOW-GED. In every call to SLOW-GED we use (a prefix of) BSG

to provide the random bits for the call. This makes all calls to SLOW-GED deterministic, and also
ensures that if the algorithm makes multiple calls to SLOW-GED with the same input parameters
then all such calls yield the same output.

Reusing random bits for different calls of SLOW-GED makes these calls dependent, but this is
irrelevant to the analysis. The proof of correctness relies only on the fact that the event SG holds.

We now upper bound the probability that there is a call that does not succeed. Every possible
input tuple (n′, θ′, n−12;x′, y′) for SLOW-GED satisfies that n′ is a power of 2 with n′ < n, x′, y′

are substrings of z = xy of length n′, and θ′ is an integral power of 1/2. We may assume that
θ′ ≥ 1/n since for θ′ < 1/n we may assume that SLOW-GED is the deterministic algorithm that
returns accept if x = y and reject otherwise. Let SG denote the event that for all possible
choices of input parameters (n′, x′, y′, θ′) with θ′ ≥ 1/n, the choice of random bits succeeds.

The number of possible choices of input parameters for which randomness is used is at most
4n2 log2(n). (There are at most log(n) ways to choose n′, and to choose θ′, and at most 2n ways to
choose the starting location of x′ and of y′.) Thus by a union bound, the probability that SG does
not hold is at most n−8.

The construction of SparseSample. SparseSample(j, I, i) is a random sample of Sparse(j−
1, i) generated during Preprocess(j). What we want from this sample is that for each i′ ∈ {0, . . . , i},
if a nontrivial fraction of Sparse(j − 1, i) belongs to the set of markers M(j, I × J, i, i′) then
SparseSample(j, I, i) should include a member of M(j, I × J, i, i′). (Note: for the purposes of
this discussion, the exact technical definition ofM(j, I × J, i, i′) is unimportant, we only need that
for each j, I, J, i, i′, M(j, I × J, i, i′) and Sparse(j − 1, i) are completely determined after iteration
j − 1, andM(j, I × J, i, i′) ⊆ Sparse(j − 1, i).) Formally, we say that SparseSample(j, I, i) fails for
J ∈ Intervals(wj , ε(i+ 3)) and i′ ∈ {0, . . . , i} if |Sparse(j − 1, i)∩ Intervals(wj−1; I)| > 0, |M(j, I ×
J, i, i′)| ≥ |Sparse(j − 1, i) ∩ Intervals(wj−1; I)|/3 and SparseSample(j, I, i) ∩M(j, I × J, i, i′) = ∅.
SinceM(j, I×J, i, i′) is completely determined by the end of iteration j−1, and SparseSample(j, I, i)
is an independent sample of 30 log n elements from Sparse(j, I, i) selected during iterations j, the
probability that SparseSample(j, I, i) fails for J, i′ is at most (1− 1/3)30 logn ≤ n−10. There are at
most n pairs J, i′ so the probabibility that SparseSample(j, I, i) fails for some J, i′ is at most n−9.
There are at most n triples j, I, i so the probability that some SparseSample(j, I, i) fails is at most
n−8. We denote by Bj

SS the random bits that are used at iteration j to generate the samples from
Sparse(j, I, i) for all I and i.

Testing potential pivots in ProcessDense. During the while loop for I ∈ T of ProcessDense,
we make a random selection of a set S, and this choice affects whether I is assigned to Sparse(j, i) or
becomes a pivot. The constant c0 in line (10) is chosen below to satisfy certain technical conditions.
We denote by Bj

PD the random bits used at iteration j to generate sets S where we make the
simplifying assumption that there is a designated block of bits for each possible I ∈ Intervals(wj)
and i to select the corresponding S. (Some of the blocks might be unused.)

There are two bad events that depend on the choice of S:

1. |EnumerateClose(j, I × Intervals(wj , ε(i+ 3)), i)| < dj/2 and I is not assigned to Sparse(j, i).

2. |EnumerateClose(j, I × Intervals(wj , ε(i+ 3)), i)| > 2dj and I is assigned to Sparse(j, i).
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For both of the bad events, we observe that (i) for any input (j, I×J , i), EnumerateClose(j, I×
J , i) returns the stack of candidates 〈i; I×J〉 that are classified as close among I×J , and (ii) the
classification of level j candidates as close or far is completely deterministic given the random
bits BSG for SLOW-GED, and the random bits B≤jSS and B≤j−1

PD for the first j − 1 iterations and
Preprocess(j). Thus, for the random sample S of Intervals(wj , ε(i+ 3)), i), where each interval
is placed in S independently with probability p, 1

p |EnumerateClose(j, I × S, i)| is an estimate of
|EnumerateClose(j, I× Intervals(wj , ε(i+ 3)), i)|, and the bad events can only occur if this estimate
is sufficiently inaccurate. For suitably large c0, a simple Chernoff-Hoeffding bound shows that for
each (I, i) the probability of a bad event is at most n−10, and summing over the at most O(n) such
pairs, the probability of a bad event is at most n−9. We say ProcessDense has successful sampling
if no such bad event occurs.

Successful randomization. An execution of FAST-GED has successful randomization if all
calls to SLOW-GED are correct, all calls to SparseSample are successful, and ProcessDense has
successful sampling. We denote the event of successful randomization by SR. By the above,
Pr[SR] ≥ 1− 1/n7.

4.6 The properties enforced by FAST-GED.

In this section we state and prove a theorem that states the main properties enforced by FAST-GED.
By hypothesis, SLOW-GED is a gap algorithm for edit distance satisfying gap-condition(T ′, ζ ′, Q′).
We want to show thatFAST-GED satisfies gap-condition(T, ζ,Q) with T = T ′ + 1/6 and suitably
chosen ζ > 0 and Q ≥ 1 (depending only on T ′,ζ ′ and Q′). As in the discussion in Section 4.2,
we say that the level j candidate 〈i; I × J〉 is classified as close if EnumerateClose(j, I × {J}, i)
returns {J} and is classified as far if EnumerateClose(j, I × {J}, i) returns ∅.

Theorem 4.5. Assume that SLOW-GED is a gap algorithm for edit distance satisfying gap-condition(T ′, ζ ′, Q′).
Consider a run of FAST-GED on input (n, θ, 1/2;x, y) where n−ζ′ ≤ θ ≤ 1 and |x| = |y| = n, that
meets the conditions for successful randomization.

For all j ∈ {1, . . . , k}, i ∈ {0, . . . , log(1/θ)}, I ∈ Intervals(wj), J ∈ Intervals(wj , ε(i+ 3)),
J ⊆ Intervals(wj , ε(i+ 3)):

Soundness of Bbelow. If J ∈ Bbelow(j, I, i) then ncost(I × J) ≤ ε(i− qj−1 − 6).

Completeness of Bbelow. If ncost(I × J) ≤ ε(i) then (i) J ∈ Bbelow(j, I, i) or (ii) there exists an
i′ ≤ i such that |M(j, I × J, i, i′)| > 1

3 |Intervals(wj−1; I) ∩ Sparse(j − 1, i′)|.

Consistency of EnumerateClose. J ∈ EnumerateClose(j, I×J , i) if and only if J ∈ EnumerateClose(j, I×
{J}, i). If J ∈ EnumerateClose(j, I × {J}, i) then 〈i; I × J〉 is classified as close.

Soundness of EnumerateClose. If 〈i; I×J〉 is classified as close then ncost(I×J) ≤ ε(i− qj−1 − 6).

Completeness of EnumerateClose. If ncost(I×J) ≤ ε(i) then 〈i; I×J〉 is classified as close.

Validity of Sparse. I ∈ Sparse(j, i) implies that EnumerateClose(j, I×Intervals(wj , ε(i+ 3))) has
size at most 2dj.

Soundness of Bdense. If J ∈ Bdense(j, I, i) then ncost(I × J) ≤ ε(i− qj).

Completeness of Bdense. If I 6∈ Sparse(j, i) and ncost(I × J) ≤ ε(i) then J ∈ Bdense(j, I, i).
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Soundness of R(j). Every box in R(j) is correctly certified, i.e., (I×J, κ) ∈ R(j) implies ncost(I×
J) ≤ κ.

Completeness of Q(j). If I 6∈ Sparse(j, i) and ncost(I×J) ≤ ε(i) then (I×J,min(1, ε(i− qj))) ∈
Q(j)

The proof of this theorem is by induction on j. For fixed j when we prove a property we assume
the properties listed above it hold. With the exception of the Completeness of Bbelow, which we
defer to the next subsection, the proofs are straightforward.

Proof of Soundness of Bbelow. For j = 1, the requirement is vacuously satisfied. Suppose
j > 1. By Soundness of R(j − 1), every box in R(j − 1, I) is certified. If J ∈ Bbelow(j, I, i), then
the pseudocode implies that J ∈ APM(j, I × Intervals(wj , ε(i+ 3), ε(i− qj−1 − 5),R(j − 1, I)). By
definition of the soundness of APM, J is included in the output to the call of APM implies that
cost(I × J) ≤ 2ε(i− qj−1 − 5) = ε(i− qj−1 − 6).

Proof of Completeness of Bbelow. See subsection 4.7

Proof of Consistency of EnumerateClose. Wemust show that whether J ∈ EnumerateClose(j, I×
J , i) does not depend on J \ {J}. In the case j = 1, J ∈ EnumerateClose(i, I × J , i) if and
only SLOW-GED(I × J) ≤ ε(i) returns accept which does not depend on J \ {J}. Assume
j > 1. From the pseudocode of EnumerateClose, J ∈ EnumerateClose(j, I × J , i) if and only if (i)
J ∈ Bbelow(j, I, i) or (ii) J ∈ K and SLOW-GED(zI , zJ , ε(i)) returns accept. Neither condition (i)
nor SLOW-GED(zI , zJ , ε(i)) depend on J \{J}. It remains to show that whether J ∈ K is also inde-
pendent of J \ {J}. Now J ∈ K if and only if there exists i′ ∈ {0, . . . , i}, I ′ ∈ SparseSample(j, I, i)
and J ′ ∈ ZoomIn(j, I × J, i, I ′, i′) such that J ′ ∈ S ′. The set ZoomIn(j, I × J, i, I ′, i′) obviously
doesn’t depend on J \ {J}. For J ′ ∈ ZoomIn(j, I × J, i, I ′, i′) we must have J ′ ∈ J ′, and therefore
by the consistency of EnumerateClose at level j − 1, J ′ ∈ EnumerateClose(j − 1, I ′ × J ′, i′) if and
only if J ′ ∈ EnumerateClose(j − 1, I ′ × {J ′}, i′).

Proof of Soundness of EnumerateClose. 〈i; I × J〉 is classified as close means that
J ∈ EnumerateClose(j, I × {J}, i). Now for this to happen either (i) SLOW-GED(zI , zJ , ε(i))
returns accept, or (ii) J ∈ Bbelow(j, I, i). If (i) holds then the guarantee on SLOW-GED implies
ncost(I × J) ≤ Q′ε(i) ≤ ε(i− qj−1 − 6), since log(Q′) = q0 ≤ qj−1 for all j ≥ 1. If (ii) holds then
the result follows from the Soundness of Bbelow.

Proof of Completeness of EnumerateClose. Suppose ncost(I × J) ≤ ε(i). By the Com-
pleteness of Bbelow, we have (i) J ∈ Bbelow(j, I, i) or (ii) Sparse(j − 1, i) ∩ Intervals(wj−1; I) 6= ∅
and there exists an i∗ ≤ i so that |M(j, I × J, i, i∗)| ≥ 1

3 |Intervals(wj−1; I)∩ Sparse(j− 1, i∗)|. If (i)
holds, then the definition of EnumerateClose immediately gives J ∈ EnumerateClose(j, I × {J}, i).
If (ii) holds, then the success condition for SparseSample(j, I, i) (from Section 4.5) implies that
there is an I∗ ∈ SparseSample(j, I, i∗) such that (I∗, i∗) is a marker for 〈i; I × J〉. During the
execution of EnumerateClose(j, I × J, i), when i∗ is selected in line (11) and I∗ in line (12), by the
definition of marker, J is added to K in line (17). The correctness of SLOW-GED implies that
SLOW-GED(I × J, ε(i)) will accept in line (23) and so J will be added to S.

Proof of Validity of Sparse. This follows immediately from the assumption that ProcessDense
has successful sampling.

Proof of Soundness of Bdense. For i ≤ qj the claim is trivial so we assume i − qj > 0.
Suppose J ∈ Bdense(j, I, i). Bdense(j, I, i) was defined during iteration i of the main loop (1-34) of
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ProcessDense(j), during one of the iterations of the while loop (8-23). Let I∗ be the pivot during
that iteration. Then I ∈ EnumerateClose(j, I∗×Intervals(wj), h1) and J ′ ∈ EnumerateClose(j, I∗×
Intervals(wj , ε(h2 + 3)), h2), for J ′ = Round(J, ε(h2 + 3)). By the Soundness of EnumerateClose,
ncost(I∗ × I) ≤ ε(h1 − qj−1 − 6) and ncost(I∗ × J ′) ≤ ε(h2 − qj−1 − 6). By the triangle inequality
and Propositon 2.2, we have ncost(I × J) ≤ ε(h1 − qj−1 − 6) + ε(h2 − qj−1 − 6) + ε(h2 + 3) ≤
2ε(h2 − qj−1 − 6) = ε(h2 − qj−1 − 7) = ε(i− 3qj−1 − 21) = ε(i− qj).

Proof of Completeness of Bdense. Suppose I 6∈ Sparse(j, i) and ncost(I × J) ≤ ε(i). Since
I 6∈ Sparse(j, i) during iteration i of the main loop (1), there is an iteration of the while loop
(8-22) of ProcessDense(j) where I was removed from T . Let I∗ be the pivot for that itera-
tion. Since I was removed from T , I ∈ X during this iteration, so I ∈ EnumerateClose(j, I∗ ×
Intervals(wj), h1) and by the Soundness of EnumerateClose ncost(I∗ × I) ≤ ε(h1 − qj−1 − 6). Let
J ′ = Round(J, ε(h2 + 3)). It suffices to show that J ∈ Y for this same iteration, which would
follow from J ′ ∈ EnumerateClose(j, I∗ × Intervals(wj , ε(h2 + 3)), h2). By the Completeness of
EnumerateClose it suffices to show that ncost(I∗ × J ′) ≤ ε(h2). By the triangle inequality and
Propositon 2.2, ncost(I∗ × J ′) ≤ ncost(I∗ × I) + ncost(I × J ′) ≤ ncost(I∗ × I) + ncost(I × J) +
ε(h2 + 3) ≤ ε(h1 − qj−1 − 6) + ε(i) + ε(h2 + 3) ≤ ε(h2)/2 + ε(h2)/4 + ε(h2)/8 ≤ ε(h2) as required.

Proof of Soundness of R(j). By Proposition 4.3, it suffices that every box in Q(j) is correctly
certified. In line (26) of ProcessDense(j), (I × J, ε(i− qj)) ∈ Q(j) only if J ∈ Bdense(j, I, i) which
is correctly certified by the Soundness of Bdense.

Proof of Completeness of Q(j). Suppose I 6∈ Sparse(j, i) and ncost(I × J) ≤ ε(i). By
the Completeness of Bdense, J ∈ Bdense(j, I, i) and so the definition of Q(j) implies that (I ×
J, ε(i− qj)) ∈ Q(j).

4.7 Proof of Completeness of Bbelow

Here we finish the proof of Theorem 4.5, by establishing the final property, whose proof is signifi-
cantly more involved than that of the others. The proof is based on ideas from [16].

Consider a candidate 〈i; I×J〉 with ncost(I×J) ≤ ε(i). We assume condition (ii) fails and deduce
costR(j−1,I)(I × J) ≤ ε(i− qj−1 − 5)wj . By the definition of Preprocess and the Completeness of
APM, this immediately implies condition J ∈ Bbelow(j, I, i), which is condition (i).

Fix a minimum cost traversal τ of I × J . The proof proceeds via the following steps.

Step 1. For each I ′ ∈ Intervals(wj−1; I) we specify a candidate 〈t(I ′); I ′× Ĵ(I ′)〉, which is approved
in the sense defined in the description of ProcessDense in Section 4.4. (The collection of boxes
{I ′ × Ĵ(I ′) : I ′ ∈ Intervals(wj−1; I)} should be thought of as approximatly covering τ .)

Step 2. We upper bound costR(j−1,I)(I × J) as a constant times
∑

I′ ε(t(I
′))wj−1 plus 8ε(i)wj .

Step 3. We show that if (ii) fails, then
∑

I′ ε(t(I
′))wj−1 can be upper bounded by a constant

multiple of ε(i)wj

Step 4. This gives that costcR(j−1)(I × J) is at most a constant multiple of ε(i)wj .

Step 1. Specifying 〈t(I ′); I × Ĵ(I ′)〉 for each I ′. Consider a pair (I ′, i′) where i′ ∈ {0, . . . , i}
and I ′ ∈ Intervals(wj−1; I). Proposition 2.4 implies there is a level j − 1 candidate 〈i′; I ′ × J ′〉 such
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that ncost(I ′× J ′) ≤ 2ncost(τI′) + ε(i′ + 3) and disp(I ′× J ′, τI′) ≤ cost(τI′) + ε(i′ + 3)wj−1. Select
such an interval J ′ and denote it by Ji′(I ′) (keeping the dependence on τ implicit.)

For each I ′ let us define t(I ′) to be the largest index h ≤ i for which the candidate 〈h; I ′×Ji(I ′)〉
is approved that is I ′ 6∈ Sparse(j − 1, h) and Ji′(I ′) ∈ Bdense(j − 1, I ′, h). Let Ĵ(I ′) = Jt(I′)(I

′). We
record the important properties:

Proposition 4.6. For each I ′ ∈ Intervals(wj−1; I):

1. The box I ′×Ĵ(I ′) satisfies ncost(I ′×Ĵ(I ′)) ≤ 2ncost(τI′)+ε(t(I ′) + 3) and disp(I ′×Ĵ(I ′), τI′) ≤
cost(τI′) + ε(i′ + 3)wj−1.

2. The candidate 〈t(I ′); I ′× Ĵ(I ′)〉 is approved, and hence (I ′× Ĵ(I ′), ε(t(I ′)− qj−1)) ∈ Q(j−1).

3. For any i′ ∈ {t(I ′) + 1, . . . , i} either I ′ ∈ Sparse(j − 1, i′) or I ′ 6∈ Sparse(j − 1, i′) and
Ji′(I

′) 6∈ Bdense(j − 1, I ′, i′).

Proof. The first two properties follow immediately from the definitions of t(I ′) and Ĵ(I ′). For the
third property, the maximality of t(I ′) implies that for i′ ∈ {t(I ′) + 1, . . . , i}, 〈i′; I ′ × Ji(I ′)〉 is not
approved, and the result follows from the definition of approved.

Step 2. Upper bound on costR(j)(I × J).

Proposition 4.7.

costR(j−1,I)(I × J) ≤ 8ε(i)wj +
∑

I′∈Intervals(wj−1;I)

ε(t(I ′)− qj−1 − 1)wj−1.

(This is closely related to Lemma 4.1 of [16] and the proof is similar.)

Proof. We transform the path τ in Gz to a path τ ′ in the shortcut graph G̃(R(j − 1, I)) (see
Section 2) and control the increase in cost. Let I1, . . . , Im be the intervals of Intervals(wj−1; I)

in order, and for h ∈ [m], let ih = t(Ih) and Jh = Ĵ(Ih). Let δh be the smallest power of 2
such that δhwj−1 ≥ disp(Ih × Jh, τIh). By Proposition 4.6, δh ≤ 2ncost(τIh) + 2ε(ih + 3), and
(Ih × Jh, ε(ih − qj−1)) ∈ Q(j − 1). Let L = {h ∈ [m] : δh < 1/2}. For h ∈ L, let J ′h = Jh/[δhwj−1]
(the interval obtained by removing the first and last δhwj−1 indices from Jh). The certified box
(Ih × J ′h, ε(ih − qj−1) + 2δh) belongs to R(j − 1), and since Ih ⊆ I, it also belongs to R(j − 1, I).
Let eh = eIh,J ′h be the shortcut edge with cost (ε(ih − qj−1) + 2δh)wj−1. We claim (1) there is a
source-sink path τ ′ in G̃(R(j−1, I)) that consists of {ei : i ∈ L}, plus a collection {Hi : i ∈ [m]\L}
where Hi is a horizontal path whose projection to the x-axis is Ii, plus a collection of (possibly
empty) vertical paths V0, V1, . . . , Vm where the x-coordinate of Vi for i > 0 is max(Ii) and 0 for V0,
and (2) cost(τ ′) satisfies the bound of the lemma.

For the first claim, for h ∈ [m], let ph = (ih, jh) be the first point in τIh and define pm+1 to be
the final point of τ . We will define τ ′ to pass through all of the ph. Let J∗h be the vertical projection
of τIh so that τIh traverses Ih × J∗h. The choice of δh implies that for h ∈ L, J ′h ⊆ J∗h. Define the
portion τ ′h between ph and ph+1 as follows: if h ∈ L, climb vertically from ph to (ih,min(J ′h)) and
traverse eIh,J ′h and climb vertically to ph+1 and if h 6∈ L then move horizontally from ph to (ih+1, jh)
and then climb vertically to ph+1.
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For the second claim, we upper bound cost(τ ′). For h ∈ L, eIh,Jh has cost at most (ε(ih − qj−1)+
2δh)wj−1, and for h 6∈ L, the horizontal path that projects to Ih costs wj−1 ≤ 2δhwj−1; the total
cost of shortcut and horizontal edges is at most

∑
h(ε(ih − qj−1) + 2δh)wj−1. The cost of vertical

edges is
∑

h∈L(wj−1 − µ(J ′h)) +
∑

h6∈Lwj−1 =
∑

h∈L 2δhwj−1 +
∑

h6∈Lwj−1 ≤
∑

h 2δhwj−1.
The combined cost of all edges is at most∑

h

(ε(ih − qj−1) + 4δh)wj−1 ≤
∑
h

(ε(ih − qj−1) + 8cost(τIh) + 8ε(ih + 3))wj−1

≤ 8cost(τ) +
∑
h

(ε(ih − qj−1) + ε(ih))wj−1

≤ 8cost(τ) +
∑
h

ε(ih − qj−1 − 1)wj−1,

which implies the desired bound.

Step 3. Implication of failure of condition (ii). We now use the failure of (ii) to obtain an upper
bound on the righthand side of Proposition 4.7.

For i′ ≤ i, letMi′ =M(j, I×J, i, i′) and Si′ represent the set Sparse(j−1, i′)∩Intervals(wj−1; I).
Let I ′ = Intervals(wj−1; I).

The failure of condition (ii) implies:

|Mi′ | ≤
1

2
|Si′ \Mi′ | (3)

.
Multiplying (3) by ε(i′) and summing on i′ yields:∑

i′≤i

∑
I′∈Mi′

ε(i′) ≤ 1

2

∑
i′≤i

∑
I′∈Si′\Mi′

ε(i′).

Switching the sums: ∑
I′∈I′

∑
i′:I′∈Mi′

ε(i′) ≤ 1

2

∑
I′∈I′

∑
i′:I′∈Si′\Mi′

ε(i′). (4)

To reduce this further, we need the following sufficient condition for I ′ ∈Mi′ .

Proposition 4.8. Suppose the candidate 〈i; I × J〉 satisfies ncost(I × J) ≤ ε(i) and τ is a min-cost
traversal of I × J . Let (I ′, i′) be a pair such that I ′ ∈ Intervals(wj−1; I) and i′ ∈ {0, . . . , i}.

1. If ε(i′) ≥ 2ncost(τI′) + ε(i+ 3) then ncost(I ′ × Ji′(I ′)) ≤ ε(i′).

2. If ε(i′) ≥ 2ncost(τI′) + ε(i+ 3) and I ′ ∈ Sparse(j−1, i′) then (I ′, i′) is a marker for 〈i; I×J〉.

Proof. For the first part, by the choice of Ji′(I ′), we have ncost(I ′×Ji′(I ′)) ≤ 2ncost(τI′) + ε(i+ 3)
and by the hypothesis of the Proposition, this is at most ε(i′).

For the second part. By Completeness of EnumerateClose(j − 1, ·) and the first part, 〈i′; I ′ ×
Ji′(I

′)〉 is classified as close. So we just have to show that Ji′(I) ∈ ZoomIn(j, I × {J}, i, I ′, i′). It
suffices that disp(I ′×Ji′(I ′), I×J) ≤ 2ε(i)wj . To bound disp(I ′×Ji′(I ′), I×J) it suffices to bound
the vertical distance from the point (min(I ′),min(Ji′(I

′))) to the diagonal of I×J . Let (p, q) be the
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initial point of τI′ . By the definition of Ji′(I ′)), the vertical distance from (min(I ′),min(Ji′(I
′))) to

(p, q) is at most cost(τI′) + ε(i′ + 3)wj−1 ≤ cost(τ) +wj−1. By Proposition 2.5 the vertical distance
from (p, q) to the diagonal of I×J is at most cost(τ)/2. So disp(I ′×Ji′(I ′), I×J) ≤ 3

2cost(τ)+wj−1.
By hypothesis, cost(τ) ≤ ε(i)wj , and by assumption (2) in Section 4.1, wj−1 ≤ θ

2wj , and so
disp(I ′ × Ji′(I ′)), I × J) ≤ (3

2ε(i) + 1
2θ)wj ≤ 2ε(i)wj , as required.

Let G(I) = {I ′ ∈ Intervals(wj−1; I) : t(I ′) < i & ε(t(I ′) + 1) ≥ 2ncost(τI′) + ε(i+ 3)}. We
claim that for each I ′ ∈ G(I), I ′ ∈ Sparse(j − 1, t(I ′) + 1). If it were not then by Part 3 of
Proposition 4.6, Ji′(I ′) 6∈ Bdense(j − 1, I ′, t(I ′) + 1). But by Part 1 of Proposition 4.8 this would
contradict completeness of Bdense(j − 1, I ′, t(I ′) + 1). Hence, for each I ′ ∈ G(I), (I ′, t(I ′) + 1) is a
marker.

We will combine Proposition 4.8 with inequality (4). The sum on the lefthand side of (4)
includes all pairs (I ′, t(I ′) + 1) where I ′ ∈ G(I) and so is bounded below by

∑
I′∈G(I) ε(t(I

′) + 1).
To upper bound the righthand sum of (4), we look at the inner sum corresponding to a given
I ′ ∈ Intervals(wj−1; I). This is a sum of ε(i′) over those i′ such that I ′ in Sparse(j − 1, i′) and I ′

not inMi′ .
We claim that if i′ contributes to this sum then

ε(i′) < 2ncost(τI′) + ε(i+ 3). (5)

To see this note that if ε(i′) ≥ 2ncost(τI′) + ε(i+ 3) then Part 2 of Proposition 4.8 implies that
I ′ 6∈ Si′ \Mi′ , so i′ is not included in the sum.

Now in the case that I ′ ∈ G(I) then (5) implies that ε(i′) < ε(t(I ′) + 1) and so ε(i′) ≤
ε(t(I ′) + 2). Summing over all such i′, the geometric series is at most ε(t(I ′) + 1).

For I ′ 6∈ G(I), let v(I ′) be the least i′ that contributes to the sum. So the sum is at most
2ε(v(I ′)), and by (5) this is at most 4ncost(τI′) + ε(i+ 2).

Thus (4) implies:

∑
I′∈G(I)

ε(t(I ′) + 1) ≤ 1

2
·

 ∑
I′∈G(I)

ε(t(I ′) + 1) +
∑

I′ 6∈G(I)

4ncost(τI′) + ε(i+ 2)

 . (6)

Multiplying the inequality by 2 and subtracting
∑

I′∈G(I) ε(t(I
′) + 1) from both sides gives:∑

I′∈G(I)

ε(t(I ′) + 1) ≤
∑

I′ 6∈G(I)

4ncost(τI′) + ε(i+ 2) (7)

Now add
∑

I′ 6∈G(I) ε(t(I
′) + 1) to both sides:∑

I′∈Intervals(wj−1;I)

ε(t(I ′) + 1) ≤
∑

I′ 6∈G(I)

ε(t(I ′) + 1) +
∑

I′ 6∈G(I)

4ncost(τI′) + ε(i+ 2) (8)

For the first sum on the right, I ′ 6∈ G(I) implies either ε(t(I ′) + 1) = ε(i+ 1) or ε(t(I ′) + 1) <
2ncost(τI′) + ε(i+ 3), so you can bound this in both cases by 2ncost(τI′) + ε(i+ 1). Thus we get:

∑
I′∈Intervals(wj−1;I)

ε(t(I ′))wj−1 ≤ 2 ·
∑

I′∈Intervals(wj−1;I)

(6ncost(τI′) + 3ε(i+ 2))wj−1

≤ 12cost(τ) + 2ε(i)wj

≤ 14ε(i)wj .
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Step 4. Combining the bounds. Combining the previous bound with the bound of Proposi-
tion 4.7 gives:

costR(j−1,I)(I × J) ≤ 14ε(i− qj−1 − 1)wj + ε(i− 3)wj

≤ ε(i− qj−1 − 5)wj .

as required to establish the Completeness of Bbelow.

4.8 Correctness of FAST-GED

We now complete the proof that the output of FAST-GED gives a constant factor approximation
to edit distance with high probability. As in Theorem 4.5 we assume that SLOW-GED is a gap
algorithm for edit distance satisfying gap-condition(T ′, ζ ′, Q′). Consider a run of FAST-GED on
input (n, θ, 1/2;x, y) where n−ζ′ ≤ θ ≤ 1 and |x| = |y| = n. The conclusion of the theorem has
a quality parameter Q which we set to 2qk+6. We must prove that the FAST-GED satisfies the
Soundness and Completeness properties for gap algorithms from Section 1.

The final post-processing step is a call to APM({0, . . . , n} × {{n, . . . , 2n}}, θ2qk+5,Rk), and
the algorithm returns accept or reject according to the output of this call. We will apply
the Soundness and Completeness of Bbelow (with j = k + 1) by reinterpreting this final step as
asking whether {n, . . . , 2n} ∈ Bbelow(k + 1, {0, . . . , n}, log(1/θ) − qk − 6) (where wk+1 = n). The
Soundness and Completeness of Bbelow extends (with no change) to this case. Thus if the algorithm
returns accept, then ncost({0, . . . , n}, {n, . . . , 2n}) ≤ θ2qk+6 = θQ, and the gap-algorithm satisfies
Soundness. For Completeness, assume ∆edit(x, y) ≤ θ. The Completeness of Bbelow extends (with
no change) to this case. We conclude that (i) J ∈ Bbelow(k + 1, {0, . . . , n}, log(1/θ) − qk − 5) or
(ii) there exists an i′ ≤ i such that |M(k + 1, I × J, i, i′)| > 1

3 |Intervals(wk; I) ∩ Sparse(k, i)|. Since
dk = 1, Proposition 4.4 implies all sets Sparse(k, i) are empty, soM(k+1, I×J, i, i′) are also empty
but (ii) requires them to be non-empty. Hence, (ii) can not hold, and so (i) holds, which implies
FAST-GED must accept, and so Completeness holds.

4.9 Time analysis

In this subsection, we upper bound the expected running time of FAST-GED conditioned on
the event SR of successful randomization, in terms of the algorithm parameters w1, . . . , wk, and
d0, . . . , dk. These parameters will be optimized in the next subsection.

Theorem 4.9. Suppose that SLOW-GED is a gap algorithm for edit distance satisfying gap-condition(T ′, ζ ′, Q′).
For θ ≥ n−ζ

′ the expected running time of FAST-GED(n, θ, 1/2;x, y) conditioned on SR is upper-
bounded by:

Õ

 k∑
j=1

n

θ2wjdj
(

j∑
h=1

dh−1w
1+1/T ′

h )

 . (9)

The above theorem is not quite sufficient for our purposes since it gives only an expected upper
bound on the running time of the algorithm, while we want an absolute upper bound. We can
replace the expected upper bound by an absolute upper bound by the following routine modification
of FAST-GED. On a given input, use the above theorem to determine a number τ∗ which is at
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least six times the expected upper bound on running time given by the above theorem. Then
the probability that FAST-GED takes more than τ∗ steps is at most 1/6. So we run FAST-GED
but terminate with reject if it reaches τ∗ steps. This converts the expected running time to an
absolute bound on running time, but now the completeness error (the probability of false rejection)
is increased from 1/2 to 2/3. But by running this algorithm twice and accepting if either run accepts
we restore the completeness error to below 1/2.

Combining the above theorem with this modification gives an algorithm satisfying the correctness
properties proved for FAST-GED and having an absolute upper bound on time given as in the above
theorem.

We now proceed to the proof of Theorem 4.9.

Proof. Recall from Section 4.5 that successful randomization means: (1) All calls to SLOW-GED
return correct answers, (2) All calls to SparseSample are successful and (3) ProcessDense has suc-
cessful sampling.

Recall that BSG is the sequence of random bits pregenerated for the calls to SLOW-GED (as
described in Section 4.5). For j ∈ [k], Bj

SS are the random bits generated to select SparseSample’s in
Preprocess(j) at iteration j of the algorithm, and Bj

PD are the random bits generated to select sets
S in ProcessDense(j) at iteration j (also as described in Section 4.5). Let B≤j denote the random
bits BSG, B

1
SS, B

1
PD, . . . , B

j
SS, B

j
PD. We introduce the following events:

SG All calls to SLOW-GED return correct answers.

SS(j) All calls to SparseSample during iteration j are successful.

SS(≤ j) All calls to SparseSample through the end of iteration j are successful.

PD(j) ProcessDense has successful sampling during iteration j.

PD(≤ j) ProcessDense has successful sample through the end of iteration j.

SR Successful randomization, i.e. SG ∧ SS(≤ k) ∧PD(≤ k).

We will argue that the expected running time of FAST-GED conditioned on SR is bounded
by (9). In the bound, the outer sum on j corresponds to iterations of FAST-GED. We will show
that the cost of iteration j is bounded by the inner sum. When we analyze iteration j we fix the
randomness B≤j in such a way that SG ∧ SS(≤ j − 1) ∧PD(≤ j − 1) holds. The cost of iteration
j is bounded conditioned on these fixed random bits and subject to requirement SS(j) ∧PD(j).

As a first step, we need a bound on the running time for EnumerateClose. Recall that fixing the
random bits B≤j−1 and Bj

SS makes EnumerateClose(j, ·) run deterministically. In the lemma below,
we condition on (B≤j−1, Bj

SS) = β∗j and consider the expected time of EnumerateClose(j, I ×J , i)
where J is a set of intervals chosen according to any distribution (possibly depending on β∗j) in
which no set appears in J with probability more than some fixed bound p.

Lemma 4.10. Let p ∈ [0, 1], j ∈ [k], I ∈ Intervals(wj), and i ∈ {0, . . . , log(1/θ)}. Let β∗j be an
assignment of the random bits B≤j−1 and Bj

SS that satisfies the success conditions SS(≤ j) and
PD(≤ j− 1). Let J be a random variable whose value is a subset of Intervals(wj , ε(i+ 3)) with the
property that given the fixed randomness B≤j−1 and Bj

SS, each J ∈ Intervals(wj , ε(i+ 3)) belongs to
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J with probability at most p. Then the expected running time of EnumerateClose(j, I × J , i) over
the choice of J is at most:

Õ(
p

θ

j∑
h=1

dh−1w
1+1/T ′

h ). (10)

Proof. The proof is by induction on j. Suppose j = 1. We run SLOW-GED(zI , zJ , κ) for each
J ∈ J . The expected time is Õ(1

θpd0w
1+1/T ′

1 ) since the expected size of J is at most 8p n
θw1
≤

16p
θ

√
n ≤ 32p

θ d0 and each call of SLOW-GED costs w1+1/T ′

1 .
Now suppose j > 1. The loops on i′ and I ′ starting in lines (11-12) are executed Õ(1) times.

The construction of J ′ in line (13) using ZoomIn takes Õ(|J ′|) time (sort J in the natural order
and build J ′ "from left to right"). By Proposition 4.2, for each J ′ ∈ Intervals(wj−1, ε(i

′ + 3)),
the number of ε(i+ 3)-aligned wj-intervals J such that J ′ ∈ ZoomIn(j, I × J, i, I ′, i′) is at most
33. Since J is selected according to a probability distribution so that no set J belongs to J
with probability more than p, J ′ is sampled according to some distribution where for each J ′ ∈
Intervals(wj−1, ε(i

′ + 3)) the probability of J ′ ∈ J ′ is at most 33p. Hence, the expected size of J ′ is
at most 33p n

wj−1ε(i′+3) ≤ O(p
wj
θ ), since wj ≥ wj−1 ≥ b

√
nc2 and ε(i′ + 3) ≥ θ/8. This is dominated

by the summand for h = j in (10), which is at least p
θdj−1w

1+1/T ′

j .
By induction hypothesis, the recursive call to EnumerateClose in line (14) takes expected time

Õ(33p
θ

∑
1≤h≤j−1 dh−1w

1+1/T ′

h ) which is Õ(pθ
∑

1≤h≤j−1 dh−1w
1+1/T ′

h ).

The final loop (22-26) on J ∈ K requires O(|K|w1+1/T ′

j ) time. So we need to bound the size of
K. K is created in the loop on i′, I ′. As noted there are Õ(1) iterations of these loops, so it suffices
to bound the number of elements added to K for a single choice of I ′, i′. During lines (15-17), for
each J ∈ J , J is added to K if there is a J ′ ∈ S that is in ZoomIn(i, I×J, I ′, i′). By Proposition 4.2,
each J ′ ∈ S ′ is responsible for the addition of at most 33 intervals to K, so |K| ≤ 33|S ′|. Now, S ′ is
the output of a call to EnumerateClose(j − 1, I ′ × J ′, i′) where I ′ ∈ SparseSample(j, I, i′). By the
success condition for iteration j − 1 of ProcessDense (Section 4.5) there are at most 2dj−1 intervals
J ′ ∈ Intervals(wj−1, ε(i

′ + 3)) classified as close for i′. As observed in the previous paragraph,
each of these at most 2dj−1 intervals belongs to J ′ with probability at most 33p. So the expected
size of |S ′| ≤ 66pdj−1. Thus the expected cost of the loop (22-26) is Õ(pdj−1w

1+1/T ′

j ). Combining
with the other loop gives the claimed time bound for EnumerateClose.

Now we analyze the running time of Preprocess(j). There are Õ(n/wj) pairs (I, i) that are
enumerated in the two outer loops. For each such pair, we construct Sparse(j, I, i) (which takes
Õ(1) time), and Bbelow(j, I, i) whose running time is Õ(1) if j = 1 and is Õ(wj + |R(j − 1, I)| +
|Intervals(wj , ε(i+ 3))|) for j > 1, which is the time to run APM. Summing over O(log(n)) values
of i and noting that ε(i) ≥ θ, we obtain the upper bound Õ(wj + |R(j − 1, I)|+ n

θwj−1
). Summing

over I gives Õ(n+ |R(j − 1)|+ n2

θwj−1wj
). |R(j − 1)| is at most the number of level j − 1 candidates

〈i; I ′ × J ′〉 which is at most Õ( n2

θw2
j−1

). Since wh ≥ b
√
nc2 for all h by assumption, the overall time

for Preprocess(j) is Õ(n/θ). We observe that this term is dominated by the h = j term in the inner
sum of (9) which is n

θ2
w

1/T ′

j
dj−1

dj
≥ n

θ . The asymptotics of the running time does not depend on the

choice of random bits Bj
SS.
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We now analyze the time of ProcessDense(j). We will condition the analysis on fixing the
random bits (B≤j−1, Bj

SS) = β∗j so that SG ∧ SS(≤ j) ∧ PD(≤ j − 1) holds. The multiplicative
cost of the outer iteration on i is absorbed in the Õ term. The main part is the while loop (lines
8-22) on I ∈ T . This cost is divided into two parts, the call to EnumerateClose within line (11),
and the cost of (lines 14-20) which is only executed within the "else".

To bound the cost of the call to EnumerateClose in line (11), we want to apply Lemma 4.10.
For the hypothesis of this lemma we need an upper bound p′ on the probability of any particular wj
interval being selected for S. According to the code of EnumerateClose, every interval is placed in S
with probability at most p = min(1, c0 log n/dj). However we need to consider the probability of a
given interval being placed in S conditioned on the event PD(j), and this can be bounded above by
p/Pr[PD(j)]. As noted in Section 4.5, PD(j) occurs with probability at least 1−n−9 ≥ 1/2 so we
can bound the conditional probability of any interval being placed in S by 2p. Applying Lemma 4.10,
the expected time for the call to EnumerateClose in line (11) is Õ(2p

θ

∑
1≤h≤j dh−1w

1+1/T ′

h ) which

is Õ( 1
θdj

∑
1≤h≤j dh−1w

1+1/T ′

h ). The number of times this is executed is the number of possible I,
which is at most |Intervals(wj)| = n/wj , so the overall expected cost of calls to EnumerateClose in
line (11) is Õ( n

θwjdj

∑j
h=1 dh−1w

1+1/T ′

h ), as claimed in the theorem.
The time for executing (14-20) is dominated by the time of the two calls to EnumerateClose,

which are bounded to be at most Õ(1
θ (
∑j

h=1 dh−1w
1+1/T ′

h ) using Lemma 4.10 with the trivial setting
p = 1. The number of times this is executed is bounded by the number of times in the loop on I that
I is declared dense and used as a pivot. We claim that if PD(j) holds then the number of pivots is
upper bounded by O( n

θwjdj
). To see this, first note that if I is chosen as a pivot then by Section 4.5,

conditioning on PD(j) implies |EnumerateClose(j, I × Intervals(wj , ε(i+ 3)), i)| ≥ dj/2. Further-
more, we claim that if I and I ′ are both pivots then EnumerateClose(j, I× Intervals(wj , ε(i+ 3)), i)
is disjoint from EnumerateClose(j, I ′ × Intervals(wj , ε(i+ 3)), i). Suppose for contradiction that
both are pivots and there is a J in both sets, and that I is selected first as a pivot. Then by the
Soundness of EnumerateClose, ncost(I × J) ≤ ε(i− qj−1 − 6) and ncost(I ′ × J) ≤ ε(i− qj−1 − 6)
and so by the triangle inequality ncost(I × I ′) ≤ ε(i− qj−1 − 7) = ε(h1) (where h1 is defined in
the pseudocode of EnumerateClose.) But, in that case, the pseudocode of EnumerateClose ensures
that I ′ is placed in X in line (16) and therefore removed from T in line (20), making it impossible
for I ′ to be chosen as a pivot.

Since the sets EnumerateClose(j, I × Intervals(wj , ε(i+ 3)), i) corresponding to pivots are pair-
wise disjoint subsets of Intervals(wj , ε(i+ 3)) each have size at least dj/2, and |Intervals(wj , ε(i+ 3))| =
O( n

θwj
), the number of pivots is at O( n

θwjdj
). Multiplying this by the cost of a single loop as bounded

above, the result is bounded above as claimed in the theorem.

4.10 Choosing the parameters

The time analysis is expressed in terms of the parameters w1, . . . , wk and d0, . . . , dk. In this section
we determine values of the parameters that achieve the claimed time bound. It is convenient to
introduce parameters γ1, . . . , γk, δ0, . . . , δk and τ , with wi = bnγic2 and di = bnδic2 and θ = bn−τc2.

Recall that the parameters of gap-condition include ζ > 0 and we only need our gap algorithm
to work for τ ≤ ζ. In the theorem we are allowed to choose ζ to be any positive constant. In the
derivation below, we will see that we will need an upper bound on τ as a function of T ′ which will
be used to determine ζ in the final proof of Theorem 4.1 in the next section.
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We impose the following conditions.

• d0 = w1 = b
√
nc2, so δ0 = γ1 = 1/2

• dk = 1, so δk = 0.

The time for iteration j is:

χj = Õ

(
n

θ2wjdj
(

j∑
i=1

di−1w
T ′+1
T ′

i )

)
.

Define

• αj = (1− γj − δj + 2τ)

• νi = δi−1 + (T
′+1
T ′ )γi

Then the cost of processing level j can be rewritten as:

χj = Õ(

j∑
i=1

nαj+νi).

We now choose γi and δi subject to the following conditions:

• γ1 = δ0 = 1/2

• αj is the same for all j

• νi is the same for all i.

• δk = 0.

It is easy to check that for any B ≥ 0, the first three conditions are satisfied by:

γi = 1/2 +B
T ′

T ′ + 1
−B

(
T ′

T ′ + 1

)i
δi = 1/2−B +B

(
T ′

T ′ + 1

)i
The condition δk = 0 implies:

B = Bk(T
′) =

(T ′ + 1)k

2((T ′ + 1)k − T ′k)

Then αj = 1− γj − δj + 2τ = B
T ′+1 + 2τ and νi = 1 + 1

2T ′ . So the time for all iterations is:

k∑
j=1

χj = Õ

 k∑
j=1

jn
1+ 1

2T ′+
B

T ′+1
+2τ


=

k(k + 1)

2
Õ
(
n

1+ 1
2T ′+

B
T ′+1

+2τ
)
.
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As indicated earlier, we will impose the condition τ ≤ 3T ′−2
6(6(T ′)3+7(T ′)2+T ′)

For fixed T ′ ≥ 1, Bk(T ′) is a decreasing function of k whose limiting value is 1/2. So we choose
k = k(T ′) to be large enough so that B ≤ 3T ′+1

6T ′ . While the value k(T ′) is not important, it is
straightforward to verify that we can choose k(T ′) = d(T ′ + 1)(1 + ln(T ′ + 1))e.

Using the above choice for B, the exponent of n is at most 1 + 1
2T ′ + 3T ′+1

6T ′(T ′+1) + 2τ and a

computation shows that setting T = T ′ + 1/6 and imposing τ ≤ 3T ′−2
6(6(T ′)3+7(T ′)2+T ′) (which we can

do since T ′ ≥ 1) results in an upper bound on the exponent of 1 + 1/T as required.
Finally, we need to verify the assumptions (1) and (2) that n

wj
≥ dj and wj

wj+1
≤ θ/2. The former

is immediate as γj+δj ≤ 1. For the latter, lettingM ′ = − 1
log(n) log(maxj 2wj/wj+1), we require that

θ ≥ n−M ′ , which we can ensure for n large enough by choosing ζ < M , where M = minj γj+1 − γj .

4.11 Tying up the proof of Theorem 4.1

We have that SLOW-GED is a gap algorithm for edit distance satisfying gap-condition(T ′, ζ ′, Q′)
where T ′ ≥ 1, ζ ′ > 0 and Q′ ≥ 1. We have shown FAST-GED (using SLOW-GED as a subroutine)
that satisfies gap-condition(T, ζ,Q) with T = T ′ + 1/6 and ζ > 0 and Q ≥ 1 are suitably chosen
(depending only on T ′,ζ ′ and Q′. In Section 4.8 we proved that FAST-GED has quality Q = 2qk+6.
In section 4.10 we adjusted the parameters so that the running time computed in Section 4.9 is

Õ(n1+1/T ) provided that θ ≥ n
− 3T ′−2

6(6(T ′)3+7(T ′)2+T ′) , θ ≥ n−M/2 (where M is defined in Section 4.10)
and also θ ≥ ζ ′. So we set ζ = min(ζ ′,M/2, 3T ′−2

6(6(T ′)3+7(T ′)2+T ′)).

5 Proof of Theorem 1.1

Here we present the (routine) construction of the algorithm FAST-ED-UBT promised by Theo-
rem 1.1 Given T , let ζ(T ) and Q(T ) be given by Theorem 1.2.

On input x, y, FAST-ED-UBT defines imax = bζ log nc and for i from 1 to imax, runs FAST-GED
on input (x, y, θ = 2−i, δ = 1/ζn log(n)). Define i∗ = 0 if none of the runs accepts, and otherwise
define i∗ to be the largest index for which run i∗ accepts. FAST-ED-UBT outputs Q2−i

∗
n. This

is an upper bound on dedit(x, y) since if i∗ = 0 then the output is Qn ≥ n, and otherwise the first
requirement of gap-condition ensures that dedit(x, y) ≤ Q2−i

∗
n.

We claim that for R = 2Q, the probability that the output exceeds R(dedit(x, y) + n1−ζ) is at
most 1/n. If i∗ = imax then the output is 2Qn1−ζ ≤ R(dedit(x, y) + n1−ζ). So assume i∗ < imax.
Say that the ith run of FAST-ED-UBT fails if dedit(x, y) ≤ 2−in and the algorithm rejects.
The probability that some iteration fails is at most δζ log n ≤ 1/n so the probability that no
iteration fails is at least 1 − 1/n. If no iteration fails then in particular iteration i∗ + 1 does
not fail, and since it rejects (by the choice of i∗) we conclude that dedit(x, y) > 2−1−i∗n and so
Q2−i

∗
n ≤ Rdedit(x, y) ≤ R(dedit(x, y) + n1−ζ), and so FAST-ED-UBT has all of the required

properties.

6 Approximate Pattern Matching

In this section we describe the implementation of the function APM(I × J , ε,R) from Section 4.3.
This is a synthesis of algorithms from [16,17].

We assume that R contains certified boxes and all J ∈ J are of the same width µ(I).
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Let max(J ) = {max(J) : J ∈ J } and min(J ) = {min(J) : J ∈ J }. Let R+ be R augmented
by auxiliary shortcut edges of cost 0 from (min(I), 0) to (min(I),m) for all m ∈ min(J ). Also for
J ∈ J let J0 denote the interval {0, . . . ,max(J)}. The following was observed in [17]:

Proposition 6.1. For all J ∈ J , costR(I × J) satisfies costR+(I × J0) ≤ costR(I × J) and
cost(I × J) ≤ 2costR+(I × J0).

Proof. For the first inequality consider a min-cost traversal τ of I × J in the shortcut graph G̃(R).
We construct a traversal τ ′ of I × J0 of cost at most costR(τ). Consider the first shortcut edge
e = (i, j) → (i′, j′) of τ . We may assume that prior to e, the path consists of a (possibly empty)
sequence of horizontal edges followed by a (possibly empty) sequence of vertical edges. The final
such horizontal edge ends at (min(I), j) and j ∈ min(J ) so in G̃(R+) we can replace the horizontal
path by the shortcut edge (min(I), 0)→ min(I), j) of cost 0 to get a path that is no more costly.

For the second inequality, consider a min-cost traversal ρ of I×J0 in G̃(R+). Let j = 0 if the path
does not use one of the auxiliary shortcut edges, and otherwise let j be such that the path starts with
auxiliary shortcut edge (min(I), 0)→ (min(I), j). Let Ĵ = {j, . . . ,max J}. So the remaining portion
of ρ is a min-cost traversal ρ̂ of I×Ĵ . Since G̃(R) is certified, |µ(Ĵ)−µ(I)| ≤ cost(I×Ĵ) ≤ costR(ρ̂) =
costR+(ρ̂) = costR+(I × J0). Also |J∆Ĵ | = |µ(Ĵ) − µ(I)| = |min(J) − j| ≤ costR+(I × J0). So
cost(I × J) ≤ cost(I × Ĵ) + |J∆Ĵ | ≤ 2costR+(I × J0).

So if we compute costR+(I×J0) for every J ∈ J , and output the set of all J for which this cost
is less than κµ(I), we will satisfy the requirements of APM. We now describe a slightly modified
version of an algorithm from [16] that accomplishes this in time Õ(|R+|).

Let H̃ be the graph G̃(R+) with each cost ce of e = (i, j) → (i′, j′) replaced by benefit be =
(i′− i) + (j′− j)− ce, (so H and V edges have benefit 0). For any interval B, the min-cost traversal
of I ×B in G̃(R+) is µ(I) + µ(B) minus the max-benefit traversal of I ×B in H̃. So it suffices to
compute the max-benefit traversal of I × J0 in H̃ for all J ∈ J .

To do this, let j1 < · · · < jr be the distinct second coordinates of the heads and tails of shortcut
edges in G̃(R+). We use a binary tree data structure with leaves corresponding to the indices of
I, where each tree node v stores a number av, and a collection of lists L1,. . . ,Lr, where Lh stores
pairs (e, q(e)) where the head of e has y-coordinate jh and q(e) is the max benefit of a path from
(min(I), 0) that ends with e.

We proceed in rounds h = 1, . . . , r. In round h, let Ah consist of all the shortcuts whose tail has
vertical coordinate jh. The preconditions for round h are: (1) for each leaf i, the stored value ai is
the max benefit path to (i, jh) that includes a shortcut whose head has horizontal coordinate i (or 0
if there is no such path), (2) for each internal node v, av = max{ai : i is a leaf in the subtree of v},
and (3) for every shortcut edge e = (i′, jh′) → (i′′, jh′′) with h′ < h, the value q(e) has been
computed and (e, q(e)) is in list Lh′′ .

During round h, for each shortcut e = (i, jh) → (i′, jh′) in Ah, q(e) equals the max of a` + be
over tree leaves ` with ` ≤ i. This can be computed in O(log n) time as max av + be, where v
ranges over the union of {i} with the set of left children of vertices on the root-to-i path that are
not themselves on the path. Add (e, q(e)) to list Lh′ . After processing Ah, update the binary tree:
for each (e, q(e)) ∈ Lh+1, let i be the horizontal coordinate of the head of e and for all vertices v on
the root-to-i path, replace av by max(av, q(e)). The tree then satisfies the precondition for round
h+ 1.

To obtain the output to APM, for each J ∈ J , let h(J) be the index of the last iteration for
which jh(J) ≤ max(J). The benefit of I × J0 is the value, at the end of iteration of h(J) of av0
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where v0 is the root.
For the runtime analysis: It would take Õ(µ(I)) time to set up the full tree data structure so we

will build it incrementally by expanding only the parts of the data structure that contain non-zero
values. Hence, the set up cost of the data structure is O(1). It takes O(|R+| log |R+|) time to sort
the shortcuts, and O(logµ(I)) processing time per shortcut (computing q(e) and later updating the
data structure), overall giving runtime Õ(|R+|+ |J |).
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