
Approximate Online Pattern Matching in
Sublinear Time
Diptarka Chakraborty
National University of Singapore, Singapore
diptarka@comp.nus.edu.sg

Debarati Das
University of Copenhagen, Denmark
debaratix710@gmail.com

Michal Koucký
Computer Science Institute of Charles University, Czech Republic
koucky@iuuk.mff.cuni.cz

Abstract
We consider the approximate pattern matching problem under edit distance. In this problem we are
given a pattern P of length m and a text T of length n over some alphabet Σ, and a positive integer
k. The goal is to find all the positions j in T such that there is a substring of T ending at j which
has edit distance at most k from the pattern P . Recall, the edit distance between two strings is the
minimum number of character insertions, deletions, and substitutions required to transform one
string into the other. For a position t in {1, ..., n}, let kt be the smallest edit distance between P

and any substring of T ending at t. In this paper we give a constant factor approximation to the
sequence k1, k2, ..., kn. We consider both offline and online settings.

In the offline setting, where both P and T are available, we present an algorithm that for all t in
{1, ..., n}, computes the value of kt approximately within a constant factor. The worst case running
time of our algorithm is Õ(nm3/4).

In the online setting, we are given P and then T arrives one symbol at a time. We design
an algorithm that upon arrival of the t-th symbol of T computes kt approximately within O(1)-
multiplicative factor and m8/9-additive error. Our algorithm takes Õ(m1−(7/54)) amortized time per
symbol arrival and takes Õ(m1−(1/54)) additional space apart from storing the pattern P . Both of
our algorithms are randomized and produce correct answer with high probability. To the best of our
knowledge this is the first algorithm that takes worst-case sublinear (in the length of the pattern)
time and sublinear extra space for the online approximate pattern matching problem. To get our
result we build on the technique of Chakraborty, Das, Goldenberg, Koucký and Saks [FOCS’18] for
computing a constant factor approximation of edit distance in sub-quadratic time.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of compu-
tation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Approximate Pattern Matching, Online Pattern Matching, Edit Distance,
Sublinear Algorithm, Streaming Algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.10

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.03664.

Funding The research leading to these results is partially supported by the Grant Agency of the
Czech Republic under the grant agreement no. 19-27871X and by the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement
no. 616787.

Acknowledgements Authors would like to thank anonymous reviewers for many helpful suggestions
and comments on an earlier version of this paper.

© Diptarka Chakraborty, Debarati Das, and Michal Koucký;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:debaratix710@gmail.com
mailto:koucky@iuuk.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.10
https://arxiv.org/abs/1810.03664
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Approximate Online Pattern Matching in Sublinear Time

1 Introduction

Finding the occurrences of a pattern in a larger text is one of the fundamental problems in
computer science. Due to its immense applications this problem has been studied extensively
under several variations [25, 21, 5, 17, 23, 18, 24, 31, 26]. One of the most natural variations
is where we are allowed to have a small number of errors while matching the pattern. This
problem of pattern matching while allowing errors is known as approximate pattern matching.
The kind of possible errors varies with the applications. Generally we capture the amount of
errors by the metric defined over the set of strings. One common and widely used distance
measure is the edit distance (aka Levenshtein distance) [28]. The edit distance between
two strings T and P denoted by dedit(T, P) is the minimum number of character insertions,
deletions, and substitutions required to transform one string into the other. In this paper we
focus on the approximate pattern matching problem under edit distance. This problem has
various applications ranging from computational biology, signal transmission, web searching,
text processing to many more.

Given a pattern P of length m and a text T of length n over some alphabet Σ, and an
integer k we want to identify all the substrings of T at edit distance at most k from P . As
the number of such substrings might be quadratic in n and one wants to obtain efficient
algorithms, one focuses on finding the set of all right-end positions in T of those substrings
at distance at most k. More specifically, for a position t in T , we let kt be the smallest
edit distance of a substring of T ending at t-th position in T . (We number positions in
T and P from 1.) The goal is to compute the sequence k1, k2, . . . , kn for P and T . Using
basic dynamic programming paradigm we can solve this problem in O(nm) time [33]. Later
Masek and Paterson [29] shaved a logn factor from the above running time bound. Despite
of a long line of research, this running time remains the best till now. Recently, Backurs
and Indyk [8] indicate that this O(nm) bound cannot be improved significantly unless the
Strong Exponential Time Hypothesis (SETH) is false. Moreover Abboud et al. [3] showed
that even shaving an arbitrarily large polylog factor would imply that NEXP does not have
non-uniform NC1 circuits which is likely but hard to prove conclusion. More hardness results
can be found in [2, 9, 1, 4].

In this paper we focus on finding an approximation to the sequence k1, k2, . . . , kn for
P and T . For reals c, a ≥ 0, a sequence k̃1, . . . , k̃n is (c, a)-approximation to k1, . . . , kn, if
for each t ∈ {1, . . . , n}, kt ≤ k̃t ≤ c · kt + a. Hence, c is the multiplicative error and a

is the additive error of the approximation. An algorithm computes (c, a)-approximation
to approximate pattern matching if it outputs a (c, a)-approximation of the true sequence
k1, k1, . . . , kn for P and T . We refer to (c, 0)-approximation simply as c-approximation. Our
main theorem is the following.

I Theorem 1. There is a constant c ≥ 1 and there is a randomized algorithm that computes
a c-approximation to approximate pattern matching in time Õ(n ·m3/4) with probability at
least (1− 1/n3).

In the recent past researchers also studied the approximate pattern matching problem in
the online setting. The online version of this pattern matching problem mostly arises in real life
applications that require matching pattern in a massive data set, like in telecommunications,
monitoring Internet traffic, building firewall to block viruses and malware connections and
many more. The online approximate pattern matching is as follows: we are given a pattern
P first, and then the text T is coming symbol by symbol. Upon receipt of the t-th symbol
we should output the corresponding kt. The online algorithm runs in amortized time O(`) if
it runs in total time O(n · `). We also say that the online algorithm uses extra space O(s) if
in addition to storing the pattern P it uses at most O(s) cells of memory at any time.

D. Chakraborty, D. Das, and M. Koucký 10:3

I Theorem 2. There is a constant c ≥ 1 and there is a randomized online algorithm
that computes (c,m8/9)-approximation to approximate pattern matching in amortized time
Õ(m1−(7/54)) and extra space Õ(m1−(1/54)) with probability at least 1− 1/poly(m).

To the best of our knowledge this is the first online approximation algorithm that takes
sublinear (in the length of the pattern) running time and sublinear extra space for the
approximate pattern matching problem. Designing algorithm that uses small extra space is
quite natural from the practical point of view and has been considered for many problems
including pattern matching, e.g. [32, 22].

To prove our result we use the technique developed by Chakraborty, Das, Goldenberg,
Koucký and Saks in [10, 11], where they provide a sub-quadratic time constant factor
approximation algorithm for the edit distance problem. In particular, in [11] authors describe
a constant factor approximation algorithm that given two strings of length n runs in time
Õ(n12/7). Now suppose we only have a black-box access to that approximation algorithm
for computing the edit distance. Then we claim that we get O(1)-approximation to the
offline approximate pattern matching problem in time Õ(nm6/7). Let us first set a parameter
k = m6/7. Now in the first phase we run O(nk) time algorithm by Landau and Vishkin [27]
and get all the values of kt which are at most k. In the next phase we divide the text T into
overlapping substrings of length m with overlap of m− k. In other words for every t that
are multiple of k consider the substring Tt−m+1,t (that starts at (t−m+ 1)-th symbol and
ends at t-th symbol). For all the positions t that are multiple of k and kt > k (as identified
by the first phase) we use the edit distance algorithm of [11] to get O(1)-approximation
of dedit(Tt−m+1,t, P) and output that value as k̃t. Since kt ≤ dedit(Tt−m+1,t, P) ≤ 2kt, the
output k̃t is an O(1)-approximation of kt. For all the remaining values of t (that are not
multiples of k, and kt > k) we output k̃t′ + (t− t′) where t′ = b tk c · k, as an estimate of kt.
Since kt′ − (t− t′) ≤ kt ≤ kt′ + (t− t′), for all t such that kt > k we get O(1)-approximation
of kt. Note, the above described process takes Õ(nm6/7) time and thus breaks O(nm) barrier
for the offline approximate pattern matching problem for constant factor approximation.
However our claimed running time in Theorem 1 is better than that of this black-box
algorithm.

In this paper we first design an offline algorithm by building upon the technique used
in [11]. To do this we exploit the similarity between the “dynamic programming graphs” (see
Section 2) for approximate pattern matching problem and the edit distance problem. To get
Õ(nm3/4) time algorithm for the offline approximate pattern matching problem still requires
careful modifications to the edit distance algorithm. However the scenario becomes much
more involved if one wants to design an online algorithm using only a small amount of extra
space. The approximation algorithm for edit distance in [11] works in two phases: first a
covering algorithm is used to discover a suitable set of shortcuts in the pattern matching
graph, and then a min-cost path algorithm on a grid graph with the shortcuts yields the
desired result. In the online setting we carefully interleave all of the above phases. However
that by itself is not sufficient since the first phase, i.e., the covering algorithm used in [11]
essentially relies on the fact that both of the strings are available at any point of time. We
modify the covering technique so that it can also be implemented in the situation when we
cannot see the full text. We show that if we store the pattern P then we need only O(m1−γ)
extra space (for some small constant γ > 0) to perform the sampling. Furthermore, the
min-cost path algorithm in [11] takes O(m) space. We modify that algorithm too in a way so
that it also works using only O(m1−γ) space (for some small constant γ > 0). We describe
our algorithm in more details in Section 5.

FSTTCS 2019

10:4 Approximate Online Pattern Matching in Sublinear Time

1.1 Related work

The approximate pattern matching problem is one of the most extensively studied problems
in modern computer science due to its direct applicability to data driven applications. In
contrast to the exact pattern matching here a text location has a match if the distance between
the pattern and the text is within some tolerated limit. In our work we study the approximate
pattern matching under edit distance metric. The very first O(nm)-time algorithm was given
by Sellers [33] in 1980. Masek and Paterson [29] proposed an O(nm/ logn)-time O(n)-space
algorithm using Four Russians [7] technique. Later [30, 27, 20] gave O(nk)-time algorithms
where k is the upper limit of allowed edit operations. All of these algorithms use either
O(m2) or O(n) space. However [19, 36] note that achieving O(m) space is also possible while
maintaining the running time. A faster (for small values of k) algorithm was given by Cole
and Hariharan [16], which has running time O(n(1 + k4/m)). We refer the interested readers
to a beautiful survey by Navarro [31] for a comprehensive treatment on this topic. We have
already seen in the previous section that any c-approximation algorithm for the edit distance
problem can be transformed into an O(c)-approximation algorithm for the approximate
pattern matching problem. We get (logm)O(1/ε)-approximation to the approximate pattern
matching problem in time O(nm 1

2 +ε) (for every ε > 0) from the edit distance algorithm
of Andoni et al. [6]. To achieve the same running time while having only constant factor
approximation is an important open problem.

All the above mentioned algorithms assume that the entire text is available from the
very beginning of the process. However in the online version, the pattern is given at the
beginning and the text arrives in a stream, one symbol at a time. Clifford et al. [12] gave
a “black-box algorithm” for online approximate matching where the supported distance
metrics are Hamming distance, matching with wildcards, L1 and L2 norm. Their algorithm
has running time O(

∑log2 m
j=1 T (n, 2j−1)/n) per symbol arrival, where T (n,m) is the running

time of the best offline algorithm. This result was extended in [14] by introducing an
algorithm solving online approximate pattern matching under edit distance metric in time
O(k logm) per symbol arrival. This algorithm uses O(m)-space. In [15] the running time
was further improved to O(k) per symbol. However none of these algorithms for edit distance
metric is black-box and they highly depend on the specific structure of the corresponding
offline algorithm. Recently, Starikovskaya [34] gave a randomized algorithm which has a
worst case time complexity of O((k2√m + k13) log4 m) and uses space O(k8√m log6 m).
Although her algorithm takes both sublinear time and sublinear space for small values of k,
heavy dependency on k in the complexity terms makes it much worse than the previously
known algorithms in the high regime of k. On the lower bound side, Clifford, Jalsenius
and Sach [13] showed in the cell-probe model that expected amortized running time of
any randomized algorithm solving online approximate pattern matching problem must be
Ω(
√

logm/(log logm)3/2) per output.

2 Preliminaries

We recall some basic definitions of [11]. Consider the text T of length n to be aligned along
the horizontal axis and the pattern P of length m to be aligned along the vertical axis. For
i ∈ {1, . . . , n}, Ti denotes the i-th symbol of T and for j ∈ {1, . . . ,m}, Pj denotes the j-th
symbol of P . Ts,t is the substring of T starting by the s-th symbol and ending by the t-th
symbol of T . For any interval I ⊆ {0, . . . , n}, TI denotes the substring of T indexed by
I \ {min(I)} and for J ⊆ {0, . . . ,m}, PJ denotes the substring of P indexed by J \ {min(J)}.

D. Chakraborty, D. Das, and M. Koucký 10:5

Edit distance and pattern matching graphs

For a text T of length n and a pattern P of length m, the edit distance graph GT,P is a
directed weighted graph called a grid graph with vertex set {0, · · · , n} × {0, · · · ,m} and
following three types of edges: (i− 1, j)→ (i, j) (H-steps), (i, j − 1)→ (i, j) (V-steps) and
(i− 1, j − 1)→ (i, j) (D-steps). Each H-step or V-step has cost 1 and each D-step costs 0 if
Ti = Pj and 1 otherwise. The pattern matching graph G̃T,P is the same as the edit distance
graph GT,P except for the cost of horizontal edges (i, 0)→ (i+ 1, 0) which is zero.

For intervals I ⊆ {0, . . . , n} and J ⊆ {0, . . . ,m}, GT,P (I × J) is the subgraph of GT,P
induced on I × J . Clearly, GT,P (I × J) ∼= GTI ,PJ

. We define the cost of a path τ in GTI ,PJ
,

denoted by costGTI ,PJ
(τ), as the sum of the costs of its edges. We also define the cost of a

graph GTI ,PJ
, denoted by cost(GTI ,PJ

), as the cost of the cheapest path from (min I,min J)
to (max I,max J).

The following is well known in the literature (e.g. see [33]).

I Proposition 3. Consider a pattern P of length m and a text T of length n, and let
G = G̃T,P . For any t ∈ {1, . . . , n}, let I = {0, · · · , t}, and J = {0, · · · ,m}. Then kt =
cost(G(I × J)) = mini≤t dedit(Ti,t, P).

A similar proposition is also true for the edit distance graph.

I Proposition 4. Consider a pattern P of length m and a text T of length n, and let
G = GT,P . For any i1 ≤ i2 ∈ {1, · · · , n}, j1 ≤ j2 ∈ {1, · · · ,m} let I = {i1 − 1, · · · , i2} and
J = {j1 − 1, · · · , j2}. Then cost(G(I × J)) = dedit(Ti1,i2 , Pj1,j2).

Let G be a grid graph on I × J and τ = (i1, j1), . . . , (il, jl) be a path in G. Horizontal
projection of a path τ is the set {i1, . . . , il}. Let I ′ be an interval contained in the horizontal
projection of τ , then τI′ denotes the (unique) minimal subpath of τ with horizontal projection
I ′. Let G′ = G(I ′ × J ′) be a subgraph of G. For δ ≥ 0 we say that I ′ × J ′ (1− δ)-covers the
path τ if the initial and the final vertex of τI′ are at a vertical distance of at most δ(|I ′| − 1)
from (min(I ′),min(J ′)) and (max(I ′),max(J ′)), resp..

A certified box of G is a pair (I ′×J ′, `) where I ′ ⊆ I, J ′ ⊆ J are intervals, and ` ∈ N∪{0}
such that cost(G(I ′× J ′)) ≤ `. At high level, our goal is to approximate each path τ in G by
a path via the corner vertices of certified boxes. For that we want that a substantial portion
of the path τ goes via those boxes and that the sum of the costs of the certified boxes is not
much larger than the actual cost of the path. The next definition makes our requirements
precise. Let σ = {(I1× J1, `1), (I2× J2, `2), . . . , (Is× Js, `s)} be a sequence of certified boxes
in G. Let τ be a path in G(I × J) with horizontal projection I. For any k, ζ ≥ 0, we say
that σ (k, ζ)-approximates τ if the following three conditions hold:
1. I1, . . . , Is is a decomposition of I, i.e., I =

⋃
i∈[s] Ii, and for all i ∈ [s− 1], min(Ii+1) =

max(Ii).
2. For each i ∈ [s], Ii × Ji (1− `i/(|Ii| − 1))-covers τ .
3.

∑
i∈[s] `i ≤ k · cost(τ) + ζ.

3 Offline approximate pattern matching

3.1 Technical Overview
To prove Theorem 1 we design an algorithm as follows. For k = 2j , j = 0, . . . , logm3/4, we
run the standard O(nk) algorithm by Landau and Vishkin [27] to identify all t such that
kt ≤ k. To identify positions with kt ≤ k for k > m3/4 where k is a power of two we will use

FSTTCS 2019

10:6 Approximate Online Pattern Matching in Sublinear Time

the technique of [11] to compute (O(1), O(m3/4))-approximation of k1, . . . , kn. The obtained
information can be combined in a straightforward manner to get a single O(1)-approximation
to k1, . . . , kn: For each t, if for some 2j ≤ m3/4, kt is at most 2j (as determined by the
former algorithm) then output the exact value of kt using the algorithm of [27], otherwise
output the approximation of kt found by the latter algorithm. This way, for kt ≤ m3/4 we
will get the exact value, and for k > m3/4 we will get an O(1)-approximation. We will now
elaborate on the latter algorithm based on [11]. The edit distance algorithm of [11] has two
phases which we will also use. The first phase (covering phase) identifies a set of certified
boxes, subgraphs of the pattern matching graph with good upper bounds on their cost. These
certified boxes should cover the min-cost paths of interest. Then the next phase runs a
min-cost path algorithm on these boxes to obtain the output sequence. We will show that
both of these phases take Õ(nm3/4) time and so the overall running time will be Õ(nm3/4).

We next describe the two phases of the algorithm. The algorithm will use the following
parameters: w1 = m1/4, w2 = m1/2, d = m1/4, θ = m−1/4. The meaning of the parameters
is essentially the same as in [11] though their setting is different. Let c0, c1 ≥ 0 be the large
enough constants from [11]. For simplicity we will assume without loss of generality that
w1 and w2 are powers of two (by rounding them down to the nearest powers of two), θ is a
reciprocal of a power of two (by decreasing θ by at most a factor of two), w2|m (by chopping
off a small suffix from P which will affect the approximation by a negligible additive error
as m3/4 � w2), and m|n (if not we can run the algorithm twice: on the largest prefix of T
of length divisible by m and then on the largest suffix of T of length divisible by m). The
algorithm will not explicitly compute kt for all t but only for t where t is a multiple of w2,
and then it will use the same value for each block of w2 consecutive kt’s. Again, this will
affect the approximation by a negligible additive error.

3.2 Covering phase

We describe the first phase of the algorithm now. First, we partition the text T into substrings
T 0

1 , . . . , T
0
n0

of length m, where n0 = n/m. Then we process each of the parts independently.
Let T ′ be one of the parts. We partition T ′ into substrings T 1

1 , T
1
2 , . . . , T

1
n1

of length w1,
and we also partition T ′ into substrings T 2

1 , T
2
2 , . . . , T

2
n2

of length w2, where n1 = m/w1 and
n2 = m/w2. For a substring u of v starting by i-th symbol of v and ending by j-th symbol of
v, we let {i− 1, i, i+ 1, . . . , j} be its span. Moreover for δ ∈ (0, 1) we call u to be (δ)-aligned
if both i− 1 and j − 1 are divisible by δ(j − i). The covering algorithm proceeds in phases
j = 0, . . . , dlog 1/θe associated with εj = 2−j . Similar to the edit distance algorithm, here
also each phase has two parts, namely the dense substrings and the extension sampling. Then
the covering algorithm proceeds as follows:

Dense substrings

In this part the algorithm aims to identify for each εj , a set of substrings T 1
i that are similar

(i.e., up to “small” edit distance) to more than d (εj/8)-aligned, w1 length substrings of P .
We identify each T 1

i by testing a random sample of relevant substrings of P . If we determine
with high confidence that there are at least Ω(d) substrings of P similar to T 1

i , we add T 1
i

into a set Dj of such strings, and we also identify all T 1
i′ that are similar to T 1

i . By triangle
inequality we would also expect them to be similar to many relevant substrings of P . So we
add these T 1

i′ to Dj as well as we will not need to process them anymore. We output the set
of certified boxes of edit distance O(εjw1) found this way. More formally:

D. Chakraborty, D. Das, and M. Koucký 10:7

For j = dlog 1/θe, . . . , 0, the algorithm maintains sets Dj of substrings T 1
i . These sets

are initially empty.

Step 1. For each i = 1, . . . , n1 and j = dlog 1/θe, . . . , 0, if T 1
i is in Dj then we continue

with the next i and j. Otherwise we process it as follows.

Step 2. Set εj = 2−j . Independently at random, sample 8c0 ·m · (εjw1d)−1 · logn many
(εj/8)-aligned substrings of P of length w1. For each sampled substring u check if its edit
distance from T 1

i is at most εjw1. If less than 1
2 · c0 · logn of the samples have their edit

distance from T 1
i below εjw1 then we are done with processing this i and j and we continue

with the next pair.

Step 3. Otherwise we identify all substrings T 1
i′ that are not in Dj and are at edit distance

at most 2εjw1 from T 1
i , and we let X to be the set of their spans relative to the whole T .

Step 4. Then we identify all (εj/8)-aligned substrings of P of length w1 that are at edit
distance at most 3εjw1 from T 1

i , and we let Y to be the set of their spans. (We also allow
some (εj/8)-aligned substrings of P of edit distance at most 6εjw1 to be included in the set
Y as some might be misidentified to have the smaller edit distance from T 1

i by our procedure
that searches for them, see further.)

Step 5. For each pair of spans (I, J) from X × Y we output corresponding certified box
(I × J, 8εjw1). We add substrings corresponding to X into Dj and continue with the next
pair i and j.

Once we process all pairs of i and j, we proceed to the next phase: extension sampling.

Extension sampling

In this part for every εj = 2−j and every substring T 2
i , which does not have all its substrings

T 1
` contained in Dj we randomly sample a set of such T 1

` ’s. For each sampled T 1
` we

determine all relevant substrings of P at edit distance at most εjw1 from T 1
` . There should

be O(d)-many such substrings of P . We extend each such substring into a substring of size
|T 2
i | within P and we check the edit distance of the extended string from T 2

i . For each
extended substring of edit distance at most 3εjw2 we output a set of certified boxes.

Here we define the appropriate extension of substrings. Let u be a substring of T of
length less than |P |, and let v be a substring of u starting by the i-th symbol of u. Let v′
be a substring of P of the same length as v starting by the j-th symbol of P . The diagonal
extension u′ of v′ in P with respect to u and v, is the substring of P of length |u| starting
at position j − i. If (j − i) ≤ 0 then the extension u′ is the prefix of P of length |u|, and if
j − i+ |P | > |P | then the extension u′ is the suffix of P of length |u|.

Step 6. Process all pairs i = 1, . . . , n2 and j = dlog 1/θe, . . . , 0.

Step 7. Independently at random, sample c1 · log2 n · logm substrings T 1
` that are part

of T 2
i and that are not in Dj . (If there is no such substring continue for the next pair of i

and j.)

Step 8. For each T 1
` , find all (εj/8)-aligned substrings v′ of P of length w1 that are at edit

distance at most εjw1 from T 1
` .

FSTTCS 2019

10:8 Approximate Online Pattern Matching in Sublinear Time

Step 9. For each v′ determine its diagonal extension u′ with respect to T 2
i and T 1

` . Check
if the edit distance of u′ and T 2

i is less than 3εjw2. If so, compute it and denote the distance
by c. Let I ′ be the span of T 2

i relative to T , and J ′ be the span of u′ in P . For all powers a
and b of two, m3/4 ≤ a ≤ b ≤ m, output the certified box (I ′ × J ′, c+ a+ b). Proceed for
the next i and j.

This ends the covering algorithm which outputs various certified boxes.
To implement the above algorithm we will use Ukkonen’s [35] O(nk)-time algorithm to

check whether the edit distance of two strings of length w1 is at most εjw1 in time O(w2
1εj).

Given the edit distance is within this threshold the algorithm can also output its precise
value. We use this algorithm in Step 3. To identify all substrings of length w1 at edit distance
at most εjw1 of S from a given string R (where S is the pattern P of length m and R is
one of the T 1

i of length w1), in Step 4, we use the O(nk)-time pattern matching algorithm
of Landau and Vishkin [27]. For a given threshold k, this algorithm determines for each
position t in S, whether there is a substring of edit distance at most k from R ending at
that position in S. If the algorithm reports such a position t then we know by the following
proposition that the substring St−|R|+1,t is at edit distance at most 2k. At the same time
we are guaranteed to identify all the substrings of S of length w1 at edit distance at most
k from R. Hence in Step 4, finding all the substrings at distance 3εjw1 with perhaps some
extra substrings of edit distance at most 6εjw1 can be done in time O(mw1εj).

I Proposition 5. For strings S and R, and integers t ∈ {1, . . . , |S|}, k ≥ 0 , if mini≤t dedit(
Si,t, R) ≤ k then dedit(St−|R|+1,t, R) ≤ 2k.

Proof. Let Si,t be the best match for R ending by the t-th symbol of S. Hence, k =
dedit(Si,t, R). If Si,t is by ` symbols longer than R then k ≥ ` and dedit(St−|R|+1,t, R) ≤
k + ` ≤ 2k by the triangle inequality. The same is true if Si,t is shorter by ` symbols. J

3.3 Correctness of the covering algorithm
I Lemma 6. Let t ≥ 1 be such that t is a multiple of w2. Let τt be the min-cost path between
vertex (t − m, 0) and (t,m) in the edit distance graph G = GT,P of T and P of cost at
least m3/4 ≥ θm. The covering algorithm outputs a set of weighted boxes R such that every
(I × J, `) ∈ R is correctly certified i.e., cost(G(I × J)) ≤ ` and there is a subset of R that
(O(1), O(kt))-approximates τt with probability at least 1− 1/n7.

It is clear from the description of the covering algorithm that it outputs only correct
certified boxes from the edit distance graph of T and P , that is for each box (I × J, `),
cost(G(I × J)) ≤ `.

The cost of τt corresponds to the edit distance between P and Tt−m+1,t and it is bounded
by 2kt by Proposition 5. Let k′t be the smallest power of two ≥ kt. We claim that by
essentially the same argument as in Proposition 3.8 and Theorem 3.9 of [11] the algorithm
outputs with high probability a set of certified boxes that (O(1), O(k′t))-approximates τt.
Therefore instead of repeating the whole proof, here we sketch the differences between the
current covering algorithm with that of [11] and argue about how to handle them.

The main substantial difference is that the algorithm in [11] searches for certified boxes
located only within O(kt) diagonals along the main diagonal of the edit distance graph. (This
rests on the observation of Ukkonen [35] that a path of cost ≤ kt must pass only through
vertices on those diagonals.) Here we process certified boxes in the whole matrix as each t
requires a different “main” diagonal. Except for this difference and the order of processing
various pieces the algorithms are the same.

D. Chakraborty, D. Das, and M. Koucký 10:9

The discovery of certified boxes depends on the number (density) of relevant substrings of
P similar to a given T 1

i . In the edit distance algorithm in [11] this density is measured only
in the O(kt)-width strip along the main diagonal of the edit distance graphs whereas here
it is measured within the whole P . (So the actual classification of substrings T 1

i on dense
(in Dj) and sparse (not in Dj) might differ between the two algorithms.) Hence, one could
think (though technically not quite correct) that the certified boxes output by the current
algorithm form a superset of boxes output by the edit distance algorithm of [11]. However,
this difference is immaterial for the correctness argument in Theorem 3.9 of [11].

Another difference is that in Step 4 we use O(mw1εj)-time algorithm to search for all
the similar substrings. This algorithm will report all the substrings we were looking for and
additionally it might report some substrings of up to twice the required edit distance. This
necessitates the upper bound 8εjw1 in certified boxes in Step 5. It also means a loss of factor
of at most two in the approximation guarantee as the boxes of interest are reported with the
cost 8εjw1 instead of the more accurate 5εjw1 of the original algorithm in [11] which would
give a (45, 15cost(τt))-approximation. (In that theorem θm represents an (arbitrary) upper
bound on the cost of τt provided it satisfies certain technical conditions requiring that θ is
large enough relative to m. This is satisfied by requiring that cost(τt) ≥ m3/4 ≥ θm.)

Another technical difference is that the path τt might pass through two edit distance
graphs GT 0

`−1,P
and GT 0

`
,P , where t ∈ [(`− 1)m+ 1, `m]. This means that one needs to argue

separately about restriction of τt to GT 0
`−1,P

and GT 0
`
,P . However, the proof of Theorem 3.9

in [11] analyses approximation of the path in separate parts restricted to substrings of T of
size w2. As both t and m are multiples of w2, the argument for each piece applies in our
setting as well.

3.4 Time complexity of the covering algorithm
By analyzing the running time we get the following.

I Lemma 7. The covering algorithm runs in time Õ(nm3/4) with probability at least 1−1/n8.

We analyse the running time of the covering algorithm for each T ′ = T 0
i separately. We

claim that the running time on T ′ is Õ(m7/4) so the total running time is Õ((n/m)m7/4) =
Õ(nm3/4).

In Step 1, for every i = 1, . . . , n1 and j = 0, . . . , logm1/4, we might sample O(m
εjw1d

· logn)
substrings of P of length w1 and check whether their edit distance from T 1

i is at most εjw1.
This takes time at most Õ(m

εjw1d
· mw1
· w2

1εj) = Õ(m2/d) = Õ(m7/4) in total.
We say that a bad event happens either if some substring T 1

i has more than d relevant
substrings of P having distance at most εjw1 but we sample less than 1

2 · c0 logn of them,
or if some substring T 1

i has less than d/4 relevant substrings of P having distance at most
εjw1 but we sample more than 1

2 · c0 logn of them. By Chernoff bound, the probability
of a bad event happening during the whole run of the covering algorithm is bounded by
exp(−O(logn)) ≤ 1/n8, for sufficiently large constant c0. Assuming no bad event happens
we analyze the running time of the algorithm further.

Each substring T 1
i that reaches Step 3 can be associated with a set of its relevant substrings

in P of edit distance at most εjw1 from it. The number of these substrings is at least d/4
many. These substrings must be different for different strings T 1

i that reach Step 3 as if they
were not distinct then the two substrings T 1

i and T 1
i′ would be at edit distance at most 2εjw1

from each other and one of them would be put into Dj in Step 5 while processing the other
one so it could not reach Step 3. Hence, we can reach Steps 3–5 for at most 8m

εjw1
· 4
d strings

T 1
i . For a given j and each T 1

i that reaches Step 3, the execution of Steps 3 and 4 takes
O(mw1εj) time, hence we will spend in them Õ(m2/d) = Õ(m7/4) time in total.

FSTTCS 2019

10:10 Approximate Online Pattern Matching in Sublinear Time

Step 5 can report for each j at most 8m
εjw1

· mw1
certified boxes, so the total time spent in

this step is Õ(m2/w1) = Õ(m7/4) as εjw1 ≥ 1/4.
Step 7 takes order less time than Step 8. In Step 8 we use Ukkonen’s [35] O(nk)-time

edit distance algorithm to check the distance of strings of length w1. We need to check
Õ(n2 · m

εjw1
) pairs for the total cost Õ(mw2

· m
εjw1

· w2
1εj) = Õ(m7/4) per j.

As no bad event happens, for each T 1
` , there will be at most d/4 strings v′ processed in

Step 9. We will spend O(w2
2εj) time on each of them to check for edit distance and O(log2 n)

to output the certified boxes. Hence, for each j we will spend here Õ(mw2
· dw2

2εj) time, which
is Õ(mw2d) in total.

Thus, the total time spent by the algorithm in each of the steps is Õ(m7/4) as required.

4 Min-cost Path in a Grid Graph with Shortcuts

In this section we explain how we use certified boxes to calculate the approximation of kt’s.
Consider any grid graph G. A shortcut in G is an additional edge (i, j)→ (i′, j′) with cost `,
where i < i′ and j < j′.

Let GT,P be the edit distance graph for T and P . Let (I×J, `) be a certified box in GT,P
with |I| = |J |. If ` < 1/2(|I| − 1) add a shortcut edge eI,J from vertex (min I,min J + `) to
vertex (max I,max J − `) with cost 3`. Do this for all certified boxes output by the covering
algorithm to obtain a graph G′T,P . Note, if ` ≥ 1/2(|I| − 1) we do not add any shortcut edge
for the corresponding certified box. Next remove all the diagonal edges (D-steps) of cost 0
or 1 from graph G′T,P and obtain graph G′′T,P .

I Proposition 8. If τ is a path from (t−m, 0) to (t,m) in GT,P which is (k, ζ)-approximated
by a subset of certified boxes σ by the covering algorithm then there is a path from (t−m, 0) to
(t,m) in G′′T,P of cost at most 5 ·(k ·costGT,P

(τ)+ζ) consisting of shortcut edges corresponding
to σ and H and V steps.

We provide the proof of proposition 8 in the full version. By Lemma 6 and Proposition 8,
for t where w2|t, the cost of a shortest path from (t−m, 0) to (t,m) in G′′T,P is bounded by
O(kt). At the same time, any path in G′′T,P from (i, 0) to (t,m), i ≤ t, has cost at least kt.
So we only need to find the minimal cost of a shortest path from any (i, 0) to (t,m) in G′′T,P
to get an approximation of kt.

To find the minimal cost, we reset to zero the cost of all horizontal edges (i, 0)→ (i+ 1, 0)
in G′′T,P to get a graph G. The graph G corresponds to taking the pattern matching graph
G̃T,P , removing from it all its diagonal edges and adding the shortcut edges. The cost of a
path from (0, 0) to (t,m) in G is the minimum over i ≤ t of the cost of a shortest path from
(i, 0) to (t,m) in G′′T,P .

Hence, we want to calculate the cost of the shortest path from (0, 0) to (t,m) for all
t.1 For this we will use a simple algorithm that will make a single sweep over the shortcut
edges sorted by their origin and calculate the distances for t = 0, . . . , n. The algorithm will
maintain a data structure that at time t will allow to answer efficiently queries about the
cost of the shortest path from (0, 0) to (t, j) for any j ∈ {0, . . . ,m}.

The data structure will consist of a binary tree with m+ 1 leaves. Each node is associated
with a subinterval of {0, . . . ,m} so that the j-th leaf (counting from left to right) corresponds
to {j}, and each internal node corresponds to the union of all its children. We denote by

1 Although, we really care only about t where w2|t, as for all the other values of t we will approximate kt

by the value equal to k̃t′ + (t− t′), where t′ = b t
w2
c. Recall, k̃t′ is the estimated value of kt′ .

D. Chakraborty, D. Das, and M. Koucký 10:11

Iv the interval associated with a node v. The depth of the tree is at most 1 + log(m+ 1).
At time t, query to the node v of the data structure will return the cost of the shortest
path from (0, 0) to (t,max Iv) that uses some shortcut edge (i, j) → (i′, j′), where j′ ∈ Iv.
Each node v of the data structure stores a pair of numbers (cv, tv), where cv is the cost of
the relevant shortest path from (0, 0) to (tv,max Iv) and tv is the time it was updated the
last time. (Initially this is set to (∞, 0).) At time t ≥ tv, the query to the node v returns
cv + (t− tv).

At time t to find the cost of the shortest path from (0, 0) to (t, j) we traverse the
data structure from the root to the leaf j. Let v1, . . . , v` be the left children of the nodes
along the path in which we continue to the right child. We query nodes v1, . . . , v` to get
answers a1, . . . , a`. The cost of the shortest paths from (0, 0) to (t, j) is a = min{j, a1 +
(j −max Iv1), a2 + (j −max Iv2), . . . , a` + (j −max Iv`

)}. As each query takes O(1) time to
answer, computing the shortest path to (t, j) takes O(logm) time.

The algorithm that outputs the cheapest cost of any path from (0, 0) to (t,m) in G

will process the shortcut edges (i, j)→ (i′, j′) one by one in the order of increasing i. The
algorithm will maintain lists L0, . . . , Ln of updates to the data structure to be made before
time t. At time t the algorithm first outputs the cost of the shortest path from (0, 0) to (t,m).
Then it takes each shortcut edge (t, j)→ (t′, j′) one by one, t < t′. (The algorithm ignores
shortcut edges where t = t′.) Using the current state of the data structure it calculates the
cost c of a shortest path from (0, 0) to (t, j) and adds (c+ d, j′) to list Lt′ , where d is the
cost of the shortcut edge (t, j)→ (t′, j′).

After processing all edges starting at (t, ·) the algorithm performs updates to the data
structure according to the list Lt+1. Update (c, j) consists of traversing the tree from the
root to the leaf j and in each node v updating its current values (cv, tv) to the new values
(c′v, t+ 1), where c′v = min{cv + t+ 1− tv, c+ max Iv − j}. Then the algorithm increments t
and continues with further edges.

If the number of shortcut edges is m then the algorithm runs in time O(n+m(logm+
logm)). First, it has to set-up the data structure, sort the edges by their origin and then it
processes each edge. Processing each edge will require O(logm) time to find the min-cost
path to the originating vertex and then later at time t′ it will require time O(logm) to
update the data structure. As there are Õ(nm ·

m
θw1
· mw1

) ≤ Õ(nm3/4) certified boxes in total
the running time of the algorithm is as required.

The correctness of the algorithm is immediate from its description.

5 Online approximate pattern matching

In this section we describe the online algorithm from Theorem 2. In the online setting the
pattern P is given while the text T arrives in online fashion. The main challenge of this
setting is that at any point of time (other than the pattern) we are allowed to store a substring
of the text of length just sublinear in m. To overcome this situation the online algorithm is
based on interleaved execution of the cover and min-cost path algorithms from Sections 3.2
and 4. Moreover we need to maintain some extra data structure in a clever manner for the
covering algorithm. Also to get the required space bound we use a slightly modified tree data
structure for the min-cost path algorithm. For the online setting we use the same parameters
as the offline one, but we set their values slightly differently: w1 = m11/18, w2 = m20/27,
d = m7/54, θ = m−1/9. Next, we describe the data structure used in the covering algorithm
and the modified tree data structure for the min-cost path algorithm.

FSTTCS 2019

10:12 Approximate Online Pattern Matching in Sublinear Time

Covering algorithm data structure. For each substring T 0
r of m consecutive input symbols

of text T , and j = dlog 1/θe, . . . , 0 the algorithm will maintain a set D′j that stores the
content of strings T 1

i that reached Step 3 of the covering algorithm during processing of T 0
r .

Moreover for each of such string T 1
i the algorithm will also store a set Yi,j that contains the

spans obtained in Step 4 while processing T 1
i . This is done as the whole m length string T 0

r

can’t be stored at once. Moreover to bound the size of D′j and Yi,j , before adding a new T 1
i

that reached Step 3 of the covering algorithm to D′j , we first ensure that no string close to
T 1
i is already contained in D′j . Also after finishing each T 0

r we discard all the information
associated with it.

Modified tree data structure. Here we describe the modified tree data structure used for
the min-cost path algorithm. Notice, every shortcut edge corresponds to some certified box.
Our covering algorithm has log 1/θ rounds where in any round the total number of possible
vertical positions, where the bottom left corner or the top right corner point of any certified
box might lie is bounded by m

θw1
. Next, we round up all the edit distance estimates to powers

of two, hence in any certified box there are at most 2 logm positions from which a shortcut
edge might start or end. Therefore, the number of distinct vertical positions where these
shortcut edges might originate from or lead to is bounded by q = 2m

θw1
· log 1/θ · logm. Thus

the tree data structure of the min-cost path algorithm will ever perform updates to at most
q logm distinct nodes. We do not need to store the nodes that are never updated, so the
tree data structure will occupy only space Õ(m

θw1
).

5.1 The online algorithm
Now we explain how to interleave the two phases to achieve required time and space bound.
The algorithm processes the input text T in batches of w2 symbols. Upon receipt of the
t-th symbol we buffer the symbol, if t is not divisible by w2 then the algorithm outputs the
estimated value for (t − 1)-th position plus one, i.e., k̃t−1 + 1 as the current value kt and
waits for the next symbol. Otherwise we received batch T 2

` of next w2 symbols, for ` = t/w2,
and we will proceed as follows.

The covering algorithm in the online setting is similar to the covering algorithm offline
setting. However here, we will execute the covering algorithm twice on each T 2

` where during
the first execution the only thing that we will send to the min-cost path algorithm are the
certified boxes produced at Step 9, all other modifications to data structures will be discarded.
During the second run of the algorithm on T 2

` , we will preserve all modifications to D′j ’s and
other data structures except we will discard the certified boxes produced at Step 9 (we will
not send them to the min-cost path algorithm as they are already sent in the first pass).

Covering algorithm. We now describe how the covering algorithm executes on each T 2
` .

The algorithm maintain sets Sj , j = dlog 1/θe, . . . , 0 that are empty at the beginning. We
partition T 2

` into T 1
g , . . . , T

1
h of length w1, where g = (` − 1) · w2

w1
+ 1 and h = g + w2

w1
− 1.

For i = g, . . . , h we do the following. For each j = dlog 1/θe, . . . , 0, set εj = 2−j . Check,
whether T 1

j is at edit distance at most 2εjw1 from some string T 1
i′ in D′j . If it is then send

the set of all the certified boxes (I, J, 8εjw1) to the min-cost path algorithm, where I is the
span of T 1

i in T and J ∈ Yi′,j . If it is not close to any string in D′j then sample the relevant
substring in P as in Step 2 and see how many of them are at edit distance ≤ εjw1 from T 1

i .
If at most 1

2 · c0 · logn of the samples have their edit distance from T 1
i below εjw1 then put

index i into Sj and continue for another j and then the next i. Otherwise we execute Step 4
of the algorithm to find set Y . (We always skip Step 3.) We put T 1

i into Dj and set Yi,j to

D. Chakraborty, D. Das, and M. Koucký 10:13

Y . During the first execution of the covering algorithm, upon processing all j and i we will
directly proceed to the sparse extension sampling part whereas after the second execution
of the covering algorithm, we send all the certified boxes (I, J, 8εjw1) to the min-cost path
algorithm, where I is the span of T 1

i and J ∈ Yi,j .
In the extension sampling part for each j = dlog 1/θe, . . . , 0, we sample from the set Sj

the strings T 1
` in Step 7, and we proceed for them as in Steps 8–9. During the first execution

of the covering algorithm, for each certified box (I, J, `′) produced in Step 9 round up `′ to
the nearest larger or equal power of two and send the box to the min-cost path algorithm.

Min-cost path algorithm. The min-cost path algorithm receives certified boxes from the
covering algorithm and it converts them into corresponding shortcut edges. The algorithm
receives the certified boxes at two distinct phases.

Shortcut edges generated after the first execution of the covering algorithm correspond
to boxes that were produced at Step 9. These edges are sorted by their originating vertex,
stored, and processed at appropriate time steps during the next phase.

During the next phase the algorithm receives boxes (I, J, 8εjw1), where I is the span of
some T 1

i and J ∈ Yi,j . It converts them into edges and upon receiving all the edges for a
particular T 1

i , it sorts them according to their originating vertex. Then the min-cost path
algorithm proceeds from time steps (i− 1) ·w1 to i ·w1 − 1, and processes all stored shortcut
edges that originate in these time steps. During these time steps it also updates its tree
data structure as in the offline case. Again we use lists for storing pending updates. At any
moment of time, the number of unprocessed edges and updates is bounded by the number
of edges produced in Step 9 and edges produced for a particular string T 1

i . This is at most
Õ(m

θw1
). We conclude by the following lemma:

I Lemma 9. Let n and m be large enough integers. Let P be the pattern of length m, T
be the text of length n (arriving online one symbol at a time), 1/m ≤ θ ≤ 1 be a real. Let
θw1 ≥ 1, w1 ≤ θw2, w1|w2 and w2|n. With probability at least 1 − 1/poly(n) the online
algorithm for pattern matching runs in amortized time Õ(md + mw1

w2
+ dw2 + m

w1
) per symbol

and in extra space Õ(w2 + m
dθ + m

w1θ
+ m2

θ2w2
1d

+ d).

We defer the proof of the above lemma to the full version. We instantiate the above lemma
for the parameters: w1 = m11/18, w2 = m20/27, d = m7/54, θ = m−1/9, to get the following:

I Theorem 10 (Restatement of Theorem 2). There is a constant c ≥ 1 so that there is a
randomized online algorithm that computes (c,m8/9)-approximation to approximate pattern
matching in amortized time Õ(m1−(7/54)) and extra space Õ(m1−(1/54)) with probability at
least 1− 1/poly(m).

6 Discussion

For our online pattern matching algorithm it can be noticed that there is a clear trade off
among the running time, the extra space used by the algorithm and the additive part of
the approximation factor. Keeping the running time fixed, decreasing the additive part of
the approximation factor (by changing the value of parameter θ) would increase the extra
space used, and also keeping the additive error part fixed, decreasing the running time would
increase the extra space used.

FSTTCS 2019

10:14 Approximate Online Pattern Matching in Sublinear Time

Open Problem. The online algorithm presented in this paper has non-trivial time and space
complexity only for the case when the edit distance between the pattern and the text is high.
Therefore, it will be nice to extend our online approximation algorithm for the full range of
edit distance, which will be interesting from both theoretical and practical perspectives.

References
1 Amir Abboud and Arturs Backurs. Towards Hardness of Approximation for Polynomial

Time Problems. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017,
January 9-11, 2017, Berkeley, CA, USA, pages 11:1–11:26, 2017.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results
for LCS and Other Sequence Similarity Measures. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 59–78, 2015.

3 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 375–388, 2016.

4 Amir Abboud and Aviad Rubinstein. Fast and Deterministic Constant Factor Approximation
Algorithms for LCS Imply New Circuit Lower Bounds. In 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages
35:1–35:14, 2018.

5 Karl Abrahamson. Generalized String Matching. SIAM J. Comput., 16(6):1039–1051, December
1987.

6 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic Approximation
for Edit Distance and the Asymmetric Query Complexity. In 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,
USA, pages 377–386, 2010.

7 V. L. Arlazarov, E. A. Dinic, M. A. Konrod, and L. A. Faradzev. On economic construction
of the transitive closure of a directed graph. Dokl. Akad, Nauk SSSR 194:487–488, 1970. [in
Russian]. English translation: Soviet. Math. Dokl. 11 No. 5 (1970), 1209–1210.

8 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (Unless SETH is False). In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015. ACM.

9 Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97, 2015.

10 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E.
Saks. Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 979–990, 2018.

11 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E.
Saks. Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time.
CoRR, abs/1810.03664, 2018. arXiv:1810.03664.

12 Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A Black Box for Online
Approximate Pattern Matching. In Combinatorial Pattern Matching, 19th Annual Symposium,
CPM 2008, Pisa, Italy, June 18-20, 2008, Proceedings, pages 143–151, 2008.

13 Raphaël Clifford, Markus Jalsenius, and Benjamin Sach. Cell-probe bounds for online edit
distance and other pattern matching problems. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 552–561, 2015.

14 Raphaël Clifford and Benjamin Sach. Online Approximate Matching with Non-local Distances.
In Combinatorial Pattern Matching, 20th Annual Symposium, CPM 2009, Lille, France, June
22-24, 2009, Proceedings, pages 142–153, 2009.

http://arxiv.org/abs/1810.03664

D. Chakraborty, D. Das, and M. Koucký 10:15

15 Raphaël Clifford and Benjamin Sach. Pseudo-realtime Pattern Matching: Closing the Gap. In
Combinatorial Pattern Matching, 21st Annual Symposium, CPM 2010, New York, NY, USA,
June 21-23, 2010. Proceedings, pages 101–111, 2010.

16 Richard Cole and Ramesh Hariharan. Approximate String Matching: A Simpler Faster
Algorithm. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
25-27 January 1998, San Francisco, California, USA., pages 463–472, 1998.

17 Maxime Crochemore. String-Matching on Ordered Alphabets. Theor. Comput. Sci., 92(1):33–
47, 1992.

18 Maxime Crochemore, Leszek Gasieniec, Wojciech Plandowski, and Wojciech Rytter. Two-
Dimensional Pattern Matching in Linear Time and Small Space. In STACS, pages 181–192,
1995.

19 Zvi Galil and Raffaele Giancarlo. Data structures and algorithms for approximate string
matching. J. Complexity, 4(1):33–72, 1988.

20 Zvi Galil and Kunsoo Park. An Improved Algorithm for Approximate String Matching. SIAM
Journal on Computing, 19(6):989–999, 1990.

21 Zvi Galil and Joel Seiferas. Time-space-optimal String Matching (Preliminary Report). In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81,
pages 106–113, New York, NY, USA, 1981. ACM.

22 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pBWT: Achieving succinct data
structures for parameterized pattern matching and related problems. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 397–407, 2017.

23 Leszek Gasieniec, Wojciech Plandowski, and Wojciech Rytter. The Zooming Method: A Recurs-
ive Approach to Time-Space Efficient String-Matching. Theor. Comput. Sci., 147(1&2):19–30,
1995.

24 Piotr Indyk. Faster Algorithms for String Matching Problems: Matching the Convolution
Bound. In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November
8-11, 1998, Palo Alto, California, USA, pages 166–173, 1998.

25 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM J. Comput., 6(2):323–350, 1977.

26 Tsvi Kopelowitz and Ely Porat. A Simple Algorithm for Approximating the Text-To-Pattern
Hamming Distance. In 1st Symposium on Simplicity in Algorithms, SOSA 2018, January
7-10, 2018, New Orleans, LA, USA, pages 10:1–10:5, 2018.

27 Gad M. Landau and Uzi Vishkin. Fast Parallel and Serial Approximate String Matching.
Journal of Algorithms, 10(2):157–169, 1989.

28 VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10:707, 1966.

29 William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

30 G. Myers. Incremental alignment algorithms and their applications. Technical Report, 1986.
31 Gonzalo Navarro. A Guided Tour to Approximate String Matching. ACM Comput. Surv.,

33(1):31–88, March 2001.
32 Mihai Patrascu. Succincter. In 49th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 305–313, 2008.
33 Peter H. Sellers. The Theory and Computation of Evolutionary Distances: pattern recognition.

Journal of Algorithms, pages 1:359–373, 1980.
34 Tatiana A. Starikovskaya. Communication and Streaming Complexity of Approximate Pattern

Matching. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July
4-6, 2017, Warsaw, Poland, pages 13:1–13:11, 2017.

35 Esko Ukkonen. Algorithms for Approximate String Matching. Inf. Control, 64(1-3):100–118,
March 1985.

36 Esko Ukkonen and Derick Wood. Approximate String Matching with Suffix Automata.
Algorithmica, 10(5):353–364, 1993.

FSTTCS 2019

	Introduction
	Related work

	Preliminaries
	Offline approximate pattern matching
	Technical Overview
	Covering phase
	Correctness of the covering algorithm
	Time complexity of the covering algorithm

	Min-cost Path in a Grid Graph with Shortcuts
	Online approximate pattern matching
	The online algorithm

	Discussion

