
Breaking the Barrier Of 2 for the Competitiveness
of Longest Queue Drop
Antonios Antoniadis #

University of Twente, The Netherlands

Matthias Englert #

University of Warwick, Coventry, UK

Nicolaos Matsakis #

Athens, Greece

Pavel Veselý #

Computer Science Institute of Charles University, Prague, Czech Republic

Abstract
We consider the problem of managing the buffer of a shared-memory switch that transmits packets
of unit value. A shared-memory switch consists of an input port, a number of output ports, and
a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the
input port, each packet designated for one output port. Each packet is added to the queue of the
respective output port. If the total number of packets exceeds the capacity of the buffer, some
packets have to be irrevocably rejected. At the end of each time step, each output port transmits a
packet in its queue and the goal is to maximize the number of transmitted packets.

The Longest Queue Drop (LQD) online algorithm accepts any arriving packet to the buffer.
However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet
from the back of whichever queue is currently the longest, breaking ties arbitrarily. The LQD
algorithm was first introduced in 1991, and is known to be 2-competitive since 2001. Although LQD
remains the best known online algorithm for the problem and is of practical interest, determining
its true competitiveness is a long-standing open problem. We show that LQD is 1.707-competitive,
establishing the first (2 − ε) upper bound for the competitive ratio of LQD, for a constant ε > 0.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases buffer management, online scheduling, online algorithms, longest queue drop

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.17

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2012.03906

Funding Antonios Antoniadis: Work done in part while the author was at Saarland University and
Max-Planck-Institute for Informatics and supported by DFG grant AN 1262/1-1.
Pavel Veselý: Work done while the author was at University of Warwick. Partially supported by
European Research Council grant ERC-2014-CoG 647557, by GA ČR project 19-27871X, and by
Charles University project UNCE/SCI/004.

1 Introduction

The fact that communication networks are omnipresent highlights the significance of improving
their performance. A natural way to achieve such performance improvements is to develop
better algorithms for buffer management of shared-memory switches which form the lower
levels of network communication. We study a fundamental model of such switches.

EA
T

C
S

© Antonios Antoniadis, Matthias Englert, Nicolaos Matsakis, and Pavel Veselý;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.antoniadis@utwente.nl
mailto:M.Englert@warwick.ac.uk
mailto:nickmatsakis@gmail.com
mailto:vesely@iuuk.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.ICALP.2021.17
https://arxiv.org/abs/2012.03906
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Breaking the Barrier of 2 for the Competitiveness of LQD

Consider a shared-memory network switch consisting of a buffer of size M ∈ N, an input
port, and N ∈ N output ports. Furthermore, consider a slotted time model. In each time
step, an arbitrary number of unit-valued packets arrive to the input port. Each packet comes
with a label specifying the output port that it has to be forwarded to. A buffer management
algorithm has to make a decision for each packet: either irrevocably reject it, or accept it
while ensuring that the buffer capacity M is respected, which may mean that a previously
accepted packet has to be evicted. At the end of the time step, each output port with at least
one packet in the buffer destined to it transmits a packet. The goal of the buffer management
algorithm is to accept/reject incoming packets or evict already accepted packets, so as to
maximize the throughput, i.e., the total number of transmitted packets, while ensuring that
at most M packets in total are stored for all output ports at any time.

Given the inherently online nature of buffer management problems, a standard approach
is to design online algorithms for them and evaluate the algorithm’s performance using its
competitive ratio. More specifically, an online algorithm ALG is c-competitive (where c ≥ 1),
if the number of packets transmitted by an optimal offline algorithm OPT (that has full
knowledge of the incoming packet sequence a priori) is at most c times the number of packets
transmitted by ALG. There exists an extensive body of research dedicated to designing
competitive online algorithms with the aim of improving the performance of networking
devices that incorporate buffers (see e.g. [20, 32]).

Since packets have unit value, we can assume without loss of generality that the packets
destined to a specific output port are transmitted in an earliest-arrival (FIFO) fashion and
thus, it is helpful to associate each output port with a queue.

Intuitively speaking, to maximize throughput, one would like to maintain a flow of packet
transmissions for as many queues in parallel as possible. It is therefore desirable to prioritize
accepting packets for queues that do not have many incoming packets in the near future.
Unfortunately, an online algorithm does not know which queues these are, and in order to be
insured against an adversarial input it seems reasonable to try to keep the queue lengths
as balanced as possible in every step. This is exactly the idea behind the online algorithm
Longest Queue Drop (LQD), introduced in 1991 by Wei, Coyle, and Hsiao [35]: The incoming
packet is always accepted and if this causes the buffer to exceed its capacity then one packet
from the longest queue, breaking ties arbitrarily, is evicted (this could be the incoming
packet).1

The LQD algorithm, apart from being a natural online algorithm to derive, remains the
only known competitive algorithm for this problem. Since the algorithm is simple and can
be used, for instance, to achieve a fair distribution of the bandwidth, it is of some practical
interest; see e.g. [10, 11, 12, 13, 31, 33].

Previous Results

Hahne, Kesselman, and Mansour [21] provided the first formal analysis of LQD, showing that
it is 2-competitive (see also Aiello, Kesselman, and Mansour [1]). The proof follows from a
simple procedure that charges the extra profit of OPT to the profit of LQD. Furthermore,
they demonstrate that LQD is at least

√
2-competitive, and also showed a general lower

bound of 4/3 for the competitive ratio of any deterministic online algorithm.

1 Wei, Coyle, and Hsiao proposed the LQD algorithm for the problem of shared-memory switches, consisting
of N input ports and N output ports. Rather than assuming N input ports, each of which may receive
at most one packet per time step, we more generally assume that there is a single input port of infinite
capacity. Furthermore, we do not put any restrictions on the number of output ports, i.e., we allow N
to be arbitrarily large. Again, this only makes the problem more general.

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:3

The analysis of LQD in [1, 21] was then refined by Kobayashi, Miyazaki, and Okabe [28]
who showed that the LQD competitive ratio is at most 2 − mink=1,...,N (⌊M/k⌋ + k − 1)/M .
However, for N >

√
M , this bound becomes 2 − O(1/

√
M) and therefore does not establish

a 2 − ε upper bound for a constant ε > 0 in general. Additionally, for the case of N = 2
output ports, LQD is exactly 4M−4

3M−2 -competitive [28] (we note that although this result holds
for an even buffer size, the argument unfortunately breaks down when the buffer size is odd).
For the case of N = 3 output ports, Matsakis shows that LQD is 1.5-competitive [30].

More recently, Bochkov, Davydow, Gaevoy, and Nikolenko [9] improved the lower bound
on the competitiveness of LQD from

√
2 to approximately 1.44 (using a direct simulation

of LQD and also independently, by solving a linear program). Moreover, they show that
any deterministic online algorithm is at least

√
2-competitive, using a construction inspired

by the LQD specific lower bound from [1, 21]. To the best of our knowledge, so far, no
randomized algorithms for this problem have been studied.

Our Contribution

Although LQD is the best known online algorithm for buffer management in shared-memory
switches, determining its true competitiveness remains an elusive problem and has been
described as a significant open problem in buffer management [20, 32]. After the initial
analysis which showed that LQD is 2-competitive and not better than

√
2-competitive [1, 21]

progress on the upper bound has been limited to special cases (e.g., with restrictions on the
number of output ports or memory size) [28, 30]. In this paper, we make the first major
progress in almost twenty years on upper bounding the competitive ratio of LQD. Namely, we
prove the first (2 − ε) upper bound for a constant ε > 0 without restrictions on the number
of ports or the size of the buffer:

▶ Theorem 1. LQD is 1.707-competitive.

We remark that Theorem 1 applies to LQD with any tie-breaking rule, even if tie-breaking
is under control of the adversary, and that our upper bound is strictly smaller than 1 + 1/

√
2.

Our Techniques

The proof of 2-competitiveness of LQD in [1, 21] uses the following general approach. If an
optimal offline algorithm OPT currently stores more packets for a queue than LQD does,
these excess packets present potential extra profit for OPT. Each such potential extra packet
p in OPT is then matched to a packet that is transmitted by LQD at some point before
packet p can be transmitted by OPT.

Our approach is different in that we (for the most part) do not match specific packets to
one another. Instead, the idea is to take the total profit of LQD in each step and distribute it
evenly among all potential extra packets that exist at the time. As such, the scheme is less
discrete than the previous one. We then carefully calculate that, for each queue, on average
each potential extra packet in that queue receives a profit strictly larger than one.

As described here, this approach does not quite work yet. Two additional types of charging
concepts have to be combined with this first idea: One involves not splitting the LQD profit
completely evenly and instead slightly favoring queues with relatively few potential extra
packets, and the other involves matching some of the potential extra packets of OPT to
extra packets that LQD transmits. Another difficulty is that the lengths of two queues, from
which packets are rejected or evicted in the same time step, may differ by one packet. This
makes our proof more intricate. To deal with this, we introduce a potential function that

ICALP 2021

17:4 Breaking the Barrier of 2 for the Competitiveness of LQD

will amortize the LQD profit in a suitable way. Then, the main challenge is to obtain useful
lower bounds on the profit assigned to each queue, for which we introduce a novel scheme
that relates the buffers of LQD and of OPT.

Further Related Work

We refer the reader to the survey by Goldwasser [20] for an overview of online algorithms
for buffer management problems. Additionally, the survey of Nikolenko and Kogan [32]
incorporates some more recent work. In the following, we discuss some of the results related
to online buffer management for switches. In general, buffer management algorithms can be
partitioned into preemptive ones, i.e., algorithms that allow for the eviction of already accepted
packets from the buffer (eviction is also referred to as preemption), and non-preemptive ones
that never evict a packet after it has been accepted.

Kesselman and Mansour [25] study buffer management in shared-memory switches in the
non-preemptive setting in which a packet has to be transmitted once it is stored in the buffer
and can no longer be evicted. They introduce the Harmonic online algorithm, which tries to
maintain the length of the ith longest queue as roughly proportional to a 1/i fraction of the
memory. They show that this algorithm is (ln(N) + 2)-competitive and give a general lower
bound of Ω(log N/ log log N) for the performance of any deterministic non-preemptive online
algorithm. Considering the non-constant lower bound that they establish, it follows that
preemption provides a significant advantage.

Eugster, Kogan, Nikolenko, and Sirotkin [19] generalize the same problem in the following
two ways: First, they study unit-valued packets labeled with an output port and a processing
requirement (in our case, we have a unit processing cycle per packet). Packets accepted to the
same queue have the same processing requirement. They introduce the preemptive Longest-
Work-Drop algorithm: If the buffer is not full, the incoming packet is accepted; otherwise,
a packet is preempted from a queue that has the largest total processing requirement.
They show that this algorithm is 2-competitive and at least

√
2-competitive and that the

competitive ratio of LQD for this more general problem is at least (
√

k − o(
√

k)), where k is
the maximum processing time of any packet. Second, they address the problem of different
packet values when all packets have unit processing requirements. They show that LQD is at
least (3

√
k − o(3

√
k))-competitive in this case, where k is the maximum packet value. They

also introduce a new algorithm which they conjecture to have a constant competitive ratio.
Azar and Richter [6] study switches with multiple input queues. More specifically, they

consider one output port and N input ports and assume that each input port has an
independent buffer of size M . At each time step, one packet can be sent from a single
input port to the output port. For M = 1, they prove a lower bound of 1.46 − Θ(1/N) for
the competitive ratio of any randomized online algorithm and a lower bound of 2 − 1/N

for deterministic online algorithms. They also give a randomized e
e−1 ≈ 1.582-competitive

algorithm for M > log N . For M > 1, Albers and Schmidt [3] design a deterministic 1.889-
competitive algorithm for this problem and show a deterministic lower bound of e

e−1 ≈ 1.582
when N ≫ M . Azar and Litichevskey [5] give a deterministic online algorithm matching this
bound for large M .

A lot of research has been dedicated to the natural single input and single output port
model. The model is trivial for unit packet values, but challenging if packets can have
different values and the goal is to maximize the total value of transmitted packets. There
exists a single queue for the accepted packets and one of the most studied versions of this
problem requires packet transmission in the FIFO order. Kesselman, Lotker, Mansour,
Patt-Shamir, Schieber, and Sviridenko [24] show that a simple greedy algorithm is exactly

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:5

(2−1/(M +1))-competitive when preemption is allowed. A series of works gradually improved
the analysis of a better online algorithm from 1.983 [26], over 7/4 [7], to

√
3 [17]. Kesselman,

Mansour, and van Stee [26] also show a general lower bound of 1.419 for the competitive
ratio of any preemptive deterministic online algorithm.

The authors of [24] introduce the bounded-delay model of single output port switches.
In this model, the buffer has unlimited size and allows for packets to be transmitted in any
order, however, each packet has a deadline after which it needs to be dropped from the
buffer. Once again, the problem is only interesting if packets can have different values. Any
deterministic online algorithm is at least ϕ ≈ 1.618-competitive [4, 15, 22, 36], and after a
sequence of gradual improvements [16, 18, 29], Veselý, Chrobak, Jeż, and Sgall [34] recently
gave a ϕ-competitive algorithm. The competitive ratio of randomized algorithms is still
open, with the best upper bound of e

e−1 ≈ 1.582 [8, 14, 23] (that holds even against the
adaptive adversary), while the lower bounds are 1.25 against the oblivious adversary [8] and
4/3 against the adaptive adversary [15].

Lastly, we mention the model of Combined Input and Output Queued (CIOQ) Switches,
in which the switch has N input ports and N output ports. Each input and output port has
its own buffer and each input port can transfer a packet to any output port; however, at
most one packet can be sent from any input port and at most one packet can be accepted
by any output port, during one transfer cycle of the switch. A parameter S called speedup
equals the number of transfer cycles of the switch taking place per one time step. For the
unit-value case, Kesselman and Rosén [27] provide a 2-competitive non-preemptive online
algorithm for S = 1, which becomes 3-competitive for any S. A faster algorithm with the
same competitive ratio is given by Al-Bawani, Englert, and Westermann [2].

2 Setup of the Analysis

We fix an arbitrary instance I. Let OPT and LQD be the optimal offline algorithm and the
Longest Queue Drop algorithm, respectively. In a slight abuse of notation, we also denote
the profit that the optimal offline algorithm gains on input instance I as OPT and the profit
that the Longest Queue Drop algorithm gains as LQD. Our goal is to give an upper bound
on OPT/LQD.

For a time step t and a queue q, we say that OPT transmits an OPT-extra packet from
q if OPT transmits a packet from q in step t but LQD does not. Equivalently, queue q is
non-empty in OPT’s buffer but empty in LQD’s buffer at t. Similarly, we say that LQD
transmits an LQD-extra packet from a queue q in step t if LQD transmits a packet from q at
t but OPT does not.

Let OPTEXTRA and LQDEXTRA be the total number of transmitted OPT-extra and LQD-
extra packets, respectively, over all time steps and queues. Then OPT − OPTEXTRA =
LQD − LQDEXTRA and hence OPT

LQD = 1 + OPTEXTRA−LQDEXTRA
LQD . Therefore, if we show that

ϱ · (OPTEXTRA − LQDEXTRA) ≤ LQD for some ϱ > 1, it will imply a competitive ratio of
1 + 1/ϱ < 2 for the Longest Queue Drop algorithm.

Let eq denote the total number of transmitted OPT-extra packets from queue q over all
time steps. Then we have OPTEXTRA =

∑
q eq and we will show

ϱ ·

(∑
q

eq − LQDEXTRA

)
≤ LQD . (1)

We now give a high-level overview of the proof of Equation (1), which consists of two parts:
(i) splitting the LQD profit among queues q with eq > 0, and (ii) mapping transmitted
LQD-extra packets to queues q with eq > 0.

ICALP 2021

17:6 Breaking the Barrier of 2 for the Competitiveness of LQD

For (ii), we use the term LQDEXTRA in (1) to “cancel out” some transmitted OPT-extra
packets. To this end, we will define how each transmitted LQD-extra packet p is mapped to
a queue q (which is different from the one p is transmitted from). Let mq be the number
of transmitted LQD-extra packets which are mapped to q. The mapping will be such that∑

q mq ≤ LQDEXTRA and that mq ≤ eq. Define êq = eq −mq ≥ 0 as the number of OPT-extra
packets transmitted from queue q which are not canceled out.

We have
(∑

q eq − LQDEXTRA

)
≤
∑

q(eq − mq) =
∑

q êq. Hence, it is sufficient for each q

to receive a profit of at least ϱ · êq, from which it follows that ϱ ·
∑

q êq ≤ LQD, implying (1).
We describe splitting the LQD profit, enhanced with a suitable potential, in Section 3

and introduce useful quantities for bounding the profit assigned to a particular queue in
Section 4. Then, in Section 5, we introduce the mapping of transmitted LQD-extra packets
to queues and derive a relation between the buffers of LQD and of OPT. Finally, we put the
bounds together and optimize the value of ϱ in Section 6, which will yield our upper bound
on the LQD competitive ratio.

3 Splitting the LQD Profit

In this section, we explain how the LQD profit is split. Before we proceed, we introduce
some notation and terminology and define a key time step for a queue. When we refer to
the state of a queue at time step t under some algorithm, we refer to the state after all new
packets of step t have arrived and after all possible rejections/preemptions of packets by
the algorithm, but before any packet is transmitted by the algorithm at the end of step t.
(Note that by preemption we mean an eviction of an already accepted packet.) We use the
following notation:

st
OPT(q): the number of packets in queue q in the OPT buffer in step t,

st
LQD(q): the number of packets in queue q in the LQD buffer in step t,

st
max = maxq st

LQD(q): the maximal size of a queue in the LQD buffer in step t.

We say that a queue q is active in a time step t if st
OPT(q) ≥ 1 or st

LQD(q) ≥ 1. Otherwise,
if q is empty in both buffers at t, we say that q is inactive at t. See Figure 1 for an illustration.

Assumptions on the Instance

First, we assume without loss of generality (w.l.o.g.) that the longest queue in LQD’s buffer
has at least two packets in every step before the last step when packets are transmitted by
LQD.
(A1) We assume that once st

max ≤ 1, no packet arrives to any queue in any step t′ > t.
Consequently, st

max ≥ 2 for any step t starting from the step in which the first packets
are stored in the buffer and before the last step when the LQD buffer is not empty.

To see that this assumption is w.l.o.g., note that if st
max ≤ 1 then after packets are transmitted

in step t, the LQD buffer is empty. Hence, LQD’s processing of possible packets arriving after
t is essentially independent of its behavior up to step t, and the adversary may postpone the
arrival of future packets by an arbitrary number of steps, which may only help to increase
the throughput of OPT but does not change the throughput of LQD.

We also make the following assumption w.l.o.g., which will greatly reduce the additional
notation required.
(A2) For any queue q and step t, we assume that if st

LQD(q) ≤ 1 but at least one packet
arrived to q at or before time step t, then no packet arrives to queue q after step t. (If
st

LQD(q) = 1 then the last packet is transmitted from q in step t.)

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:7

↓ 1 ↓ 2 ↓ 3 ↓ 4 ↓ 5 ↓ 6 ↓ 7 ↓ 8 ↓ 9 ↓ 10 queues

packets

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Figure 1 An example of the buffer configuration for LQD and OPT at some time step t. The
blue, north-west shaded areas (aligned to the left) correspond to the packets in queues of LQD and
the red, north-east shaded areas (aligned to the right) to the queues of OPT. For instance, we have
st

OPT(6) = 14, and st
LQD(6) = 7. Furthermore, st

max = 12 is the maximal size of a queue for LQD.
Note that an OPT-extra packet is going to be transmitted from queue 9 in step t, and as queue 9 is
empty for LQD, no further packet arrives to this queue by assumption (A2). All the queues with an
index ≥ 10 are inactive (i.e., empty in both buffers). According to Definition 2, queues 1, 2, and 3
overflow. As an example, assume that further 3 packets arrive into queue 8. Then LQD would first
preempt a packet from queue 1 and then select two of the queues 1, 2 or 3, dropping one packet
from each selected queue.

To see that this assumption is w.l.o.g., we iteratively modify the instance under consider-
ation as follows: Let q be any queue q that does not satisfy this assumption and let t be the
first time step such that st

LQD(q) ≤ 1 and there is a packet arriving to q at t or before. As
q does not satisfy the assumption, there is a packet arriving to q after step t; let p be the
first such packet. In the modified instance, p and all later packets for queue q are instead
sent to a new queue which is not used in the instance otherwise. Observe that the profit
of LQD does not change after redirecting these packets to a new queue, while the profit of
OPT cannot decrease when we make this change. We remark that the new queue is always
available as the number of output ports N is not restricted and can be arbitrarily large.
Note that we only make this assumption to simplify our notation and it does not affect the
generality of our analysis. Indeed, if the number of output ports used in the original instance
is bounded by N0, then after applying this transformation, there are always at most N0
queues non-empty for LQD at any one time.

For instance, under assumption (A2), if an OPT-extra packet is transmitted from a queue
q in some step t (as q is empty for LQD), then no packet arrives to q in any step t′ > t.

Overflowing Queues

Intuitively, if a packet destined to q is rejected or preempted by LQD at t, then we say that q

overflows. Furthermore, in such a case, the LQD buffer is full in step t and q has st
max − 1 or

st
max packets at t (see the example in Figure 1). This possible difference of 1 in the lengths

ICALP 2021

17:8 Breaking the Barrier of 2 for the Competitiveness of LQD

of two different overflowing queues makes our analysis substantially more involved.2 For
technical reasons, we also call a queue q′ containing at least st

max − 1 packets at t overflowing,
provided that the LQD buffer is full and st

LQD(q′) ≥ 1, even though there may be no packet
for q′ that is rejected or preempted at time t (it may even happen that no packet destined to
any queue gets rejected or preempted at t but there are still some overflowing queues).

▶ Definition 2. We say that a queue q overflows in step t if the LQD buffer is full in step t,
st

LQD(q) ≥ st
max − 1, and st

LQD(q) ≥ 1.

Assumption (A2) also implies that once st
LQD(q) ≤ 1, then queue q does not overflow

after t (as after step t, it is empty in the LQD buffer).

Key Time Step

Based on assumption (A2), we give a definition of a key time step tq for queue q. For each
queue q, we define:
tq: the last time step in which queue q overflows; if q does not overflow in any step, we

define tq = −1 (we index time steps starting from 0).
Some important properties follow directly from the definition of tq: No packet is ever
preempted by LQD from q after tq and no packet arriving to q after tq is rejected by LQD,
since a preemption or rejection in some step t implies that the queue overflows at t. We
remark that we define tq = −1 for queues q that do not overflow in any step in order to have
the property that for such queues, tq < t for all time steps t.

We would like to keep track of how many OPT-extra packets are yet to be transmitted
from a queue, for which the following notation is useful.
et

q: the number of OPT-extra packets transmitted from q in step t or later.
êt

q = max{et
q − mq, 0}: that is, et

q adjusted for the packets that are canceled out by
transmitted LQD-extra packets. Note that mq will be specified in Section 5.

Note that eq = e0
q = e

tq
q as no OPT-extra packet is transmitted before time tq by

assumption (A2). Thus, et
q is constant up to time tq. After that, it further remains constant

until q becomes empty for LQD, and then it decreases by one in each step until it becomes
equal to zero. The same property holds for êt

q. The definition of tq gives us a useful
observation:

▶ Observation 3. For any step t and queue q with t ≥ tq (i.e., that does not overflow after t),
it holds that max

{
st

OPT(q) − st
LQD(q), 0

}
≥ et

q.

Phases

It will be convenient in certain parts of the analysis to consider time phases instead of time
steps. More specifically, let τ1 < τ2 < ... < τℓ be the time steps in which at least one queue
overflows for the last time, i.e., for each 1 ≤ i ≤ ℓ there is a queue q such that τi = tq ≥ 0.
Note that it has to be ℓ > 0 so that OPT gains extra profit (equivalently, ℓ = 0 only if
OPTEXTRA = 0). We call the time interval [τi, τi+1) the i-th phase; for i = ℓ, we define
τℓ+1 = ∞. We remark that time steps before τ1 do not belong to any phase, because there

2 A less sophisticated version of our proof, which deals with this scenario in a less careful way, only gives
an upper bound of about 1.906 on the competitive ratio. Nevertheless, this analysis still requires the
majority of concepts, lemmas, and calculations developed in the paper.

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:9

are no OPT-extra packets transmitted before step τ1. Finally, observe that for any queue q

that overflows at least once (i.e., tq ≥ 0), there has to exist an i such that tq = τi as this
queue overflows at tq for the last time.

In the remainder of the paper, our focus will be mainly on steps τ1, . . . , τℓ. For simplicity
and to avoid double indexing, we shall write si

LQD(q) instead of sτi

LQD(q), and similarly, we
use index i instead of τi in other notations. Throughout the paper, i will be used solely to
index phases and time steps τ1, . . . , τℓ.

Intuition for Splitting the LQD Profit

The key ingredient of our analysis is the splitting of the LQD profit such that we assign a
profit of at least ϱ · êq to each q. To keep track of how much profit we assigned to a queue
q, we use counter Φq. In particular, ∆iΦq will be the LQD profit assigned to q in phase i

and Φq =
∑ℓ

i=1 ∆iΦq will be the LQD profit assigned to q over all phases. We will ensure
that LQD ≥

∑
q Φq. The crucial part will be to show that Φq ≥ ϱ · êq, which, together with∑

q(eq − êq) =
∑

q mq ≤ LQDEXTRA, implies (1) using

LQD ≥
∑

q

Φq ≥
∑

q

ϱ · êq ≥ ϱ ·

(∑
q

eq − LQDEXTRA

)
.

Let LQDi be the profit of LQD in phase i, i.e., the total number of packets transmitted
by LQD in all time steps in [τi, τi+1). A first idea is to split LQDi among queues q satisfying
tq ≤ τi proportionally to êi

q, meaning that we assign a profit of LQDi · êi
q/êi to a queue q

with τi ≥ tq, where êi =
∑

q:τi≥tq
êi

q. Such a scheme is useful because we can relate êi to a
certain fraction of the LQD profit; this is elaborated in Section 5.

Unfortunately, this simple idea fails for “short” queues, by which we mean queues for
which êq is relatively small compared to the number of packets that LQD transmits from q

starting from time tq. In particular, the total profit assigned to such a short queue q may be
very close to êq, which would only be sufficient for ϱ = 1, thus proving 2-competitiveness.

To give a higher profit to a short queue q, we choose a parameter α ∈ (0, 1) and directly
assign to q a (1 − α)-fraction of the profit LQD gains by transmitting packets from q

itself starting at time step tq, whereas the remaining α-fraction of these packets is split
proportionally to êi

q. The parameter α ≈ 0.58 is chosen at the very end of the analysis, so as
to minimize the competitive ratio upper bound.

Potential

Before describing how exactly we split the LQD profit, we introduce a potential that will help
us to deal with the fact that some queues overflowing in step t may only have st

max −1 packets
and not st

max packets. On an intuitive level, this potential amortizes the profit assignment
by moving some profit from phases with a slack to phases in which our lower bounds on the
profit assigned are tight; we develop these bounds in the subsequent sections.

Namely, at any phase i, let Ai be the set of queues q that are active in step τi and satisfy
tq > τi (i.e., will overflow after the beginning of phase i). Thus, for any such queue q we
have tq = τj for some j > i and consequently, q is non-empty for LQD in every step during
phase i by assumption (A2) (as otherwise, q would not overflow at τj).

Then, using the aforementioned parameter α, we define potential Ψi := α · |Ai|. Note that
the potential at the beginning is Ψ1 ≤ α · M and after the last packet of the input instance
is transmitted, the potential equals Ψℓ+1 = 0. We define two quantities which express the
change of this potential in phase i:

ICALP 2021

17:10 Breaking the Barrier of 2 for the Competitiveness of LQD

ui = the number of queues active in step τi+1 that were inactive in step τi and will overflow
after τi+1, i.e., the number of “new” active queues that will overflow after τi+1; and

vi = the number of queues that are active in step τi and overflow at τi+1 for the last time,
i.e., τi+1 = tq for any such queue q.

Let ∆iΨ := Ψi+1−Ψi be the change of the potential in phase i; observe that ∆iΨ = α·(ui−vi).

Splitting the LQD Profit

We now formally define our scheme of splitting the LQD profit. Consider phase i. Let oi be
the number of packets that LQD transmits in the i-th phase from queues q with τi ≥ tq and
eq > 0, and let ni be the number of packets transmitted by LQD in phase i from all other
queues. Note that LQDi = oi + ni.

Apart from parameter α ∈ (0, 1), we use another parameter β ∈ (0, 1) such that α+β < 1;
namely we will set β = α2/(8 · (1 − α)) (we will require that α is not too close to 1 so that
α + β < 1). Given the two parameters, in each phase i, we assign an LQD profit of

∆iΦq :=
êi

q

êi
· (ni + α · oi − ∆iΨ) + β · oi

q︸ ︷︷ ︸
L-increase

+ (1 − α − β) · oi
q︸ ︷︷ ︸

S-increase

(2)

to each queue q with τi ≥ tq and êi
q > 0, where oi

q is the number of packets that LQD
transmits from q during the i-th phase.

We call the first two terms in Equation (2) (i.e., (êi
q/êi) · (ni + α · oi − ∆iΨ) + β · oi

q)
the L-increase for q as they will be mainly useful for “long” queues (with relatively high
êq). We call the last term, (1 − α − β) · oi

q, the S-increase for q as it works well for “short”
queues. Note that we only assign profit to queues that already have overflown for the last
time. Furthermore, once a queue q with τi ≥ tq is empty in both the LQD and OPT buffers
at the start of a phase, it does not get any profit as êi

q ≤ ei
q = 0 and oi

q = 0.
To ensure feasibility of our scheme, we show that in total over all queues q with τi ≥ tq

and êi
q > 0 we assign a profit of at most LQDi − ∆iΨ. Indeed, using êi =

∑
q:τi≥tq

êi
q and∑

q:τi≥tq and êi
q>0 oi

q ≤ oi, we have

∑
q:τi≥tq and êi

q>0

∆iΦq =
∑

q:τi≥tq and êi
q>0

(
êi

q

êi
· (ni + α · oi − ∆iΨ) + β · oi

q + (1 − α − β) · oi
q

)

≤ ni + α · oi − ∆iΨ + β · oi + (1 − α − β) · oi

= ni + oi − ∆iΨ = LQDi − ∆iΨ .

While the scheme to split the LQD profit is relatively simple to define, showing Φq ≥ ϱ · êq

brings technical challenges, namely, in obtaining suitable lower bounds on the profits assigned
proportionally to êi

q and in summing up these lower bounds over all phases. We get our
lower bound based on a novel scheme that relates the buffers of LQD and of OPT, which is
introduced in the next two sections.

4 Live and Let Die

Analyzing the S-increases is relatively easy. Most of the remainder of the proof is focused on
analyzing the L-increases. We start by deriving a helpful lower bound on ni + α · oi − ∆iΨ.
For this, we first introduce the notion of live and dying queues, which are defined with respect
to a fixed queue q with tq ≤ τi and êq > 0. For this fixed queue, we need to define live and

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:11

dying queues up until the first phase that comes after OPT transmits the last packet from
q not canceled out by an LQD-extra packet. Let jq := min{j : êj

q = 0} be the index j of
the earliest step τj in which all remaining OPT-extra packets to be transmitted from q are
canceled out.

▶ Definition 4. Fix a queue q with êq > 0, and consider a phase i with tq ≤ τi and i ≤ jq.
Let q′ be a queue for which LQD stores at least one packet at time step τi. Queue q′ is called
live with respect to (w.r.t.) queue q at time step τi if

(i) τi < tq′ , i.e., q′ overflows at some time step after the i-th phase, or
(ii) eq′ = 0 and s

jq

LQD(q′) ≥ 1,
or both. Otherwise, q′ is called dying with respect to queue q at time τi.

Note that step τjq
referred to in s

jq

LQD(q′) is after tq, since êt
q = êq > 0 in any step t before the

first OPT-extra packet is transmitted from q. Furthermore, eq′ > 0 implies that q′ becomes
empty in the LQD buffer before it becomes empty in the OPT buffer, by Observation 3.
Intuitively, and assuming that êq = eq, at time step τi, a queue q′ is dying with respect to q

if (i) it no longer overflows and (ii) either LQD runs out of packets to send from q′ before the
time OPT does or LQD runs out of packets to send from q′ before the beginning of phase jq.

The definition of live and dying queues implies the following property about transitions
between these two types. This follows since the only property in Definition 4 (for a fixed q)
that may change with increasing i is whether or not τi < tq′ .

▶ Observation 5. If a queue q′ is dying (w.r.t. queue q) in time step τi, it will never be live
(w.r.t. queue q) in step τj for any j > i. If q′ is live (w.r.t. queue q) at τi, it can become
dying (w.r.t. queue q) in time step τi+1 only if it overflows in time step τi+1 for the last time.

For any phase i, we denote the set of queues that are live in step τi w.r.t. q as Li
q and

the set of queues dying in step τi w.r.t. q as Di
q. For a fixed phase i and queue q, the sets Li

q

and Di
q partition all queues in which LQD stores packets at time τi. Let di

q be the number of
packets transmitted from queues in Di

q during phase i. We now relate ni + α · oi to |Li
q| and

di
q.

▶ Observation 6. It holds that ni ≥ |Li
q|·(τi+1−τi) and also ni+α·oi ≥ |Li

q|·(τi+1−τi)+α·di
q.

Proof. Recall that oi is the number of packets that LQD transmits in phase i from queues q′

satisfying τi ≥ tq′ and eq′ > 0, and that ni = LQDi − oi (i.e., ni is the number of packets
that LQD sends in the i-th phase from queues q′ that will overflow after τi or that satisfy
eq′ = 0). As packets sent from queues that are live in step τi are accounted for in ni, it holds
that ni ≥ |Li

q| · (τi+1 − τi), which proves the first claim.
Since every queue q′ with τi ≥ tq′ and eq′ > 0 is dying w.r.t. queue q at time step τi, we

have that oi ≤ di
q. It holds that |Li

q| · (τi+1 − τi) + di
q ≤ LQDi = ni + oi, and this inequality

implies the second claim by using oi ≤ di
q and α ≤ 1. ◀

Fix a queue q. We would like to lower bound the number di
q of packets transmitted from

dying queues during the i-th phase in some way. Note that the LQD buffer is full at times τi

and τi+1. Suppose for a moment that the set of live queues (w.r.t. queue q) does not change
between step τi and step τi+1, i.e., Li+1

q = Li
q. Now, if the number of packets that LQD

stores in live queues Li
q increases by m between step τi and step τi+1, then we know that

di
q ≥ m. This is because the buffer is full, so if the live queues gain m packets, then dying

queues must have lost at least m packets (possibly more if there are new dying queues in
step τi+1). Since dying queues do not overflow, the only possible way to reduce the number
of packets stored by LQD in dying queues is to transmit them.

ICALP 2021

17:12 Breaking the Barrier of 2 for the Competitiveness of LQD

We now formalize this intuition and handle cases where the set of live queues changes
from one phase to the next. For the fixed queue q and each phase i such that τi ≥ tq and
i ≤ jq, we define

σi
q =


(∑

q′∈Li
q

si
LQD(q′)

)
/|Li

q| if |Li
q| ≥ 1,

1 otherwise .
(3)

In words, σi
q equals the average number of LQD packets in live queues (w.r.t. queue q) in step

τi, provided that there is at least one such queue. Later, in Lemma 13, we show that êi
q > 0

implies |Li
q| ≥ 1 for any phase i (i.e., that there is at least one live queue w.r.t. queue q) and

in most cases, we will only need σi
q in phases i with êi

q > 0. Since live queues are non-empty
for LQD, it holds that σi

q ≥ 1. Furthermore, as the average is at most the maximum and as
the maximum is an integer, this gives us the following observation.

▶ Observation 7. In any phase i such that τi ≥ tq and i ≤ jq, it holds that ⌈σi
q⌉ ≤ si

max.

The following lower bound on σi
q is useful for making β as small as possible.

▶ Observation 8. Assuming |Li
q| ≥ 1, it holds that σi

q ≥ 2 for any i with τi ≥ tq and i < jq.

Proof. We show that any live queue q′ (w.r.t. queue q) has at least two packets in the LQD
buffer in any step τi ≥ tq with i < jq, which is sufficient as σi

q is the average size of live queues,
provided that |Li

q| ≥ 1. For a live queue q′, consider two cases (as in Definition 4): First, if
τi < tq′ then indeed si

LQD(q′) ≥ 2 by assumption (A2) (if we had si
LQD(q′) ≤ 1, then q′ would

be empty at tq′ and would not overflow in that step). Second, if eq′ = 0 and s
jq

LQD(q′) ≥ 1,
where jq = min{j : êj

q = 0}, then we have that si
LQD(q′) ≥ 2, using assumption (A2) again

together with i < jq. ◀

Packets Transmitted from Dying Queues

We can now formally state our lower bound on the number of packets transmitted from
dying queues, taking into account the change of the potential as well. As a byproduct (by
rearranging the bound on di

q below), we obtain an upper bound on ui, the number of “new”
active queues that will overflow after τi+1, which captures the increase of the potential.
Recall that vi equals the number of queues that are active in step τi and overflow at τi+1 for
the last time.

▶ Lemma 9. Consider any queue q with êq > 0. For each phase i with τi ≥ tq and êi
q > 0,

di
q ≥ (σi+1

q − σi
q) · |Li

q| + σi+1
q · ui − vi.

Proof. As q is fixed, we consider live and dying queues w.r.t. queue q only. For simplicity, let
τ = τi and τ ′ = τi+1, thus the i-th phase is [τ, τ ′). By the definition of σi

q, live queues contain
σi

q · |Li
q| packets in the LQD buffer in step τ and thus, dying queues Di

q have M − σi
q · |Li

q|
packets in total in step τ , since the LQD buffer is full in step τ . As dying queues do not
overflow in any step after τ , it is sufficient to show that queues Di

q altogether contain at most
M − σi

q · |Li
q| − (σi+1

q − σi
q) · |Li

q| − σi+1
q · ui + vi = M − σi+1

q · |Li
q| − σi+1

q · ui + vi packets in
LQD’s buffer in step τ ′. Let x be the number of LQD packets in queues Di

q in step τ ′, so our
goal is to show

x ≤ M − σi+1
q · |Li

q| − σi+1
q · ui + vi . (4)

To this end, we analyze the LQD buffer in step τ ′. By Observation 5, any live queue
in Li

q is also live in step τ ′ or overflows in step τ ′ (possibly both). Let L′ = Li
q ∪ Li+1

q be

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:13

↓ 1 ↓ 2 ↓ 3 ↓ 4 ↓ 5 ↓ 6 ↓ 7 ↓ 8 ↓ 9 ↓ 10 ↓ 11 ↓ 12 queues

packets

1
2
3
4
5
6
7
8
9
10

Di+1
q Li+1

q

Di
q Li

q

Figure 2 An example of the LQD buffer in step τ ′ = τi+1 for illustrating the proof of Lemma 9.
Note that si+1

max = 10 and that queues 5 − 9 overflow. However, only queue 5 becomes dying as it
overflows for the last time at τ ′, i.e., t5 = τ ′. Moreover, queue 12 was empty in step τi and queue 1
will become empty for LQD just after packets are transmitted in step τ ′ (note that no further packets
will arrive to queue 1 after step τ ′ by assumption (A2)). We have that L′ = {5, 6, . . . , 12}. Finally,
σi+1

q = 56/7 = 8, since there are 56 packets in 7 live queues Li+1
q .

the set of queues that are live in step τ or in step τ ′. Observe that L′ ∩ Di
q = ∅, since by

Observation 5 dying queues may only become empty in LQD’s buffer but not live. It follows
that queues in L′ \ Li

q must be inactive in step τ . Next, no queue that is live in step τ is
empty for LQD in step τ ′ = τi+1 by Definition 4, using i < jq, which follows from êi

q > 0.
Finally, note that L′ may contain some dying queues in Di+1

q , but all of them must overflow
at τ ′, and that L′ \ Li+1

q ⊆ Di+1
q \ Di

q (however, equality is not necessarily true). Concluding,
set L′ consists of three disjoint types of queues:

(i) live queues in step τ that remain live in step τ ′,

(ii) live queues in step τ that become dying in step τ ′ – these are queues in L′ \ Li+1
q and

we have that |L′ \ Li+1
q | = vi, which follows from Observation 5 and from the definition

of vi, and

(iii) queues inactive in step τ that are live in step τ ′ – these are queues in L′ \ Li
q and there

are at least ui many of them (some live queues may not overflow in any step, so they
are not accounted for in ui).

See Figure 2 for an illustration.
Any queue in L′ \ Li+1

q must overflow at τ ′, so it has at least si+1
max − 1 ≥ σi+1

q − 1
LQD packets at τ ′, where we use σi+1

q ≤ si+1
max by Observation 7. It follows that queues in

Di+1
q have at least x + |L′ \ Li+1

q | · (σi+1
q − 1) packets in total in step τ ′. By the definition

of σi+1
q and since LQD’s buffer is full at τ ′, queues in Di+1

q contain M − |Li+1
q | · σi+1

q

packets and thus x + |L′ \ Li+1
q | · (σi+1

q − 1) ≤ M − |Li+1
q | · σi+1

q . Rearranging and using
|L′ \ Li+1

q | = vi, we get x ≤ M − |L′| · σi+1
q + vi. Using |L′| = |Li

q| + |L′ \ Li
q| ≥ |Li

q| + ui, we
obtain x ≤ M − (|Li

q| + ui) · σi+1
q + vi, implying (4). This concludes the proof as explained

above. ◀

ICALP 2021

17:14 Breaking the Barrier of 2 for the Competitiveness of LQD

We now give two more upper bounds on ui, the number of “new” active queues that will
overflow after τi+1. The advantage of the following bound over the one from Lemma 9 is
that it does not use σi+1

q .

▶ Lemma 10. Consider any queue q with êq > 0. For each phase i with τi ≥ tq and êi
q > 0,

ui ≤ 1
2 ·
(
|Li

q| · (σi
q − 1) + di

q

)
.

Proof. As q is fixed, we consider live and dying queues w.r.t. queue q only. Let x be the
number of LQD packets in queues Di

q in step τi+1. Similarly as in the proof of Lemma 9, we
show that

x ≤ M − |Li
q| − 2 · ui . (5)

This equation implies the lemma, since dying queues Di
q have M − σi

q · |Li
q| packets in total in

step τi and thus, di
q = M −σi

q ·|Li
q|−x ≥ M −σi

q ·|Li
q|−(M −|Li

q|−2·ui) = 2·ui−(σi
q −1)·|Li

q|
by (5), from which the lemma follows by rearranging. To justify (5), queues accounted for in
ui are empty for LQD at τi and overflow after τi+1, so LQD must store at least two packets
in each of them in step τi+1 by assumption (A2). Moreover, no queue that is live in step
τi is empty for LQD in step τi+1 by Definition 4, using i < jq, which follows from êi

q > 0.
Hence, there can be at most M − |Li

q| − 2 · ui LQD packets in queues Di
q in step τi+1. ◀

Finally, we give a third upper bound on ui that is incomparable to those in Lemmas 9
and 10 and is useful for phases with a relatively small number of steps.

▶ Lemma 11. For any phase i with τi+1 − τi ≤ ⌈σi
q⌉ − 2, it holds that ui ≤ 1

2 · (ni + oi).

Proof. Recall that the new active queues accounted for in ui are empty in both buffers in
step τi and will overflow after τi+1; let U be the set of these ui queues. We show that the
number of packets in queues U in step τi+1 is at most ni + oi, i.e., the number of packets
LQD transmits during the i-th phase. This is sufficient, since any queue in U has at least two
LQD packets at τi+1 (otherwise, if there was a queue in U with at most one LQD packet in
step τi+1, no packets would arrive after τi+1 to this queue by assumption (A2), so it would
not overflow after τi+1).

Since the LQD buffer is full in step τi, it is sufficient to observe that any queue q′ has
at least si

LQD(q′) − (τi+1 − τi) packets in step τi+1 in the LQD buffer; in other words, that
packets present in q′ at τi are not preempted till step τi+1. Suppose for a contradiction that
si+1

LQD(q′) ≤ si
LQD(q′) − (τi+1 − τi) − 1. Thus, there must be a step t ∈ (τi, τi+1] such that a

packet is preempted from q′ and st
LQD(q′) ≤ si

LQD(q′) − (t − τi) − 1. As si
LQD(q′) ≤ si

max, it
holds that

st
LQD(q′) ≤ si

max − (t − τi) − 1 . (6)

Recall that there is a queue q̄ with τi = tq̄, i.e., which overflows for the last time at τi. At τi,
queue q̄ has at least si

max − 1 packets and thus,

st
LQD(q̄) ≥ si

max − 1 − (t − τi) . (7)

Combining this with (6), we obtain st
LQD(q̄) ≥ st

LQD(q′). It holds that t − τi ≤ τi+1 − τi ≤
⌈σi

q⌉ − 2 ≤ si
max − 2, where the second inequality is by the assumption of the lemma and the

third inequality by Observation 7. Plugging this into (7), we obtain st
LQD(q̄) ≥ 1. As a packet

is preempted from q′ at t, queue q′ overflows at t, i.e., it has at least st
max − 1 LQD packets.

Thus, st
LQD(q̄) ≥ st

max − 1 and by Definition 2, q̄ overflows at t (here, we also use that the

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:15

LQD buffer is full at t as q′ overflows and that st
LQD(q̄) ≥ 1). However, this contradicts

tq̄ = τi < t. Hence, any queue q′ has at least si
LQD(q′) − (τi+1 − τi) LQD packets in step τi+1

and the number of LQD packets in queues U in step τi+1 is at most ni + oi, which concludes
the proof. ◀

5 Mapping Transmitted LQD-extra Packets

So far we derived a lower bound on ni + α · oi for a phase i which depends, among other
things, on the number of queues |Li

q| which are live w.r.t. a queue q at time τi. To make this
bound useful, we now would like to relate |Li

q| to êi.
The underlying idea behind establishing a relationship between |Li

q| and ei =
∑

q′:τi≥tq′ ei
q′

is simple. By Observation 3, quantity ei is bounded by the number of packets that are stored
in OPT’s buffer, but not in LQD’s buffer at time τi. Recall that the LQD buffer is full in
step τi. Intuitively, for each packet that OPT has in its buffer but LQD has not, there must
be a packet that LQD has in its buffer but OPT has not. Suppose for a moment that the
latter packets are all located in queues in Li

q. Then there can be no more than σi
q · |Li

q|
of them and so, we would have ei ≤ σi

q · |Li
q|. Unfortunately, things are more complicated

because not all packets of the latter type may be located in live queues. We address this
problem by introducing the earlier mentioned careful mapping of transmitted LQD-extra
packets to cancel out some of the packets counted in ei. The following notation will be useful
for brevity:

Qi: the set of queues q with τi ≥ tq and ei
q > 0. In words, Qi is the set of queues that

have overflowed for the last time by step τi and there are still some OPT-extra packets to
be transmitted from them in phase i or later.

To describe our specific mapping, we apply the procedure specified in Algorithm 1 on
the solutions of LQD and OPT on the fixed instance I. Our values mq are given as the final
values of m′

q after the procedure has been run.

Algorithm 1 Mapping Procedure.

foreach queue q do
Initialize m′

q := 0 // counter for packets assigned to q

foreach phase i do
foreach LQD-extra packet p transmitted in phase i do

if there is a queue q ∈ Qi with m′
q < ei

q then
q′ := arg min

q:q∈Qi and m′
q<ei

q

{tq} // breaking ties arbitrarily

m′
q′ := m′

q′ + 1 // assign packet p to queue q′

// Otherwise, packet p is not assigned

foreach queue q do
mq := m′

q // the final value of m′
q

We now show a lower bound on the mq′ values for a phase i. The bound is specific to
a particular queue q ∈ Qi with mq < eq; in the following, live and dying queues are w.r.t.
queue q. For technical reasons, we prove a lower bound on the following quantity: Let mi

q′ be
the number of LQD-extra packets transmitted in a phase j ≥ i that are mapped to q′. The
point is that the constraint m′

q′ < ei
q′ for assigning an LQD-extra packet to q′ in Algorithm 1

implies that ei
q′ ≥ mi

q′ , even though it may happen that ei
q′ < mq′ .

ICALP 2021

17:16 Breaking the Barrier of 2 for the Competitiveness of LQD

For simplicity, let zi
q :=

∑
q′∈Li

q
[si

OPT(q′) > 0] be the number of live queues Li
q that

are non-empty in OPT. In words, the first term of the bound in Lemma 12 below, i.e.,∑
q′∈Di

q
max

{
si

LQD(q′) − si
OPT(q′), 0

}
, equals the number of packets that LQD stores in excess

of OPT in dying queues q′ ∈ Di
q with si

LQD(q′) > si
OPT(q′) in step τi, while the second term,

i.e., |Li
q| − zi

q, equals the number of live queues Li
q that are empty in the OPT buffer in

step τi.

▶ Lemma 12. For any phase i and queue q ∈ Qi with mq < ei
q (i.e., with êi

q > 0) we have∑
q′∈Qi

mi
q′ ≥

∑
q′∈Di

q

max
{

si
LQD(q′) − si

OPT(q′), 0
}

+
(
|Li

q| − zi
q

)
.

Proof. Recall from Definition 4 that jq = min{j : êj
q = 0} is the index j of the earliest step

τj in which all remaining OPT-extra packets to be transmitted from q are canceled out. Note
that i < jq by the assumption of the lemma and that mq < ej

q and q ∈ Qj for any j ∈ [i, jq).
Consider a dying queue q′ ∈ Di

q with si
LQD(q′) − si

OPT(q′) > 0. It holds that eq′ = 0 by
Observation 3. By Definition 4, q′ will be empty for LQD in step τjq

. Since q′ does not
overflow after time τi (and hence LQD will accept all packets which may arrive to q′ after
time τi), at least si

LQD(q′) − si
OPT(q′) LQD-extra packets are transmitted from q′ from time

τi until time τjq
− 1, i.e., in phases j ∈ [i, jq). Using mq < ej

q and q ∈ Qj for any j ∈ [i, jq),
all these LQD-extra packets are allocated to queues q that satisfy tq ≤ tq ≤ τi and ei

q > 0;
the second property holds as tq ≤ tq ≤ τi and as q ∈ Qj for a phase i ≤ j < jq in which the
LQD-extra packet assigned to it is transmitted, by Algorithm 1. Thus, such queues q are
part of the set Qi.

In addition, there are |Li
q| − zi

q live queues in step τi that are empty in the OPT buffer.
Hence, LQD transmits |Li

q| − zi
q LQD-extra packets in step τi from such queues, and these

packets are assigned to queues q ∈ Qi by Algorithm 1, using again that mq < ei
q. ◀

Finally, we bound the number of OPT-extra packets which are not canceled out by
LQD-extra packets. Equivalently, for a queue q, we show a lower bound on |Li

q| in terms of
êi. The lemma below in particular implies that if êi

q > 0 then also |Li
q| ≥ 1, i.e., there is at

least one live queue w.r.t. queue q.

▶ Lemma 13. For any phase i and queue q ∈ Qi with êi
q > 0, we have that êi ≤ (σi

q −1)·|Li
q| .

Proof. First note that

êi =
∑

q′∈Qi

êi
q′ =

∑
q′∈Qi

max{ei
q′ − mq′ , 0} ≤

∑
q′∈Qi

max{ei
q′ − mi

q′ , 0} =
∑

q′∈Qi

(ei
q′ − mi

q′) ,

where the inequality holds by mi
q′ ≤ mq′ and the last step follows from ei

q′ ≥ mi
q′ , by the

definition of mi
q′ and Algorithm 1. Using Lemma 12, we obtain

êi ≤
∑

q′∈Qi

(ei
q′) −

∑
q′∈Di

q

max
{

si
LQD(q′) − si

OPT(q′), 0
}

−
(
|Li

q| − zi
q

)
(8)

By the definition of σi
q in (3) and since the LQD buffer is full in step τi, we have

M = σi
q · |Li

q| +
∑

q′∈Di
q

si
LQD(q′) . (9)

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:17

Regarding the OPT buffer, we have

M ≥
∑
q′

si
OPT(q′) ≥

∑
q′∈Qi

max
{

si
OPT(q′) − si

LQD(q′), 0
}

+
∑
q′

min{si
LQD(q′), si

OPT(q′)}

≥
∑

q′∈Qi

(
ei

q′

)
+
∑
q′

min{si
LQD(q′), si

OPT(q′)}

≥
∑

q′∈Qi

(
ei

q′

)
+
∑

q′∈Di
q

min{si
LQD(q′), si

OPT(q′)} + zi
q , (10)

where the third inequality uses Observation 3. Combining (9) and (10), we obtain∑
q′∈Qi

(
ei

q′

)
+
∑

q′∈Di
q

min{si
LQD(q′), si

OPT(q′)} + zi
q ≤ σi

q · |Li
q| +

∑
q′∈Di

q

si
LQD(q′)

After rearranging, we get∑
q′∈Qi

(
ei

q′

)
−
∑

q′∈Di
q

max
{

si
LQD(q′) − si

OPT(q′), 0
}

+ zi
q ≤ σi

q · |Li
q| . (11)

Finally, plugging (11) into Equation (8), we get êi ≤ σi
q · |Li

q| − |Li
q|, as desired. ◀

6 Putting It All Together

In this section, we complete the proof of 1.707-competitiveness for LQD. First, we use the
lemmas developed in previous sections to show a lower bound on the L-increase in phase i for
a queue q. This will be divided into two cases, according to whether the value of σi

q decreases
or not (w.r.t. variable i). Next, we sum these lower bounds over all phases and derive a lower
bound for this sum. Finally, we optimize the parameters α and β to maximize ϱ (and thus,
minimize the competitive ratio upper bound) subject to Φq ≥ ϱ · êq for any queue q.

6.1 Lower Bounds on the L-Increase
In this section, for a queue q, we show lower bounds on the L-increase for a phase i with
τi ≥ tq and êi

q > 0. In such a phase, Lemma 13 implies that êi ≤ (σi
q − 1) · |Li

q|. We consider
two main cases, depending on whether or not σq decreases. We first deal with the case
σi+1

q ≥ σi
q.

▶ Lemma 14. Consider any phase i and queue q with τi ≥ tq, êi
q > 0, and σi+1

q ≥ σi
q. Then

the L-increase in phase i for queue q satisfies

êi
q

êi
· (ni + α · oi − ∆iΨ) + β · oi

q ≥ êi
q ·

α ·
(
σi+1

q − σi
q

)
+ (τi+1 − τi)

σi
q − 1 . (12)

Proof. Recall that di
q is the number of packets transmitted from queues in Di

q during phase
i. Using Lemma 9 and σi+1

q ≥ 1, we get

di
q ≥ (σi+1

q − σi
q) · |Li

q| + σi+1
q · ui − vi ≥ (σi+1

q − σi
q) · |Li

q| + ui − vi . (13)

Multiplying (13) by α ∈ (0, 1), adding (τi+1 − τi) · |Li
q| to both sides, and rearranging, we

obtain

(τi+1 − τi) · |Li
q| + α · di

q − α · (ui − vi) ≥
(
α ·
(
σi+1

q − σi
q

)
+ (τi+1 − τi)

)
· |Li

q|.

ICALP 2021

17:18 Breaking the Barrier of 2 for the Competitiveness of LQD

Using ni + α · oi ≥ (τi+1 − τi) · |Li
q| + α · di

q by Observation 6 and |Li
q| ≥ êi/(σi

q − 1) by

Lemma 13, we get ni + α · oi − ∆iΨ ≥
α ·
(
σi+1

q − σi
q

)
+ (τi+1 − τi)

σi
q − 1 · êi, and multiplying this

by êi
q/êi proves (12). ◀

Next, we deal with the (most involved) case when σi+1
q < σi

q. The following technical
lemma also captures the case of the last phase i = jq − 1 in which we assign some LQD profit
to queue q (in this phase, we have êi+1

q = 0). We omit its proof due to space constraints.

▶ Lemma 15. Consider any phase i and queue q with τi ≥ tq, êi
q > 0, and σi+1

q < σi
q. Then,

for β = α2/(8 · (1 − α)) and any 0 < α ≤ 8/9, it holds that

êi
q

êi
·(ni +α ·oi −∆iΨ)+β ·oi

q ≥
τi+1−1∑

t=τi

(
êt

q

σi
q − 1

)
−

gi
q

2(σi
q − 1) − êi+1

q ·
(

1
σi+1

q − 1
− 1

σi
q − 1

)
,

(14)

where gi
q is the number of steps t ∈ [τi, τi+1) with êt

q > 0 and st
LQD(q) = 0.

6.2 Total LQD Profit Assigned to a Queue
Fix a queue q with êq > 0, i.e., with transmitted OPT-extra packets that are not canceled
out by transmitted LQD-extra packets. We now show a lower bound on

∑
i ∆iΦq. Recall

that ∆iΦq > 0 only for phases i with τi ≥ tq and êi
q > 0.

First, we bound the sum of S-increases. Note that as q overflows at tq, LQD stores for
this queue at least s

tq
max − 1 packets in step tq, and since it does not overflow after tq, LQD

transmits at least s
tq
max − 1 ≥

⌈
σ

tq
q

⌉
− 1 packets from q at or after tq, where the inequality is

from Observation 7 (recall that tq = τi for some phase i). Thus, the sum of S-increases is
at least (1 − α − β) ·

(⌈
σ

tq
q

⌉
− 1
)

. The next lemma shows a bound on the total L-increase
assigned to queue q (its proof is omitted due to space constraints).

▶ Lemma 16. Assuming α ≤ 0.6 and using b0 =
⌈
σ

tq
q

⌉
− 1 for simplicity, the sum of

L-increases assigned to a queue q with êq > 0 over all phases is at least

α · êq ·
(

1 + b0

êq

)
· ln
(

1 + êq

b0

)
+ α · êq · ln

(
1
α

)
.

Summing up the lower bound on the total S-increase with the lower bound on the total
L-increase from Lemma 16, we obtain the following lower bound (where b0 =

⌈
σ

tq
q

⌉
− 1):

∑
i

∆iΦq ≥ (1 − α − β) · b0 + α · êq ·
(

1 + b0

êq

)
· ln
(

1 + êq

b0

)
+ α · êq · ln

(
1
α

)
. (15)

6.3 Calculation of the Competitive Ratio Upper Bound
According to the following lemma, we can have ϱ = 1.41478 in (1), which implies that the
competitive ratio of LQD is at most 1 + 1/ϱ < 1.707, according to the discussion in Section 2.
Thus, the following lemma concludes the proof of Theorem 1.

▶ Lemma 17. Consider a queue q with êq > 0. For any values of σ
tq
q and êq, it holds that∑

i ∆iΦq ≥ ϱ · êq for ϱ = 1.41478.

A. Antoniadis, M. Englert, N. Matsakis, and P. Veselý 17:19

Proof sketch. As before, let b0 =
⌈
σ

tq
q

⌉
− 1. Using inequality (15) as a lower bound on∑

i ∆iΦq, it is sufficient to show

(1 − α − β) · b0 + α · êq ·
(

1 + b0

êq

)
· ln
(

1 + êq

b0

)
+ α · êq · ln

(
1
α

)
≥ ϱ · êq .

Dividing by êq and defining x = êq

b0
gives us that the optimal choice of ϱ satisfies,

ϱ := sup
0<α<0.6

inf
x>0

(
(1 − α − β) · 1

x
+ α ·

(
1 + 1

x

)
· ln (1 + x) + α · ln

(
1
α

))
. (16)

(Here, we also take into account that we require α < 0.6 in the analysis.) Using routine
calculations and optimizing through mathematical software, we get that the optimal choice
for α is approximately 0.57635 for which ϱ ≥ 1.41478 and therefore, the competitive ratio of
LQD is at most 1 + 1/ϱ ≤ 1.70683. ◀

References
1 W. Aiello, A. Kesselman, and Y. Mansour. Competitive buffer management for shared-memory

switches. ACM Transactions on Algorithms, 5(1):3:1–3:16, 2008.
2 K. Al-Bawani, M. Englert, and M. Westermann. Online packet scheduling for CIOQ and

buffered crossbar switches. Algorithmica, 80(12):3861–3888, 2018.
3 S. Albers and M. Schmidt. On the performance of greedy algorithms in packet buffering.

SIAM Journal on Computing, 35(2):278–304, 2005.
4 N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS switches.

In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
761–770, 2003.

5 Y. Azar and A. Litichevskey. Maximizing throughput in multi-queue switches. Algorithmica,
45(1):69–90, 2006.

6 Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. Algorithmica,
43(1-2):81–96, 2005.

7 N. Bansal, L. Fleischer, T. Kimbrel, M. Mahdian, B. Schieber, and M. Sviridenko. Further
improvements in competitive guarantees for QoS buffering. In Proceedings of the 31st Inter-
national Colloquium on Automata, Languages and Programming (ICALP), pages 196–207,
2004.

8 M. Bienkowski, M. Chrobak, and Ł Jeż. Randomized competitive algorithms for online buffer
management in the adaptive adversary model. Theoretical Computer Science, 412(39):5121–
5131, 2011.

9 I. Bochkov, A. Davydow, N. Gaevoy, and S. I. Nikolenko. New competitiveness bounds for the
shared memory switch. CoRR, abs/1907.04399, 2019. arXiv:1907.04399.

10 J. L. Bruno, B. Özden, A. Silberschatz, and H. Saran. Early fair drop: a new buffer management
policy. Multimedia Computing and Networking, 3654:148–161, 1998.

11 S. Chamberland and B. Sansò. Overall design of reliable ip networks with performance
guarantees. In Proceedings of the IEEE International Conference on Communications: Global
Convergence Through Communications (ICC), pages 1145–1151, 2000.

12 H. J. Chao and X. Guo. Quality of Service Control in High-Speed Networks. Wiley-IEEE
Press, 2001.

13 H. J. Chao and B. Liu. High Performance Switches and Routers. Wiley-IEEE Press, 2007.
14 F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall, and T. Tichý. Online competitive

algorithms for maximizing weighted throughput of unit jobs. Journal of Discrete Algorithms,
4(2):255–276, 2006.

15 F. Y. L. Chin and S. P. Y. Fung. Online scheduling with partial job values: Does timesharing
or randomization help? Algorithmica, 37(3):149–164, 2003.

ICALP 2021

http://arxiv.org/abs/1907.04399

17:20 Breaking the Barrier of 2 for the Competitiveness of LQD

16 M. Chrobak, W Jawor, J. Sgall, and T. Tichý. Improved online algorithms for buffer
management in QoS switches. ACM Transactions on Algorithms, 3(4):50, 2007.

17 M. Englert and M. Westermann. Lower and upper bounds on FIFO buffer management in
QoS switches. Algorithmica, 53(4):523–548, 2009.

18 M. Englert and M. Westermann. Considering suppressed packets improves buffer management
in quality of service switches. SIAM Journal on Computing, 41(5):1166–1192, 2012.

19 P. Eugster, K. Kogan, S. Nikolenko, and A. Sirotkin. Shared memory buffer management for
heterogeneous packet processing. In Proceedings of the 34th IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 471–480, 2014.

20 M. H. Goldwasser. A survey of buffer management policies for packet switches. SIGACT
News, 41(1):100–128, 2010.

21 E. L. Hahne, A. Kesselman, and Y. Mansour. Competitive buffer management for shared-
memory switches. In Proceedings of the 13th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 53–58, 2001.

22 B. Hajek. On the competitiveness of on-line scheduling of unit-length packets with hard
deadlines in slotted time. In Proceedings of the 35th Conference on Information Sciences and
Systems, pages 434–438, 2001.

23 Ł. Jeż. A universal randomized packet scheduling algorithm. Algorithmica, 67(4):498–515,
2013.

24 A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko. Buffer
overflow management in QoS switches. SIAM Journal on Computing, 33(3):563–583, 2004.

25 A. Kesselman and Y. Mansour. Harmonic buffer management policy for shared memory
switches. Theoretical Computer Science, 324(2-3):161–182, 2004.

26 A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees for QoS
buffering. Algorithmica, 43(1-2):63–80, 2005.

27 A. Kesselman and A. Rosén. Scheduling policies for CIOQ switches. Journal of Algorithms,
60(1):60–83, 2006.

28 K. M. Kobayashi, S. Miyazaki, and Y. Okabe. A tight bound on online buffer management for
two-port shared-memory switches. In Proceedings of the 19th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 358–364, 2007.

29 F. Li, J. Sethuraman, and C. Stein. Better online buffer management. In Proceedings of the
18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 199–208, 2007.

30 N. Matsakis. Approximation Algorithms for Packing and Buffering problems. PhD thesis,
University of Warwick, UK, 2015.

31 M. Nabeshima and K. Yata. Performance improvement of active queue management with
per-flow scheduling. IEE Proceedings-Communications, 152(6):797–803, 2005.

32 S. I. Nikolenko and K. Kogan. Single and multiple buffer processing. In Encyclopedia of
Algorithms, pages 1988–1994. Springer, 2016.

33 B. Suter, T. V. Lakshman, D. Stiliadis, and A. K. Choudhury. Design considerations for
supporting TCP with per-flow queueing. In Proceedings of the 17th IEEE Conference on
Computer Communications (INFOCOM), pages 299–306, 1998.

34 P. Veselý, M. Chrobak, Ł. Jeż, and J. Sgall. A ϕ-competitive algorithm for scheduling packets
with deadlines. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 123–142, 2019.

35 S. X. Wei, E. J. Coyle, and M. T. Hsiao. An optimal buffer management policy for high-
performance packet switching. In Proceedings of the Global Communication Conference
(GLOBECOM), pages 924–928, 1991.

36 A. Zhu. Analysis of queueing policies in QoS switches. Journal of Algorithms, 53(2):137–168,
2004.

	1 Introduction
	2 Setup of the Analysis
	3 Splitting the LQD Profit
	4 Live and Let Die
	5 Mapping Transmitted LQD-extra Packets
	6 Putting It All Together
	6.1 Lower Bounds on the L-Increase
	6.2 Total LQD Profit Assigned to a Queue
	6.3 Calculation of the Competitive Ratio Upper Bound

