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Quantum Versus Classical Simultaneity in
Communication Complexity

Dmitry Gavinsky

Abstract— This paper addresses two problems in the context
of two-party communication complexity of functions. First,
it concludes the line of research which can be viewed as
demonstrating qualitative advantage of quantum communica-
tion in the three most common communication “layouts”: two-
way interactive communication, one-way communication and
simultaneous message passing (SMP). I demonstrate a functional
problem �cEqT , whose communication complexity is O

(
(log n)2

)

in the quantum version of the SMP and �̃
(√

n
)

in the classical
(randomized) version of SMP. Second, this paper contributes
to understanding the power of the weakest commonly studied
regime of quantum communication–SMP with quantum messages
and without shared randomness (the latter restriction can be
viewed as a somewhat artificial way of making the quantum
model “as weak as possible”). Our function �cEqT has an efficient
solution in this regime as well, which means that even lacking
shared randomness, quantum SMP can be exponentially stronger
than its classical counterpart with shared randomness.

Index Terms— Communication complexity, quantum commu-
nication, quantum computing.

I. INTRODUCTION

COMMUNICATION complexity is among the most inter-
esting computational realms so far: Being one of the

strongest where we can establish non-trivial (often tight)
hardness statements – lower bounds; at the same time, it is
one of the weakest that is capable to “accommodate” rather
involved algorithms – protocols. As of today, communication
complexity is one of the very few computational scenarios
where both upper and (non-speculative) lower bounds play
central roles in the research.

We address two questions, related to the most basic com-
munication complexity setting – the regime of two parties,
solving a functional problem.

A. Two-Way, One-Way and SMP

The three most commonly studied bipartite communication
“layouts” are: two-way (interactive) communication, one-way
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communication and simultaneous message passing (SMP).
These models involve two players, Alice and Bob, who receive
one “portion” of the input each: Alice gets X and Bob gets
Y (which we view as random variables). Their goal is to
use the allowed type of communication (as determined by
the “layout”, see below) in order to compute the value of
f (X, Y ), where f is a two-argument function defining the
computational problem that the players have to solve.

• In the model of two-way communication the players can
exchange messages, until one of them outputs the answer.

• In the one-way model Alice can send one message
to Bob, who then produces the answer, based on this
message and his portion of the input.

• In the model of simultaneous message passing both Alice
and Bob send one message each to the third participant
– the referee – who has to produce the answer, based on
these two messages only (unlike the players, the referee
doesn’t directly receive any portion of the input).

In all three regimes we say that a communication protocol
computes a Boolean function f if for every pair (x, y) from
the support of f , when the players receive (X, Y ) = (x, y),
they output f (x, y) with probability at least 2/3. The partici-
pants are “all powerful” in terms of their local computational
abilities, and the only resource considered for determining the
cost of a protocol is the “amount of communication” that it
consumes.

• When the communication model is randomized, the par-
ticipants can send (classical) bits, the correctness con-
dition must hold with respect to the random choices
made by them and the complexity of a protocol is the
(maximum) total number of bits sent during its execution.

• When the model is quantum, the participants can send
qubits and perform arbitrary quantum measurements,
the correctness condition must hold with respect to these
quantum operations and the complexity of a protocol is
the (maximum) total number of qubits sent during its
execution.

It is known (and easy to see) that for virtually any type of
communication “primitive” (i.e., classical randomized, classi-
cal deterministic, quantum, ...), the two-way layout is the most
powerful, one-way is intermediate and SMP is the weakest.

Demonstrating advantage of quantum over classical com-
munication in a weaker regime (say, one-way) could – in
principle – turn out to be either less or more challenging than
in a stronger one (say, interactive): While in the latter case
one would have to prove a stronger lower bound, at the same
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time the communication problem being used for the separation
would likely be harder, and therefore easier to prove a lower
bound for.

The history of research seems to suggest that separating
models on the “lower levels” – namely, one-way communi-
cation, and even more so SMP – is more challenging than
under the stronger setting of interactive communication. In
1999 Raz [14] demonstrated a function that had an efficient1

quantum two-way protocol, but no efficient classical two-
way protocol. In 2004 Bar-Yossef et al. [4] demonstrated a
relation that had an efficient quantum one-way protocol, but
no efficient classical one-way protocol. Note that the origi-
nal separation from [14] was demonstrated via a functional
problem; on the other hand, the result of [4] used a relation
– a more general class of problems and a stronger model-
separating tool.2 In the same work it has been asked whether
it was possible to demonstrate similar qualitative advantage of
quantum one-way communication via a functional problem,
which was answered affirmatively in 2008 in a joint work
with Kempe et al. [7].

The work [4] has also demonstrated a relation that had an
efficient quantum SMP protocol, but no efficient classical SMP
protocol, and – similarly to the one-way case – it has been
left open whether there existed a functional problem, easy for
quantum and hard for classical SMP.

In the meantime, separations “against classical two-way”
have been strengthened in a sequence of works [5], [6], [11]
that subsumed earlier separations: e.g., in 2010 Klartag and
Regev demonstrated a function with an efficient quantum one-
way protocol, but no efficient classical two-way protocol.
On the other hand, it has remained open till now whether
a function could witness quantum superiority in the case of
SMP.3

This work presents a functional problem �cEqT , whose
communication complexity is O

(
(log n)2

)
in the quantum

version of SMP and �̃
(√

n
)

in the classical (randomized)
version of SMP.

B. Weakening the Weak: SMP Without Shared Randomness

The second aspect of this work is related to understanding
the power of, arguably, the weakest commonly studied regime
of quantum communication – SMP with quantum messages
and without shared randomness.

1We call a communication protocol efficient if its complexity is poly-
logarithmic in the input length.

2There are known cases where a quantum communication model can be
separated from a classical one via a relation, but a functional separation is
provably impossible (see [1], [9]). In particular, [9] showed that the class of
functional problems, efficiently computable in “quantum-classical SMP” – the
regime where Alice could send a quantum message but Bob was classical (or
vice versa) – was equal to the corresponding class of the “fully classical”
SMP regime; on the other hand, a relational separation between these two
models followed from [4]. As in this work we are only concerned with super-
polynomial separations via functional problems, for us the model of SMP with
both players being quantum is the weakest (non-trivial) regime of quantum
communication.

3 The result in [6] implied existence of a function, hard for classical SMP
(and even for classical two-way protocols), but easy for the model of quantum
SMP with shared entanglement – a significantly strengthened version of
quantum SMP, where the players could share an arbitrary (input-independent)
quantum state of finite dimension.

Let Q and R denote, respectively, the quantum and the
classical models of two-way communication. Denote by Q1

and R1 the corresponding one-way models. Although the
above four models are not of primary interest for this work,
we will refer to them from time to time in the discussions.

We will write Q� and R� for, respectively, the quantum and
the classical version of the model SMP without shared ran-
domness. To denote the corresponding standard counterparts –
those equipped with (unlimited) shared randomness – we will
write, respectively, Q�,pub and R�,pub. For any model M and
a problem P , we will write M(P) to denote the complexity
of P in M.

Both Q� and R� (i.e., the versions lacking shared ran-
domness) can be viewed as “purposely weakened”, somewhat
artificial versions of SMP – as opposed to the standard
Q�,pub and R�,pub.4 The families of efficiently-computable
tasks in Q� and in R� are not closed with respect to mixed
strategies,5 and the usual minimax principle does not hold
for these models: for example, the equality function (Eq) has
R�-complexity O(1) over any fixed input distribution, but its
worst-case R�-complexity is �

(√
n
)
, due to [13].

Von Neumann, who proved the minimax principle for
the case of 2-player zero-sum games with mixed strategies
in 1928, later remarked: “As far as I can see, there could be
no theory of games [...] without that theorem.” The question
of determining the complexity of a given communication
problem can be phrased in the language of 2-player zero-sum
games, and the case of SMP without shared randomness is
probably the only commonly studied one that goes “without
that theorem”. Although we have seen some non-trivial results
both in Q� and in R�, these models still lack the aesthetic
appeal and the cognitive depth of those obeying the minimax
principle.

So, the model of SMP with quantum messages and with-
out shared randomness (Q�) indeed can be viewed as the
weakest commonly studied quantum model in communication
complexity. Prior to this work, Q� was known to be stronger
than R�: in 2001 Buhrman et al. [3] demonstrated that there
existed a Q�-protocol for the function Eq of complexity
O(log n); as we already mentioned, it had been known that
R�(Eq) ∈ �

(√
n
)
. Till now it has remained open whether

Q� was capable to do more than that – in particular, to solve
efficiently any problem that was hard for the “natural closure”
of R�, namely R�,pub.

We show that the main communication problem studied in
this work – the function�cEqT – has an efficient protocol in Q�
as well. Due to the mentioned lower bound of �̃

(√
n
)

on its
R�,pub-complexity, this demonstrates exponential advantage of
Q� over R�,pub in solving a functional problem.

One obvious question that remains open is whether there
is a bipartite communication problem – even a relational one

4Note that in the context of “Two-way, one-way and SMP” we only referred
to the “natural” models Q�,pub and R�,pub.

5R�,pub – the “unrestricted” randomized SMP – can be defined as the
“closure” of R� with respect to mixed strategies, and similarly for Q�,pub

and Q�.
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– that admits an efficient solution in Q�, though not in R.6

Further historical background and some open questions can be
found in Section VII.

C. Why This Is Interesting Technically

As a part of this work, R�,pub-hardness is argued for a
communication problem, which is easy for virtually any model
stronger than R�,pub. Therefore the argument has to be tuned
rather accurately in order to distinguish between R�,pub and
some other models of communication that are “just slightly
stronger” (like R1).

On the other hand, the complexity of the analyzed com-
munication task must also be tuned, as it has to be easy
for Q� and hard for R�,pub, which is “just slightly weaker”
(sometimes even incomparable).7 In particular we cannot use
a problem with worst-case hardness in spite of average-case
easiness (like Eq), as R�,pub allows for mixed strategies.

It may be for these reasons that this work is built around
several ad hoc ideas.8 Some of them will be informally
discussed in Section III.

II. PRELIMINARIES

For x ∈ {0, 1}n and i ∈ [n] = {1, . . . , n}, we will write xi

or x(i) to address the i ’th bit of x (preferring “xi ” unless it
may cause ambiguity). Similarly, for S ⊆ [n], let both xS and
x(S) denote the |S|-bit string, consisting of (naturally-ordered)
bits of x , whose indices are in S. For a set (or a family) A,
we will write A|i and A|S to address, respectively,

{
xi
∣∣x ∈ A

}
and

{
xS
∣∣x ∈ A

}
. We will use similar notation in all cases when

x can be viewed naturally as an element of X1 × · · · × Xn .
For x, y ∈ {0, 1}n , let |x | denote the Hamming weight of

x and x ⊕ y denote the bit-wise XOR operation.
For a (discrete) set A and k ∈ N, we denote by Pow(A) the

set of A’s subsets and by
(A

k

)
the set

{
a ∈ Pow(A)

∣∣|a| = k
}
.

We write “A � B” to denote the symmetric difference between
the two sets and “A ∪· B” to denote the union when A and B
are disjoint (i.e., writing “A ∪· B” implies that A ∩ B = ∅).

We write UA to denote the uniform distribution over the
elements of A. Sometimes (e.g., in subscripts) we will write
“⊂∼ A” instead of “∼ UA”. We will sometimes emphasize
that a distribution on {0, 1}2n is “viewed as bipartite” (i.e.,

6As a black-box statement, demonstrating a functional problem with those
properties (whose existence one may question: even a relational separation
like that is not presently known) would subsume the current work, as well
as [6]. On the other hand, here we demonstrate a lower bound in R�,pub for
a functional problem that is, intuitively, very close to being within the reach
of this model (as witnessed, in particular, by the fact that the problem is easy
for Q�). The aesthetic appeal of the quest of finding an appropriate fine-tuned
analytic approach has been the author’s main motivation for addressing this
question.

7There are known examples, where R�,pub is exponentially stronger than
Q� for relational problems, see [8].

8Let us remark that technically this work is very different from [6] – except
for the definitions of the core communication tasks that are considered, which
share a few obvious structural similarities (e.g., both the problems are naturally
viewed as “distant derivatives” from the equality problem). We do not know
whether Shape – the core task of [6] – admits an efficient Q�-, or even
Q�,pub-protocol (and conjecture that it doesn’t); on the other hand, the core
task of the current work –˜cEqT – is trivial not only for R, but even for R1

(see Sect. III-A).

assumed to be the joint distribution of two random variables,
containing n bits each) by addressing it as a distribution on
{0, 1}n+n ; similarly, we will write “(X, Y ) ∈ {0, 1}n+n”, etc.

For (discrete) distributions μ1 and μ2, their relative entropy
is

dK L

(
μ1

∥∥∥μ2

)
def=

∑
x∈supp(μ1)∪supp(μ2)

μ1(x) · log

(
μ1(x)

μ2(x)

)
,

where the logarithm is base-2. It follows readily from the strict
concavity of log that

dK L

(
μ1

∥∥∥μ2

)
≥ 0,

where the equality holds if and only if μ1 ≡ μ2.
We will use the Chernoff bound in the following form.

Fact 1 (Tail-Estimating Inequalities). For n ∈ N, let X̄ = (X1,
. . . , Xn) ∼ μ be mutually independent random variables,
satisfying EEEμ[Xi ] ≡ p ∈ [0, 1]. Then for any α ∈ �(1):

PrPrPr
μ

[
n∑

i=1

Xi ≥ (p + α) · n

]
,

PrPrPr
μ

[
n∑

i=1

Xi ≤ (p − α) · n

]
∈ 2−�(n).

Let μ� be any distribution, satisfying
∥∥μ − μ�∥∥

1 ≤ β, then

PrPrPr
μ�

[
n∑

i=1

Xi ≥ (p + α) · n

]
,

PrPrPr
μ�

[
n∑

i=1

Xi ≤ (p − α) · n

]
∈ 2−�(n) + β

2
.

Let Sn denote the group of permutations of [n], and let
σi ∈ Sn be the i ’th cyclic shift (i.e., σi ( j) = i + j if i + j ≤ n
and i + j −n otherwise). For x ∈ {0, 1}n and τ ∈ Sn , denote by
τ (x) the element of {0, 1}n , whose τ (i)’th position contains
xi for each i – in particular, σ j (x) is the j-bit cyclic shift
of x .

For functions f, g : {0, 1}n → R, we define

� f , g� def= 2−n ·
∑

x∈{0,1}n

f (x) · g(x)

= EEE
X⊂∼{0,1}n

[ f (X) · g(X)]

and � f �2
def= √� f , f �. For s ⊆ [n] and x ∈ {0, 1}n , let

χs(x)
def= (−1)|xs | and f̂ (s)

def= � f , χs�. The Fourier transform
f → f̂ is a norm-preserving linear mapping in the following
sense: � f �2

2 = ∑
s f̂ (s)2 (Parseval’s identity). The vectors χs

form an orthonormal basis of R2n
and

f (x) =
∑

s⊆[n]
f̂ (s) · χs(x)

for every x ∈ {0, 1}n .
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Definition 1 (Small-Bias Spaces). For ε ≥ 0, we call
T ⊆ {0, 1}n an ε-bias space if∣∣∣∣ EEE

τ∈T
[χs(τ )]

∣∣∣∣ ≤ ε

for every s ⊆ [n], s �= ∅.

Being a small-bias space is a “pseudorandom property”: it
holds for random subsets of {0, 1}n almost always, and there
are efficient constructions.

Fact 2 ( [12]). For ε > 0, an ε-bias space can be constructed
deterministically in time poly(n/ε). Every pair of elements
τ1 �= τ2 of the constructed space satisfies |τ1 ⊕ τ2| ∈ n

2 ±o(n).

The main communication problem studied in this work
(�cEqT ) will be constructed using a small-bias space. In order
to argue the model separations, we do not need the definition
of the problem to be explicit; nevertheless, we remark that
our construction will be explicit in a rather strong sense:
namely, �cEqT (x, y) will be computable in time poly(n) for
any x, y ∈ {0, 1}n . This is due, in particular, to the complexity
guarantees of Fact 2.

A. Communication Complexity

For an excellent survey of classical communication com-
plexity, see [10]. Quantum communication models differ
from their classical counterparts in at least9 two aspects: the
players are allowed to send quantum messages (accordingly,
the complexity is measured in qubits) and to perform arbitrary
quantum operations locally. An excellent survey of quantum
communication complexity is [2].

Of central importance to this work is the model of simulta-
neous message passing (SMP), where there are 3 participants:
players Alice and Bob, and the referee. An SMP-protocol
for computing a Boolean function f (X, Y ) has the following
structure: Alice receives X and sends her message to the
referee; at the same time, Bob receives Y and sends his
message to the referee; the referee uses the content of the
two received messages to compute the answer. The answer is
correct when it equals f (X, Y ) (the input is always such that
f (X, Y ) is defined). We will consider the following variations
of SMP:

1) In D�
μ,ε (sometimes written as D�

ε if μ is irrelevant
or clear from the context) the players and the referee
are deterministic, and the answer must be correct with
probability at least 1 − ε when (X, Y ) ∼ μ.10

2) In R� the players and the referee can use local random-
ness, and the answer must be correct with probability at
least 2/3 for every valid input.

3) R�,pub is similar to R�, but the players and the referee
can use shared randomness.

9We say that a communication model allows prior (or shared) entanglement
if the players can share any (input-independent) quantum state and use it in
the protocol (in the case of simultaneous message passing, entanglement is
only allowed between Alice and Bob). Models with prior entanglement are
not used in this work, but they are mentioned in some discussions.

10In this work we will only deal with binary-valued functions; accordingly,
we always assume that ε < 1/2.

4) In Q� the players can send quantum messages and the
referee can apply any quantum measurement to compute
the answer that must be correct with probability at least
2/3 for every valid input.

1) Variations of Equality: The communication problem that
we use for our separation is a function that can be viewed as
a variation of the equality problem.

The equality function (viewed as a communication problem)
is the following total11 bipartite function. Let u ⊆ [n]
(for technical reasons, we consider a “projected version” of
equality), then

Equ : {0, 1}n+n → {0, 1},

Equ(x, y)
def=
{

1 if xu = yu;

0 otherwise.

We write Eq for Eq[n]. Define input distributions for Equ:
• for a ∈ {0, 1}, let μa

Equ
be the uniform distribution over

Eq−1
u (a);

• let μEqu

def= 1
2 ·
(
μ0

Equ
+ μ1

Equ

)
.

The next problem intuitively corresponds to asking whether
Equ(X ⊕ τ, Y ) = 1 for some τ from a predetermined set
T ⊆ {0, 1}n , usually of size poly(n) (in our analysis T will
be a small-bias space).

Equ,T : {0, 1}n+n → {0, 1},

Equ,T (x, y)
def=
{

1 if (x ⊕ τ )u = yu for some τ ∈ T ;

0 otherwise.

Define input distributions for Equ,T :

• for τ ∈ T , let μτ
Equ

be the distribution of (X, Y ) when
(X ⊕ τ, Y ) ∼ μEqu

;

• let μEqu,T

def= 1
|T | ·∑τ∈T μτ

Equ
.

Next we define a “noisy” (or gapped) version of EqT :

ẼqT : {0, 1}n+n → {0, 1};

ẼqT (x, y)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if |x ⊕ y ⊕ τ | ≤ 6n
15

for some τ ∈ T and

|x ⊕ y ⊕ τ | �∈ ( 6n
15 , 7n

15 )

for every τ ∈ T ;

0 if |x ⊕ y ⊕ τ | ≥ 7n
15

for every τ ∈ T ;

undef. otherwise.

Intuitively, ẼqT (x, y) “asks” whether x ⊕ τ is close to y
with respect to one of the “permitted” bit-negations τ ∈ T .
The promise is that x ⊕ τ must be either far enough from y
(at distance ≥ 7n

15 ) or close to it (at distance ≤ 6n
15 ) for every

τ ∈ T – otherwise the function is undefined.
Define input distributions for ẼqT :

• let μẼqT

def= 1
( n

n/3)
·∑u∈([n]

n/3)
μEqu,T

.

We are ready to introduce the main communication problem
considered in this work – a function that can be viewed as a

11A functional problem in communication complexity is called total when
it is supported on the product set of the players’ individual sets of input.
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“cyclic version” of Equ,T :

�cEqT : {0, 1}n+n → {0, 1},

�cEqT (x, y)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if |σ j (x) ⊕ y ⊕ τ | ≤ 6n
15

for some τ ∈ T

and j ∈ [n] and

|σ j (x) ⊕ y ⊕ τ | �∈ ( 6n
15 , 7n

15 )

for every τ and j ;

0 if |σ j (x) ⊕ y ⊕ τ | ≥ 7n
15

for every τ and j ;

undef. otherwise.

The intuition behind this definition is very similar to
that behind ẼqT (x, y), but the question here is whether
σ j (x) + τ ≈ y with respect to some cyclic shift σ j and one
of the bit-negations τ ∈ T .

Define input distributions for �cEqT :

• for j ∈ [n], let μ
j
˜cEqT

be the distribution of (X, Y ) when

(σ j (X), Y ) ∼ μẼqT
;

• let μ̃
cEqT

def= 1
n ·∑ j∈[n] μ

j
˜cEqT

.

Let us also define the variants of our input distributions,
where in the construction U{0,1}n+n replaces μ0

Equ
= UEq−1

u (0).

For every u ∈ ([n]
n/3

)
, τ ∈ T and j ∈ [n]:

• let μEqu

def= 1
2 ·
(
U{0,1}n+n + μ1

Equ

)
.

• let μτ
Equ

be the distribution of (X, Y ) when
(X ⊕ τ, Y ) ∼ μEqu

;

• let μEqu,T

def= 1
|T | ·∑τ∈T μτ

Equ
.

• let μẼqT

def= 1
( n

n/3)
·∑u∈([n]

n/3)
μEqu,T

.

• let μ
j
˜cEqT

be the distribution of (X, Y ) when

(σ j (X), Y ) ∼ μẼqT
;

• let μ̃cEqT

def= 1
n ·∑ j∈[n] μ

j
˜cEqT

.

The above variants will be only used in the analysis, in which
context they have a significant structural advantage: U{0,1}n+n

is much more symmetric than μ0
Equ

. At the same time, these
distributions are very close to their μ0

Equ
-based originals,

as formalized by the following claim.

Claim 1.

∀u ∈
([n]

n/3

)
, τ ∈ T, j ∈ [n] :∥∥μEqu

− μEqu

∥∥
1,
∥∥∥μτ

Equ
− μτ

Equ

∥∥∥
1
,∥∥∥μEqu,T

− μEqu,T

∥∥∥
1
,
∥∥∥μẼqT

− μẼqT

∥∥∥
1
,∥∥∥∥μj

˜cEqT
− μ

j
˜cEqT

∥∥∥∥
1
,
∥∥∥μ̃cEqT

− μ̃cEqT

∥∥∥
1

∈ 2−�(n).

Proof. The first two bounds are due to

PrPrPr
(X,Y )∼U{0,1}n+n

[
Equ(X, Y ) = 1

] = 2−n,

the rest follow from the observation that for any two sets of
vectors v1, . . . , vn and u1, . . . , un in an Euclidean space and

any convex combination coefficients λ1, . . . , λn , it holds that∥∥∥∥∥
n∑

i=1

λi · vi −
n∑

i=1

λi · ui

∥∥∥∥∥
1

≤ max
i

{�vi − ui�1}.

III. INTUITION BEHIND THE NEW SEPARATION

Recall that we are looking for a functional communica-
tion problem, easy for quantum but hard for classical SMP
(naturally, equipped with shared randomness). The initial
inspiration comes from the observation that the most obvious
quantum SMP protocol for equality with gap (Ẽq) has certain
“robustness” that seems impossible to achieve in a classical
protocol.

Let

Ẽq(x, y)
def=

⎧⎪⎨⎪⎩
1 if |x ⊕ y| ≤ n

5 ;

0 if |x ⊕ y| ≥ 2n
5 ;

undefined otherwise.

A natural Q�-solution to this problem would be for Alice to
send 1√

n
·∑i |i�|Xi �, for Bob to send 1√

n
·∑i |i�|Yi � and for the

referee to perform the swap test [3] – a quantum measurement
with two possible outcomes, “pass” and “fail”, where the
probability of passing for states |α� and |β� equals 1

2 + |�α|β�|2
2 .

In our case the passing probability is 1
2 + (n−|X⊕Y |)2

2n2 , so esti-
mating it with sufficient constant precision allows the referee
to give the correct answer with constant-bounded error, thus
solving the problem.12

Note that the same pair of messages sent by the players can
be used by the referee for solving

Ẽq(π(X) ⊕ τ, Y )

for any π ∈ Sn and τ ∈ {0, 1}n: Upon receiving the messages
and before performing the swap test, the referee would have to
apply the obvious unitary transformation to the message from
Alice (namely, permuting the indices and negating some bit
values).

Let S ⊂ Sn , T ⊂ {0, 1}n and |S|, |T | ∈ poly(n). Using
the above intuition, we conclude that there exists an efficient
quantum protocol for the problem

ẼqS,T (x, y)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if |π(x) ⊕ τ ⊕ y| ≤ n
5

for some π ∈ S

and τ ∈ T ;

0 if |π(x) ⊕ τ ⊕ y| ≥ 2n
5

for every π ∈ S

and τ ∈ T ;

undef. otherwise.

To solve it in Q�, both Alice and Bob send O(log n) copies of
their messages from the Ẽq-protocol described above, which
allows the referee to solve any instance of Ẽq(π(X) ⊕ τ, Y )
with error 1/poly(n) (arbitrarily small). In particular, this
means that he can “reuse” the messages and test Ẽq(π �(X) ⊕
τ �, Y ) for every π � ∈ S and τ � ∈ T with polynomially-small
error, thus solving the problem.

12For simplicity, in this informal overview we only require that a protocol
solves a Boolean problem with error 1/2 − �(1). The definitions made in this
part are not used elsewhere.
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One can see that the main communication task studied here
– �cEqT – is an instance of ẼqS,T with different constants,
S being the set of cyclic bit-shifts and T being a small-bias
space.

A. Towards the Lower Bound

Proving a strong lower bound for the R�,pub-complexity
of �cEqT is interesting for several reasons. One of them is
the technical challenge: rather fine tuning of the method is
required.

The bound has to distinguish between the models R�,pub

and R1, whose respective strengths are rather close to each
other. Indeed, not only �cEqT (X, Y ), but any ẼqS,T (X, Y ) is
easy for (randomized) one-way protocols: Alice can send to
Bob a number of randomly selected pairs (i, Xi ), letting him
estimate, with sufficient confidence and accuracy, the values
of |π(x) ⊕ τ ⊕ y| for every π ∈ S and τ ∈ T . Sending
O(log n) pairs for uniformly-chosen i-s would suffice, and
therefore R1(�cEqT ) ∈ O

(
log2(n)

)
.

Ignoring some technical details, our lower-bound argument
for R�,pub(�cEqT ) can be outlined as follows.

First of all, we need a convenient characterization of effi-
cient protocols for Ẽq. It will be based on the observation that
if a random input satisfying X ≈ Y is given to an R�,pub-
protocol for Ẽq(X, Y ), then the two messages received by the
referee are likely to “witness” that fact. After some technical
manipulations, this idea will lead to

EEE
i

[
�i

α · �i
β

]
∈ �

(
1

n

)
, (1)

where �i
α is the “bias” of the referee’s knowledge about

Xi , gained from Alice’s message Al(X), and �i
β is defined

similarly with respect to Y and Bob’s message Bo(Y ).
Next we take T into account. We will use its small-bias

properties to conclude that a protocol for ẼqT (X, Y ) must
satisfy

EEE
i

[
III
[

Xi : Al(X)
]

· III
[
Yi : Bo(Y )

]]
∈ �

(
1

n

)
. (2)

The bound in (2) is significantly stronger than that in
(1): Both Xi and Yi are uniformly-random bits, so “bias”
γ > 0 in the referee’s knowledge, say, about Xi corresponds
to 


(
γ 2
)

bits of information. The “quadratic improvement”
from (1) to (2) captures the “added hardness” in the transition
from Ẽq to ẼqT – at least, from the point of view of our
analysis.

Finally, we add cyclic shifts in order to “disconnect”
III
[
Xi : Al(X)

]
from III

[
Yi : Bo(Y )

]
. We will show that any

protocol for �cEqT (X, Y ) must satisfy

EEE
i

[
III
[

Xi : Al(X)
]]

· EEE
j

[
III
[
Y j : Bo(Y )

]]
∈ �

(
1

n

)
, (3)

and this gives the desired lower bound, as at least one of
EEEi
[
III
[
Xi : Al(X)

]]
and EEE j

[
III
[
Y j : Bo(Y )

]]
must be �(1/

√
n)

in order to satisfy (3).

IV. SOLVING c̃EqT WITH SIMULTANEOUS

QUANTUM MESSAGES

Here we construct a protocol for solving�cEqT in Q�.13 First
we consider the following simpler problem.

For any τ ∈ T and j ∈ [n], let

Ẽqj,τ (x, y)
def=

⎧⎪⎨⎪⎩
1 if |σ j (x) ⊕ y ⊕ τ | ≤ 6n

15 ;

0 if |σ j (x) ⊕ y ⊕ τ | ≥ 7n
15 ;

undef. otherwise.

a) A protocol for Ẽqj,τ : Upon receiving the input, Alice
and Bob send, respectively,

|φAl� def= 1√
n

·
n∑

i=1

|i�|Xi �

and

|φBo� def= 1√
n

·
n∑

i=1

|i�|Yi �

to the referee. The referee then applies σ j to the first register
of |φAl � and τ (σ j (i))-controlled negation to the second, thus
transforming the state into∣∣φ�

Al

〉 = 1√
n

·
n∑

i=1

∣∣σ j (i)
〉∣∣Xi ⊕ τ

(
σ j (i)

)〉
.

Note that the above transformation is orthogonal (in particular,
reversible), and therefore can be performed, preserving the
superposition.

At this point the referee can apply the swap test to the
states

∣∣φ�
Al

〉
and |φBo�, which would “pass” with probability

1 + ∣∣〈φ�
Al

∣∣φBo
〉∣∣2

2
= 1

2
+ (n − |σ j0(X) ⊕ τ0 ⊕ Y |)2

2n2{
> 2

3 if Ẽqj,τ (x, y) = 1;

< 29
45 if Ẽqj,τ (x, y) = 0.

For any ε > 0, let Pε
j,τ denote the protocol that repeats

the above procedure O
(
log 1

ε

)
times in parallel (in particular,

the players send that many copies of, respectively, |φAl � and
|φBo�), outputs “1” if at least 59

90 -fraction of the swap tests have
passed and “0” otherwise – the number of performed repeti-
tions is chosen so that the resulting Pε

j,τ solves Ẽqj,τ (X, Y )
with error less than ε. The resulting communication cost of
Pε

j,τ is O
(
log n · log 1

ε

)
.

Let (�ε
j,τ , I − �ε

j,τ ) be the 2-outcome projective measure-
ment that the referee applies in Pε

j,τ to the received messages
in order to determine the answer (with the outcome �ε

j,τ
corresponding to answering “Ẽqj,τ (x, y) = 1”), and let this
be the only step performed by the referee.14

Note that execution of Pε
j,τ doesn’t require from either Alice

or Bob the knowledge of either j or τ – only the referee has
to know these values in order to apply (�ε

j,τ , I − �ε
j,τ ). This

makes Pi,ε a perfect “building block” for solving the original
problem.

13Let us remind the reader that a survey of quantum communication
complexity can be found in [2].

14Putting it differently, the measurement (�ε
j,τ , I − �ε

j,τ ) incorporates all
the steps taken by the referee according to Pε

j,τ .
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b) A protocol for �cEqT : Let Alice and Bob send their
messages to the referee, as prescribed by Pε�

j,τ for some ε� to
be fixed soon (recall that these messages do not depend on
the values of j and τ ). The referee sequentially measures the
received messages with (�ε�

j,τ , I − �ε�
j,τ ) for all τ ∈ T and

j ∈ [n]. If at least one outcome �ε�
j,τ has been

obtained, the referee answers “�cEqT (X, Y ) = 1”; otherwise,
“�cEqT (X, Y ) = 0”.

Call the above protocol P . Assume without loss of gen-
erality that �cEqT (X, Y ) ∈ {0, 1} (i.e., the input fulfills the
promise). To analyze the error of P , note that the protocol
can return the wrong answer only if for some ( j, τ ) the
outcome of the corresponding measurement (�ε�

j,τ , I − �ε�
j,τ )

is wrong – that is, the outcome is �ε�
j,τ while Ẽqj,τ (X, Y ) = 0,

or vice versa. Note that while the probability of the out-
come of the first performed measurement being wrong
is bounded above by ε� (as follows trivially from the
error bound of Pε�

j,τ ), at the subsequent rounds the state
being measured may have been “distorted” by the ear-
lier measurements, which, in turn, may increase the error
probability.

It is known (e.g., see Lemma 2 in [1]) that if a sequence
of m quantum measurements of the same state is performed,
such that in every measurement the most likely outcome would
occur with probability at least 1 − ε� if the measurement were
performed on the “clean” state, then such ε� ∈ poly(1/m) can
be chosen, that all the m obtained outcomes will be the most
likely ones with probability at least 2/3 (or any other constant
less than 1).

For the protocol P to be correct, it is enough for the mea-
surement corresponding to every τ ∈ T and j ∈ [n] to return
the most likely value. Accordingly, choosing ε� ∈ 1/poly(n·|T |) is
sufficient for the resulting P to solve�cEqT (X, Y ) with error at
most 1/3. The respective protocol’s communication complexity
is, therefore, O

(
(log n)2 + log n · log |T |).

Corollary 1. For every T ⊆ {0, 1}n ,

Q�(�cEqT ) ∈ O
(
(log n)2 + log n · log |T |

)
.

V. A PROBABILISTIC INTERLUDE

Here we prove several claims addressing the behavior of
non-independent random variables. The statements are rather
intuitive, though we are not aware of previously published
proofs.

A. Optimistic Inequalities

Claim 2 (Optimistic Chain Inequality). Let X1, . . . , Xm be
random variables, where each Xi is supported on (finite)
Gi ∪· Bi . Let μ denote the joint distribution of X = (X1,
. . . , Xm), then

PrPrPr
X∼μ

⎡⎣ m∧
j=1

X j ∈ G j

⎤⎦ (4)

=
m∏

i=1

PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j ∈ G j

⎤⎦

=
m∏

i=1

EEE
X �∼μ

⎡⎣ PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦∣∣∣∣∣∣
i−1i−1i−1∧
j=1

X �
j ∈ G j

⎤⎦
≤

m∏
i=1

EEE
X �∼μ

⎡⎣ PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦
∣∣∣∣∣∣

mmm∧
j=1

X �
j ∈ G j

⎤⎦,

where X � = (X �
1, . . . , X �

m) and X are independent from one
another, unless conditioned explicitly. Moreover,

log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=1

X j ∈ G j

⎤⎦⎞⎠ (5)

≤
m∑

i=1

EEE
X �∼μ

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xi ∈Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦⎞⎠∣∣∣∣∣∣
m∧

j=1

X �
j ∈G j

⎤⎦.
The equalities in (4) correspond to the standard “chain”

decomposition (included here for convenience). In comparison
to the standard decomposition, the inequality offers a more
symmetric upper bound on PrPrPr

[∧X j ∈ G j
]

at the expense of
tightness.15

We call the above claim optimistic, viewing the subsets Gi

as good, Bi-s as bad and interpreting the statement of (4)
as saying that the estimated probability of m good outcomes
doesn’t decrease as a result of making the estimation “opti-
mistically biased”: instead of conditioning the expectation on[∧i−1

j=1 X �
j ∈ G j

]
(which would give the actual probability of

all good outcomes), the right-hand side of the above inequality
uses more “good-oriented” (and more restricting) condition[∧m

j=1 X �
j ∈ G j

]
.

Moreover, the right-hand side of (5) is likely to have grown
as a result of making the expectations “optimistically biased”
(i.e., conditioning it on

[∧m
j=1 X �

j ∈ G j

]
): due to the strict

concavity of log, the statement wouldn’t hold if the condition[∧m
j=1 X �

j ∈ G j

]
were replaced by

[∧i−1
j=1 X �

j ∈ G j

]
, unless

the quantities under the expectations are constant (that is,
unless every event [Xi ∈ Gi ] is independent from the values
of X1, . . . , Xi−1, subject to

[∧i−1
j=1 X j ∈ G j

]
).

Note also that the inequality in (4) isn’t necessarily true
“element-wise”: there may exist a situation, where for some
i0 ∈ [m]:

PrPrPr
X∼μ

⎡⎣Xi0 ∈ Gi0

∣∣∣∣∣∣
i0−1∧
j=1

X j ∈ G j

⎤⎦
= EEE

X �∼μ

⎡⎣ PrPrPr
X∼μ

⎡⎣Xi0 ∈ Gi0

∣∣∣∣∣∣
i0−1∧
j=1

X j = X �
j

⎤⎦∣∣∣∣∣∣
i0−1∧
j=1

X �
j ∈ G j

⎤⎦
> EEE

X �∼μ

⎡⎣ PrPrPr
X∼μ

⎡⎣Xi0 ∈ Gi0

∣∣∣∣∣∣
i0−1∧
j=1

X j = X �
j

⎤⎦∣∣∣∣∣∣
m∧

j=1

X �
j ∈ G j

⎤⎦.

The following statement implies that the above inequality
might hold only for i0 < m.

15The statement of Claim 2 can probably be made tight via expressing the
difference between the two sides of (5) as a sum of relative entropies, cf.
Claim 3.
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Claim 3 (Optimistic Conditioning). Let X1 and X2 be random
variables, each Xi supported on (finite) Gi ∪· Bi , and let μ be
the joint distribution of X = (X1, X2). Then

log

(
PrPrPr

X∼μ

[
X2 ∈ G2

∣∣∣X1 ∈ G1

])
= log

(
EEE

X �∼μ

[
PrPrPr

X∼μ

[
X2 ∈ G2

∣∣∣X1 = X �
1

]∣∣∣∣X �
1 ∈ G1

])
= EEE

X �∼μ

[
log

(
PrPrPr

X∼μ

[
X2 ∈ G2

∣∣∣X1 = X �
1

])∣∣∣∣X �
1 ∈ G1, X �

2 ∈ G2

]
− dK L

(
β
∥∥∥α)

≤ EEE
X �∼μ

[
log

(
PrPrPr

X∼μ

[
X2 ∈ G2

∣∣∣X1 = X �
1

])∣∣∣∣X �
1 ∈ G1, X �

2 ∈ G2

]
,

where X � = (X �
1, X �

2) is independent from X (unless con-
ditioned explicitly), and α and β denote the distributions
of X1, conditioned, respectively, on [X1 ∈ G1] and on
[X1 ∈ G1, X2 ∈ G2].

The statement of Claim 3, similarly to (5), witnesses the
qualitative “benefit” of optimistic conditioning: since log is
strictly concave, whenever [X2 ∈ G2] depends on X1 (subject
to [X1 ∈ G1]), the above inequality wouldn’t hold if the
expectation were not subject to [X �

2 ∈ G2].
Proof of Claim 3. For every c ∈ G1, let pc

def= PrPrPr [X1 = c]

and qc
def= PrPrPr

[
X2 ∈ G2

∣∣X1 = c
]
. Then

PrPrPr
X∼μ

[X1 ∈ G1] =
∑

d∈G1

pd ,

α(c) = PrPrPr
X∼μ

[
X1 = c

∣∣∣X1 ∈ G1

]
= pc∑

d∈G1
pd

,

and

PrPrPr
X∼μ

[X1 = c, X2 ∈ G2] = pcqc,

PrPrPr
X∼μ

[X1 ∈ G1, X2 ∈ G2] =
∑

d∈G1

pdqd ,

β(c) = PrPrPr
X∼μ

[
X1 = c

∣∣∣X1 ∈ G1, X2 ∈ G2

]
= pcqc∑

d∈G1
pdqd

.

Let

k
def=
∑

d∈G1
pdqd∑

d∈G1
pd

≡ α(c)

β(c)
· qc (for any c ∈ G1),

then

log

(
PrPrPr

X∼μ

[
X2 ∈ G2

∣∣∣X1 ∈ G1

])
= log

⎛⎝∑
d∈G1

α(d) · qd

⎞⎠ = log

⎛⎝∑
d∈G1

k · β(d)

⎞⎠ = log(k)

=
∑

d∈G1

β(d) · log

(
k · β(d)

α(d)

)
−
∑

d∈G1

β(d) · log

(
β(d)

α(d)

)
=
∑

d∈G1

β(d) · log(qd) − dK L

(
β
∥∥∥α)

= EEE
X �∼μ

[
log

(
PrPrPr

X∼μ

[
X2 ∈ G2

∣∣∣X1 = X �
1

])∣∣∣∣X �
1 ∈ G1, X �

2 ∈ G2

]
− dK L

(
β
∥∥∥α),

as required (the stated inequality follows from the non-
negativity of relative entropy). Claim 3

Proof of Claim 2. Let us first consider the case of two variables
(Y1, Y2) ∼ ν, supported, respectively, on G1∪· B1 and G2∪· B2:

log
(

PrPrPr
ν

[Y1 ∈ G1, Y2 ∈ G2]
)

(6)

= log
(

PrPrPr [Y1 ∈ G1]
)

+ log
(

PrPrPr
[
Y2 ∈ G2

∣∣∣Y1 ∈ G1

])
≤ log

(
PrPrPr [Y1 ∈ G1]

)
+ EEE

(Y �
1,Y

�
2)∼ν

[
log
(

PrPrPr
[
Y2 ∈ G2

∣∣∣Y1 = Y �
1

])∣∣∣Y �
1 ∈ G1, Y �

2 ∈ G2

]
,

as follows from Claim 3.
Let μ� denote the distribution of (X1, . . . , Xm) ∼ μ,

conditioned upon [∧m
j=1 X j ∈ G j ]; in other words,

μ�(x1, . . . , xm)
def=
{

μ(x1,...,xm)
μ(G1×···×Gm) if

∧m
j=1 x j ∈ G j ;

0 otherwise.

Note that

log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=1

X j ∈ G j

⎤⎦⎞⎠
≤ log

(
PrPrPr

X∼μ
[X1 ∈ G1]

)

+ EEE
X �∼μ

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=2

X j ∈ G j

∣∣∣∣∣∣X1 = X �
1

⎤⎦⎞⎠∣∣∣∣∣∣
m∧

j=1

X �
j ∈ G j

⎤⎦
= log

(
PrPrPr

X∼μ
[X1 ∈ G1]

)

+ EEE
X �∼μ�

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+1

X j ∈ G j

∣∣∣∣∣∣X1 = X �
1

⎤⎦⎞⎠⎤⎦
holds for k = 1, as a direct application of (6).
Inequality (5) follows by induction on k.16 Assume that

log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=1

X j ∈ G j

⎤⎦⎞⎠ (7)

≤ EEE
X �∼μ�

⎡⎣ k∑
i=1

log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
+ EEE

X �∼μ�

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+1

X j ∈ G j

∣∣∣∣∣∣
k∧

j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
= EEE

X �∼μ�

⎡⎣ k∑
i=1

log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
+

∑
x �∈{0,1}m

μ�(x �)·log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+1

X j ∈ G j

∣∣∣∣∣∣
k∧

j=1

X j = x �
j

⎤⎦⎞⎠
︸ ︷︷ ︸

�

holds for some k ≥ 1.

16We could have started from the trivial case of k = 0 and handle k = 1
as a generic inductive step; we treat the latter as the base case in order to
present the main idea behind the induction in a somewhat simpler form.
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For any x � ∈ {0, 1}m , let ν
(k)
x � denote the distribution

of
(
X j
)m

j=k+1 when (X j )
m
j=1 ∼ μ, conditioned upon∧k

j=1 X j = x �
j ; in other words,

ν
(k)
x � (xk+1, . . . , xm)

def= μ(x �
1, . . . , x �

k, xk+1, . . . , xm)∑
x ��

k+1,...,x ��
m

μ(x �
1, . . . , x �

k, x ��
k+1, . . . , x ��

m)
.

Next we inspect �.

∀x � : log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+1

X j ∈ G j

∣∣∣∣∣∣
k∧

j=1

X j = x �
j

⎤⎦⎞⎠ (8)

= log

⎛⎝ PrPrPr
X∼ν

(k)
x �

⎡⎣ m∧
j=k+1

X j ∈ G j

⎤⎦⎞⎠
≤ log

⎛⎝ PrPrPr
X∼ν

(k)

x �

[
Xk+1 ∈ Gk+1

]⎞⎠
+ EEE

X ��∼ν
(k)
x �

⎡⎣log

⎛⎝ PrPrPr
X∼ν

(k)
x �

⎡⎣ m∧
j=k+2

X j ∈ G j

∣∣∣∣∣∣Xk+1 = X ��
k+1

⎤⎦⎞⎠∣∣∣∣∣∣�
⎤⎦,

where “�” stands for
∧m

j=k+1 X ��
j ∈ G j , “X ∼ ν

(k)
x � ” stands

for (Xk+1, . . . , Xm) ∼ ν
(k)
x � , X �� = (X ��

k+1, . . . , X ��
m) and the

inequality is an application of (6).
Consider the following distribution.

• Let X � ∼ μ�; denote by x � the value taken by X �;
• let X �� ∼ ν

(k)
x � , subject to

[∧m
j=k+1 X ��

j ∈ G j

]
.

We claim that the resulting distribution of (X �
1, . . . , X �

k , X ��
k+1,

. . . , X ��
m) is simply μ�:

∀(x1, . . . , xm) ∈ G1 × · · · × Gm :
μ�(x1, . . . , xm) = μ(x1, . . . , xm)

μ(G1 × · · · × Gm)
;

PrPrPr
[
(X �

1, . . . , X �
k) = (x1, . . . , xk)

]
=

∑
(x ��

k+1,...,x
��
m)∈Gk+1×···×Gm

μ(x1, . . . , xk, x ��
k+1, . . . , x ��

m)

μ(G1 × · · · × Gm)
.

∀(x �
k+1, . . . , x �

m) ∈ Gk+1 × · · · × Gm :
PrPrPr
[
(X �

1, . . . ,X �
k ,X ��

k+1, . . . ,X ��
m)=(x1, . . . ,xk,x

�
k+1, . . . ,x

�
m)
]

= PrPrPr
[
(X �

1, . . . , X �
k) = (x1, . . . , xk)

]
· ν

(k)
x1,...,xk (x �

k+1, . . . , x �
m)

ν
(k)
x1,...,xk (Gk+1 × · · · × Gm)

= PrPrPr
[
(X �

1, . . . , X �
k)=(x1, . . . , xk)

]·ν(k)
x1,...,xk (x �

k+1, . . . ,x
�
m)

PrPrPr X∼μ

[∧m
j=k+1 X j ∈ G j

∣∣∣∧k
j=1 X j = x j

] ;

PrPrPr
[
(X �

1, . . . , X �
k) = (x1, . . . , xk)

] · ν(k)
x1,...,xk

(x �
k+1, . . . , x �

m)

=
∑

(x ��
k+1,...,x

��
m)∈Gk+1×···×Gm

μ(x1, . . . , xk, x ��
k+1, . . . , x ��

m)∑
x ��

k+1,...,x
��
m

μ(x1, . . . , xk, x ��
k+1, . . . , x ��

m)

· μ(x1, . . . , xk, x �
k+1, . . . , x �

m)

μ(G1 × · · · × Gm)

=
PrPrPr X∼μ

[∧k
j=1 X j = x j ∧∧m

j=k+1 X j ∈ G j

]
PrPrPr X∼μ

[∧k
j=1 X j = x j

]
· μ�(x1, . . . , xk, x �

k+1, . . . , x �
m)

= PrPrPr
X∼μ

⎡⎣ m∧
j=k+1

X j ∈ G j

∣∣∣∣∣∣
k∧

j=1

X j = x j

⎤⎦
· μ�(x1, . . . , xk, x �

k+1, . . . , x �
m);

PrPrPr
[
(X �

1, . . . ,X �
k ,X ��

k+1, . . . ,X ��
m)=(x1, . . . ,xk, x �

k+1, . . . ,x
�
m)
]

= μ�(x1, . . . , xk, x �
k+1, . . . , x �

m),

where we have somewhat abused the notation by writing
“ν(k)

x1,...,xk ” (note that ν
(k)
x � indeed depends only on the first k

bits of x �).
Accordingly, it follows from (8) and from the definition

of ν
(k)
x � that

∑
x �∈{0,1}m

μ�(x �) · log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+1

X j ∈ G j

∣∣∣∣∣∣
k∧

j=1

X j = x �
j

⎤⎦⎞⎠
︸ ︷︷ ︸

�

≤
∑

x �
μ�(x �) · log

⎛⎝ PrPrPr
X∼ν

(k)

x �

[
Xk+1 ∈ Gk+1

]⎞⎠+
∑

x �
μ�(x �)

· EEE
X ��∼ν

(k)
x �

⎡⎣log

⎛⎝ PrPrPr
X∼ν

(k)
x �

⎡⎣ m∧
j=k+2

X j ∈ G j

∣∣∣∣∣∣Xk+1 = X ��
k+1

⎤⎦⎞⎠∣∣∣∣∣∣�
⎤⎦

=
∑

x �
μ�(x �) · log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xk+1 ∈ Gk+1

∣∣∣∣∣∣
k∧

j=1

X j = x �
j

⎤⎦⎞⎠
+
∑

x �
μ�(x �) · EEE

X ��∼ν
(k)
x �

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+2

X j ∈ G j

∣∣∣∣∣∣��

⎤⎦⎞⎠
∣∣∣∣∣∣�
⎤⎦

= EEE
X �∼μ�

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xk+1 ∈ Gk+1

∣∣∣∣∣∣
k∧

j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
+ EEE

X ��∼μ�

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+2

X j ∈ G j

∣∣∣∣∣∣
k+1∧
j=1

X j = X ��
j

⎤⎦⎞⎠⎤⎦,

where “�” stands for
∧m

j=k+1 X ��
j ∈ G j and “��” stands for∧k

j=1 X j = x �
j ∧ Xk+1 = X ��

k+1. Substituting it to (7) gives

log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=1

X j ∈ G j

⎤⎦⎞⎠
≤ EEE

X �∼μ�

⎡⎣ k∑
i=1

log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
+ EEE

X �∼μ�

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xk+1 ∈ Gk+1

∣∣∣∣∣∣
k∧

j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
+ EEE

X �∼μ�

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+2

X j ∈ G j

∣∣∣∣∣∣
k+1∧
j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
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= EEE
X �∼μ�

⎡⎣k+1∑
i=1

log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
+ EEE

X �∼μ�

⎡⎣log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=k+2

X j ∈ G j

∣∣∣∣∣∣
k+1∧
j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦,

thus completing the induction step; for k = m − 1 the above
reads:

log

⎛⎝ PrPrPr
X∼μ

⎡⎣ m∧
j=1

X j ∈ G j

⎤⎦⎞⎠
≤ EEE

X �∼μ�

⎡⎣ m∑
i=1

log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦⎞⎠⎤⎦
= EEE

X �∼μ

⎡⎣ m∑
i=1

log

⎛⎝ PrPrPr
X∼μ

⎡⎣Xi ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦⎞⎠∣∣∣∣∣∣�
⎤⎦,

where “�” stands for
∧m

j=1 X �
j ∈ G j , which is precisely (5);

(4) follows by the concavity of log. Claim 2
As a side note, we give the following generalization, where

the i ’th “goodness criterion” may depend not only on the value
taken by Xi , but also on the values of X1, . . . , Xi−1, as long
as the condition is “monotone non-increasing” (e.g., the value
of (X1, X2) cannot be good when that of X1 is bad).

Corollary 2. Let X1, . . . , Xm be random variables, so that
for each i ∈ [n] the tuple (X j )

i
j=1 is supported on (finite)

Gi ∪· Bi and for all i1 < i2 it holds that Gi2 projected to the
first i1 coordinates is a subset of Gi1 . Let μ denote the joint
distribution of X = (X1, . . . , Xm), then

PrPrPr
X∼μ

[X ∈ Gm ]

≤
m∏

i=1

EEE
X �∼μ

⎡⎣ PrPrPr
X∼μ

⎡⎣(X j )
i
j=1 ∈ Gi

∣∣∣∣∣∣
i−1∧
j=1

X j = X �
j

⎤⎦
∣∣∣∣∣∣X � ∈ Gm

⎤⎦,

where X � = (X �
1, . . . , X �

m) and X are independent from one
another, unless conditioned explicitly.

Proof. For every i ∈ [m], let Yi be a random variable that
takes value (Xi , Qi ), where

Qi =
{

1 if (X j )
i
j=1 ∈ Gi ;

0 otherwise.

Let Gi
def= supp(Xi ) × {1} and apply Claim 2 to the case of

random variables Yi and “good” sets Gi .

B. Confidence-Weighted Accuracy of Boolean Prediction

Claim 4. Let X and Y be random variables, X being supported
on {0, 1}. Then

EEE
X �,Y �

[
PrPrPr
X,Y

[
X = X �

∣∣∣Y = Y �]]− 1

2

= 2 · EEE
Y=y

[(
EEE
X

[
X
∣∣∣Y = y

]
− 1

2

)2
]
,

where (X �, Y �) are distributed independently and identically
to (X, Y ).

In particular, if X ∼ U{0,1}, then

EEE
X �,Y �

[
PrPrPr
X,Y

[
X = X �

∣∣∣Y = Y �]− 1

2

]
∈ 


(
III
[

X : Y
])

.

Intuitively, if we view X as unknown, Y as known, and try
to predict the former using the latter, then the expectation of
PrPrPr
[
X = X �∣∣Y = Y �] − 1/2 can be interpreted as confidence-

weighted accuracy when X ∼ U{0,1}.17 It can be opposed to
the standard notion of confidence:

EEE
Y=y

[∣∣∣∣EEEX [X
∣∣∣Y = y

]
− 1

2

∣∣∣∣]
= EEE

X �,Y �

[∣∣∣∣PrPrPr
X,Y

[
X = X �

∣∣∣Y = Y �]− 1

2

∣∣∣∣] ∈ 


(√
III
[

X : Y
])

.

The qualitative difference between the two quantities is wit-
nessed by the claim.

Proof of Claim 4. Let g(y)
def= PrPrPr

[
X = 0

∣∣Y = y
]

for every
y ∈ supp(Y ), then

EEE
X �,Y �

[
PrPrPr
X,Y

[
X = X �

∣∣∣Y = Y �]] = EEE
Y �=y�[�]

= EEE
Y �
[
g(Y �) · g(Y �) + (1 − g(Y �)) · (1 − g(Y �))

]
= 2 · EEE

Y

[(
g(Y ) − 1

2

)2
]

+ 1

2

= 2 · EEE
Y=y

[(
EEE
X

[
X
∣∣∣Y = y

]
− 1

2

)2
]

+ 1

2
,

where “�” stands for PrPrPr
[
X � = 0

∣∣Y � = y �] · g(y �) +
PrPrPr
[
X � = 1

∣∣Y � = y �] · (1 − g(y �)).
If X ∼ U{0,1}, then

H (X) − H
(

X
∣∣∣Y = y

)
= 1 − H

(
X
∣∣∣Y = y

)
∈ 


((
EEE
[

X
∣∣∣Y = y

]
− 1

2

)2
)

for every y ∈ supp(Y ), and therefore,

III
[

X : Y
]

= EEE
Y=y

[
H (X) − H

(
X
∣∣∣Y = y

)]
∈ 


(
EEE

Y=y

[(
EEE
X

[
X
∣∣∣Y = y

]
− 1

2

)2
])

,

as required. Claim 4

VI. THE R�,pub-COMPLEXITY OF c̃EqT – A LOWER BOUND

Definition 2 (Protocols in D�
ε ). Let P be a protocol in D�

ε ,
where both Alice and Bob send r bits to the referee.

• Let Al : {0, 1}n → {0, 1}r be the “message function”
of Alice, according to P – i.e., Al(x) is sent when she
receives input x ;

• let α : {0, 1}n → Pow({0, 1}n) be the “neighbor-

hood function” corresponding to Al(·) – i.e., α(x)
def={

x �∣∣Al(x �) = Al(x)
}
;

• define Bo(y) and β(y) similarly.

17Interpret the pair (X �, Y �) as the “actual outcome” of the experiment, then
PrPrPr
[

X = X �∣∣∣Y = Y �] measures “how likely” the value of X was to equal X �,
conditioned upon the value of Y being Y �.
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Note that α(·) and β(·) naturally correspond to partitions of,
respectively, Alice’s and Bob’s input spaces: every possible
message sent by a player corresponds to an element of his
partition which is the set of input values corresponding to this
message. These partitions are fully determined by the message
functions Al(·) and Bo(·) and, in some sense, they reveal
“all that matters” about a protocol in D�

μ,ε , as we can always
consider (in the context of lower bounds, assume) an “optimal”
referee – the one who outputs a most likely guess regarding
f (X, Y ) with respect to μ, given the messages Al(X) and
Bo(Y ) from the players.

To analyze the complexity of �cEqT , we reason as follows.

• We identify a useful property of all sufficiently accurate
protocols for Equ (cf. Corollary 3).

• We consider protocols for Equ,T and see that a more rigid
form of the above property must hold if T is a so-called
“small-bias space” (cf. Lemma 4).

• We view ẼqT as “Equ,T on a random subset u” –
accordingly, a protocol for ẼqT must satisfy the above
characterization with respect to “random projections”,
which leads to a more symmetric criterion (cf. Lemma 5).

• We observe that a protocol for �cEqT must, in a sense,
simultaneously solve n “rotated instances” of ẼqT –
therefore, such a protocol must satisfy the n “rotated
versions” of the above characterization, which in turn
leads to an even more symmetric criterion (cf. Lemma 6)
and then to the desired complexity lower bound
(cf. Corollary 4).

A. Characterizing Protocols for Equ

To characterize protocols that solve the equality problem,
we use the following idea: Suppose for simplicity that u = [n]
(i.e., the protocol solves the standard Eq). If the partitions of
{0, 1}n defined by α(·) and β(·) are suitable for solving Eq,
then with respect to X = Y ⊂∼ {0, 1}n , the pair of subsets
(α(X), β(Y )) will (typically) be such that [X = Y ] is “likely”,
given the messages – namely,

PrPrPr
(X �,Y �)⊂∼α(X)×β(X)

[
X � = Y �]

� PrPrPr
(X �,Y �)⊂∼{0,1}n+n

[
X � = Y �] = 1

2n
.

Applying the optimistic chain inequality (Claim 2) with
respect to the event [X � = Y �] = [∧i X �

i = Y �
i ] and integrating

over the rectangles of the form α(x) × β(x) will lead to a
convenient protocol characterization.

Definition 3 (Protocols for Equ). Fix some u ⊆ [n] and let P
be a protocol that solves Equ in D�

μEqu ,ε . In addition to Al(·),
Bo(·), α(·) and β(·) defined earlier, we will use the following
variations: Let z ∈ {0, 1}|u|, then

• denote by Al∗(z) the distribution over {0, 1}r , corre-
sponding to Al(X �) when X � is chosen uniformly at
random from

{
x � ∈ {0, 1}n

∣∣x �
u = z

}
;

• denote by α∗(z) the distribution over Pow({0, 1}n), cor-
responding to

{
x �∣∣Al(x �) = m0

}
when m0 is the value

taken by M ∼ Al∗(z) (alternatively, α∗(z) can be defined

as the distribution of α(X �) when X � is chosen uniformly
at random from

{
x � ∈ {0, 1}n

∣∣x �
u = z

}
);

• define Bo∗(z) and β∗(z) similarly.

We will argue that the following type of objects are, in a
sense, “typical for P” (that will be the technical core of our
characterization).

Definition 4 (Good Rectangles). Let A, B ⊆ {0, 1}n . We call
the rectangle A × B ⊆ {0, 1}n+n good if

PrPrPr
(X �,Y �)⊂∼A×B

[
X �

u = Y �
u

] ≥ 1

4
√

ε + 2−|u| · 1

2|u| .

Our first step in this part is characterizing good rectangles
in a technically-convenient manner. We need the following.

Definition 5 (Delta-Properties of Sets and Partitions). Let
W ⊆ {0, 1}n , i ∈ [|u|] and z ∈ {0, 1}|u|. Then

δu,i
W (z)

def= PrPrPr
X⊂∼W

[
Xu(i) = zi

∣∣∣Xu([i − 1]) = z[i−1]
]

− 1

2
,

�u,i
α (z)

def= PrPrPr
X⊂∼α∗(z)

[
Xu(i) = zi

∣∣∣Xu([i − 1]) = z[i−1]
]

− 1

2{
= EEE

A∼α∗(z)

[
δu,i

A (z)
]}

,

and similarly for �u,i
β (z).

Lemma 1. Let A, B ⊆ {0, 1}n . If the rectangle A×B is good,
then

EEE
Z

⎡⎣ |u|∑
i=1

δu,i
A (Z) · δu,i

B (Z)

⎤⎦ ≥ 1

4
· ln

(
1

4
√

ε + 2−|u|

)
,

where Z is distributed as Xu when (X, Y ) ⊂∼ A × B condi-
tioned on [Xu = Yu].
Proof. By the definition of good rectangles,

1

4
√

ε + 2−|u| · 1

2|u|

≤ PrPrPr
(X �,Y �)⊂∼A×B

[
X �

u = Y �
u

] = PrPrPr

⎡⎣ |u|∧
i=1

X �
u(i) = Y �

u(i)

⎤⎦
≤

|u|∏
i=1

EEE
(X �,Y �)⊂∼A×B

[
�
∣∣∣X �

u = Y �
u

]

=
|u|∏

i=1

EEE
Z

[
PrPrPr

(X,Y )⊂∼A×B

[
Xu(i) = Yu(i)

∣∣∣�]],
where “�” stands for Xu([i − 1]) = Yu([i − 1]) =
Z[i−1], the second inequality is the optimistic chain inequality
(Claim 2), � stands for

PrPrPr
(X,Y )⊂∼A×B

[
Xu(i) = Yu(i)

∣∣∣...],
conditioned upon [Xu([i − 1]) = X �

u([i − 1]), Yu([i − 1]) =
Y �

u([i −1])], and Z is distributed as X �
u when (X �, Y �) ⊂∼ A×B

conditioned on [X �
u = Y �

u].
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On the other hand, for every i ∈ [|u|] and z ∈ {0, 1}|u|:
PrPrPr

(X,Y )⊂∼A×B

[
Xu(i)=Yu(i)

∣∣∣Xu([i − 1])=Yu([i − 1])= z[i−1]
]

= PrPrPr
[

Xu(i)=Yu(i)= zi

∣∣∣Xu([i − 1])=Yu([i − 1])= z[i−1]
]

+PrPrPr
[

Xu(i)=Yu(i)=1−zi

∣∣∣Xu([i −1])=Yu([i −1])= z[i−1]
]

= PrPrPr
X⊂∼A

[
Xu(i) = zi

∣∣∣Xu([i − 1]) = z[i−1]
]

· PrPrPr
Y⊂∼B

[
Yu(i) = zi

∣∣∣Yu([i − 1]) = z[i−1]
]

+ PrPrPr
X⊂∼A

[
Xu(i) = 1 − zi

∣∣∣Xu([i − 1]) = z[i−1]
]

· PrPrPr
Y⊂∼B

[
Yu(i) = 1 − zi

∣∣∣Yu([i − 1]) = z[i−1]
]

= 1

2
+ 2 ·

(
PrPrPr

X⊂∼A

[
Xu(i) = zi

∣∣∣Xu([i − 1]) = z[i−1]
]

− 1

2

)
·
(

PrPrPr
Y⊂∼B

[
Yu(i) = zi

∣∣∣Yu([i − 1]) = z[i−1]
]

− 1

2

)
= 1

2
+ 2 · δu,i

A (z) · δu,i
B (z).

Therefore,
1

4
√

ε + 2−|u| · 1

2|u|

≤
|u|∏

i=1

(
1

2
+ 2 · EEE

Z

[
δu,i

A (Z) · δu,i
B (Z)

])
,

where Z is distributed as Xu when (X, Y ) ⊂∼ A × B condi-
tioned on [Xu = Yu ].

So,

ln

(
1

4
√

ε + 2−|u| · 1

2|u|

)
≤

|u|∑
i=1

(
ln

(
1

2

)
+ ln

(
1 + 4 · EEE

Z

[
δu,i

A (Z) · δu,i
B (Z)

]))

≤ |u| · ln

(
1

2

)
+ 4 ·

|u|∑
i=1

EEE
Z

[
δu,i

A (Z) · δu,i
B (Z)

]
,

as required. Lemma 1
Next we will “look inside” P , for which we need the

following.

Definition 6 (Random Variables Corresponding
to [Xu = Yu ]).

• Let Z ∼ U{0,1}|u| .
• Let the pair of Pow({0, 1}n)-valued variables (A,B) be

distributed as (α∗(Z), β∗(Z)).
• Let Z � be distributed as Xu when (X, Y ) ⊂∼ A × B

conditioned on [Xu = Yu].
Intuitively, the variable Z corresponds to sampling the

protocol input from μ1
Equ

: think of it as drawing uniformly-
random (X, Y ), subject to Xu = Yu = Z . Then the rectangle
A × B can be viewed as the knowledge that the referee
obtains from the players’ messages regarding the input pair.
View Z � as a “sibling of Z”, used in the proof for technical
reasons.

Note two Markov chains that correspond to these random
variables:

A ↔ Z ↔ B and Z ↔ (A,B) ↔ Z �,

in other words, A and B are independent when conditioned
on Z , and Z and Z � are independent when conditioned
on (A,B).

We claim that the latter chain is symmetric in the following
sense:

Lemma 2. The marginal distributions of ((A,B), Z) and of
((A,B), Z �) are the same.

Proof. Let (a, b) ∈ supp(A,B) and denote by [(a, b)] the event
that (A,B) = (a, b), by [a] the event that A = a and by [b]
the event that B = b. Let z0 ∈ {0, 1}|u|, then

PrPrPr
[
(a, b)

∣∣∣Z = z0

]
= PrPrPr

[
a
∣∣∣Z = z0

]
· PrPrPr

[
b
∣∣∣Z = z0

]
= PrPrPr

[
Z = z0

∣∣∣a] · PrPrPr [a]

PrPrPr [Z = z0]

· PrPrPr
[

Z = z0

∣∣∣b] · PrPrPr
[
b
]

PrPrPr [Z = z0]

= PrPrPr
[

Z = z0

∣∣∣a] · PrPrPr [a]

· PrPrPr
[

Z = z0

∣∣∣b] · PrPrPr
[
b
] · 22|u|.

On the other hand,

PrPrPr [a] = PrPrPr
Z⊂∼{0,1}|u|

[
α∗(Z) = a

]
= PrPrPr

X⊂∼{0,1}n
[α(X) = a] = |a|

2n
,

PrPrPr
[

Z = z0

∣∣∣a] = PrPrPr
[

Z = z0

∣∣∣α∗(Z) = a
]

= PrPrPr
[

Xu = z0

∣∣∣α(X) = a
]

= PrPrPr
X⊂∼a

[Xu = z0],

and similarly for PrPrPr
[
b
]

and PrPrPr
[
Z = z0

∣∣b]. Accordingly,

PrPrPr
[
(a, b)

∣∣∣Z = z0

]
= PrPrPr

X⊂∼a
[Xu = z0] · PrPrPr

Y⊂∼b
[Yu = z0] · |a| · |b| · 22|u|−2n.

Therefore,

PrPrPr
[[(a, b)] ∧ Z = z0

]
(9)

= PrPrPr [Z = z0] · PrPrPr
[
(a, b)

∣∣∣Z = z0

]
= PrPrPr

X⊂∼a
[Xu = z0] · PrPrPr

Y⊂∼b
[Yu = z0] · |a| · |b| · 2|u|−2n

and

PrPrPr
[
(a, b)

]
(10)

=
∑

z

PrPrPr [Z = z] · PrPrPr
X⊂∼a

[Xu = z] · PrPrPr
Y⊂∼b

[Yu = z]

· |a| · |b| · 22|u|−2n

= PrPrPr
X⊂∼a
Y⊂∼b

[Xu = Yu] · |a| · |b| · 2|u|−2n .
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On the other hand,

PrPrPr
[[(a, b)] ∧ Z � = z0

]
= PrPrPr

[
Z � = z0

∣∣∣(a, b)
]

· PrPrPr
[
(a, b)

]
= PrPrPr X⊂∼a[Xu = z0] · PrPrPr Y⊂∼b [Yu = z0]

PrPrPr X⊂∼a
Y⊂∼b

[Xu = Yu]
· PrPrPr

[
(a, b)

]
= PrPrPr

X⊂∼a
[Xu = z0] · PrPrPr

Y⊂∼b
[Yu = z0] · |a| · |b| · 2|u|−2n

= PrPrPr
[[(a, b)] ∧ Z = z0

]
,

where the last two inequalities follow from (10) and (9),
respectively. Lemma 2

Our characterization of P will be based on the following
structural observation.

Lemma 3.

PrPrPr
A,B

[
A × B is a good rectangle

]
> 1 − 2ε − 2

√
ε.

Proof. Let (a, b) ∈ {0, 1}r+r be a pair of players’ messages
and

err(a, b)

def= PrPrPr
[
P(X, Y ) makes an error

∣∣∣Al(X) = a, Bo(Y ) = b
]
,

where (X, Y ) ∼ μEqu
. By the correctness assumption,

PrPrPr
(X,Y )∼μEqu

[
err(Al(X), Bo(Y )) >

√
ε
]

<
√

ε.

Call a pair of messages (a, b) ∈ {0, 1}r+r bad if err(a, b) >√
ε and good otherwise.
Recall that μEqu

is the “uniform mixture” of μ0
Equ

and μ1
Equ

.
Accordingly, from the correctness assumption it follows that
with respect to (X, Y ) ∼ μ1

Equ
,

• P accepts (that is, produces output “1”) with probability
at least 1 − 2ε;

• (Al(X), Bo(Y )) is a bad message with probability at most
2
√

ε.

Note that sampling (Al(X), Bo(Y )) when (X, Y ) ∼ μ1
Equ

is
the same as sampling (Al∗(Z), Bo∗(Z)) when Z ∼ U{0,1}|u|
– therefore, (Al∗(Z), Bo∗(Z)) is a good pair of messages
accepted by the referee with probability at least 1−2ε−2

√
ε.

We will see next that a good pair of messages accepted
by the referee defines a good rectangle (Def. 4); this will
imply the lemma, as the rectangle corresponding to the pair of
messages (Al∗(Z), Bo∗(Z)) under Z ∼ U{0,1}|u| is distributed
the same way as A × B.

Suppose that (a, b) is a good pair of messages
accepted by the referee and let [(a, b)] denote the event
[(Al∗(Z), Bo∗(Z)) = (a, b)]. Then

PrPrPr
(X,Y )⊂∼{0,1}n+n

[
(a, b)

∣∣∣Xu �= Yu

]
= PrPrPr

μEqu

[
(a, b)

∣∣∣Xu �= Yu

]
= PrPrPr

μEqu

[
Xu �= Yu

∣∣∣(a, b)
]

· PrPrPrμEqu
[(a, b)]

PrPrPrμEqu
[Xu �= Yu]

≤ 2
√

ε · PrPrPr
μEqu

[(a, b)],

as PrPrPrμEqu
[Xu �= Yu] = 1/2. Similarly,

PrPrPr
(X,Y )⊂∼{0,1}n+n

[
(a, b)

∣∣∣Xu = Yu

]
≥ 2(1 − √

ε) · PrPrPr
μEqu

[(a, b)].

So,

PrPrPr
(X,Y )⊂∼{0,1}n+n

[
(a, b)

∣∣∣Xu �= Yu

]
≤

√
ε

1 − √
ε

· PrPrPr
(X,Y )⊂∼{0,1}n+n

[
(a, b)

∣∣∣Xu = Yu

]
and

PrPrPr
(X,Y )⊂∼{0,1}n+n

[(a, b)]

≤ PrPrPr [Xu = Yu] · PrPrPr
[
(a, b)

∣∣∣Xu = Yu

]
+ PrPrPr

[
(a, b)

∣∣∣Xu �= Yu

]
≤
(

1

2|u| +
√

ε

1 − √
ε

)
· PrPrPr

[
(a, b)

∣∣∣Xu = Yu

]
.

Finally,

PrPrPr
(X,Y )⊂∼{0,1}n+n

[
Xu = Yu

∣∣∣(a, b)
]

(11)

= PrPrPr
[
(a, b)

∣∣Xu = Yu
]

PrPrPr [(a, b)]
· PrPrPr [Xu = Yu]

≥ 1
1

2|u| +
√

ε

1−√
ε

· 1

2|u| >
1

4
√

ε + 2−|u| · 1

2|u| ,

as ε < 1/2. The result follows from the definition of good
rectangles. Lemma 3

We are ready for the main statement of this part.

Corollary 3. Let P be a protocol that solves Equ in D�
μEqu ,ε,

with �u,i
α and �u,i

β as defined earlier. Then
|u|∑

i=1

〈
�u,i

α , �u,i
β

〉
>

1

4
· ln

(
1

4
√

ε + 2−|u|

)
− 2

√
ε · |u|.

Proof. We analyze the quantity

EEE
(A,B), Z �

⎡⎣ |u|∑
i=1

δu,i
A (Z �) · δu,i

B (Z �)

⎤⎦.

On the one hand,

EEE
(A,B), Z �

⎡⎣ |u|∑
i=1

δu,i
A (Z �) · δu,i

B (Z �)

⎤⎦
≥ PrPrPr

[
A × B is a good rectangle

]
· 1

4
· ln

(
1

4
√

ε + 2−|u|

)
+
(

1 − PrPrPr
[
A × B is a good rectangle

])
· min

A,B,z

⎧⎨⎩
|u|∑

i=1

δu,i
A (z) · δu,i

B (z)

⎫⎬⎭
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>

(
1

4
− √

ε

)
· ln

(
1

4
√

ε + 2−|u|

)
− √

ε · |u|

≥ 1

4
· ln

(
1

4
√

ε + 2−|u|

)
− 2

√
ε · |u|,

where the first inequality is Lemma 1 and the second one is
Lemma 3. On the other hand,

EEE
(A,B), Z �

⎡⎣ |u|∑
i=1

δu,i
A (Z �) · δu,i

B (Z �)

⎤⎦
= EEE

Z , (A,B)

⎡⎣ |u|∑
i=1

δu,i
A (Z) · δu,i

B (Z)

⎤⎦
=

|u|∑
i=1

EEE
Z⊂∼{0,1}|u|

[(
EEE

A∼α∗(Z)

[
δu,i

A (Z)
])

·
(

EEE
B∼β∗(Z)

[
δu,i

B (Z)
])]

=
|u|∑

i=1

EEE
Z⊂∼{0,1}|u|

[
�u,i

α (Z) · �u,i
β (Z)

]
=

|u|∑
i=1

〈
�u,i

α , �u,i
β

〉
,

where the first equality is Lemma 2. Corollary 3

B. Characterizing Protocols for Equ,T

Lemma 4. Let T be a δ-biased space for some δ > 0 and
assume that P solves Equ,T (X, Y ) in D�

μEqu,T ,ε. Then∑
i∈u

III
X⊂∼{0,1}n

[
Xi : Xu\{i}, Al(X)

]
· III

Y⊂∼{0,1}n

[
Yi : Yu\{i}, Bo(Y )

]
∈ �

(
ln

(
1

|T | · (ε + 2−|u|)

))
− O

((√|T | · ε + δ
)

· |u|
)
.

Proof. From the definition of μEqu,T
and the correctness

assumption it follows that for any τ ∈ T , if (X +τ, Y ) ∼ μEqu
,

then P solves Equ(X + τ, Y ) with error at most

εT
def= |T | · (ε + 2−|u|).

Let Tu
def=
{
τ �
∣∣∣τ �

u ∈ T |u, τ �[n]\u = 0̄
}

– in other words, Tu

contains the elements of T with bits outside u set to 0. To keep
the notation simple, assume that |Tu | = |T |,18and therefore,
Tu |u ⊆ {0, 1}|u| is a δ-biased space.

Observe that for any τ ∈ T and the corresponding
τ � ∈ Tu , it holds that Equ(X + τ, Y ) ≡ Equ(X + τ �, Y ) and
(X +τ, Y ) ∼ μEqu

whenever (X +τ �, Y ) ∼ μEqu
. Accordingly,

P solves Equ(X + τ �, Y ) when (X + τ �, Y ) ∼ μEqu
with error

at most εT .
Corollary 3 implies that

EEE
τ �⊂∼Tu

⎡⎣ |u|∑
i=1

〈
�u,i

α,τ � , �u,i
β

〉⎤⎦
>

1

4
· ln

(
1

4
√

εT + 2−|u|

)
− 2

√
εT · |u|

18This assumption does not cause any loss of generality: without it we
would view Tu as a “multiset”.

for �u,i
α,τ �(z)

def= �u,i
α (z⊕τ �

u) for every z ∈ {0, 1}|u| and τ � ∈ Tu .
For any i ∈ [|u|]:

EEE
τ �⊂∼Tu

[〈
�u,i

α,τ � , �u,i
β

〉]
= EEE

τ �

⎡⎣ ∑
s⊂[|u|]

�
�u,i

α,τ �(s) · �
�u,i

β (s)

⎤⎦
=

∑
s⊂[|u|]

EEE
τ �

[
�
�u,i

α (s) · χs(τ
�
u) · �

�u,i
β (s)

]

=
∑

s⊂[|u|]

(
�
�u,i

α (s) · �
�u,i

β (s) · EEE
τ �
[
χs(τ

�
u)
])

≤ �
�u,i

α (∅) · �
�u,i

β (∅) + 1

4
· max

s �=∅

{
EEE
τ �
[
χs(τ

�
u)
]}

≤ �
�u,i

α (∅) · �
�u,i

β (∅) + δ

4
,

where the first two equalities are basic properties of the Fourier
transform (see Sect. II), the first inequality follows from the
Parseval’s identity and the fact that

∣∣�u,i
α (z)

∣∣, ∣∣∣�u,i
β (z)

∣∣∣ ≤ 1/2

for every z, and the ultimate step utilizes the crucial property
of Tu |u ⊆ {0, 1}|u| being a δ-biased space. So,

|u|∑
i=1

�
�u,i

α (∅) · �
�u,i

β (∅) (12)

>
1

4
· ln

(
1

4
√

εT + 2−|u|

)
−
(

2
√

εT + δ

4

)
· |u|.

Let us take a closer look at �
�u,i

α (∅).

�
�u,i

α (∅) = EEE
Z⊂∼{0,1}|u|

[
�u,i

α (Z)
]

= EEE
Z

[
PrPrPr

X⊂∼α∗(Z)

[
Xu(i) = Zi

∣∣∣Xu([i − 1]) = Z[i−1]
]

− 1

2

]
= EEE

Z
A∼α∗(Z)

[
PrPrPr

X⊂∼A

[
Xu(i) = Zi

∣∣∣Xu([i − 1]) = Z[i−1]
]

− 1

2

]
.

By the definition of α∗ (Def. 3), the “chain”

Z ⊂∼ {0, 1}|u| → A ∼ α∗(Z) → X ⊂∼ A

results in the same distribution of (Z ,A, X) as

X ⊂∼ {0, 1}n → A = α(X) → X � ⊂∼ A → Z = X �
u .

Therefore,

�
�u,i

α (∅) = EEE
X⊂∼{0,1}n

[
PrPrPr

X �⊂∼α(X)

[
Xu(i) = X �

u(i)
∣∣∣�]− 1

2

]
,

where � stands for Xu([i − 1]) = X �
u([i − 1]).

Moreover, the marginal distributions of (A, X) and of
(A, X �) are the same: we can sample (X,A, X �) by first
drawing A according to its distribution,19 followed by
mutually-independent selecting X ⊂∼ A and X � ⊂∼ A.

19This is the distribution where the probability of A = a is proportional to
|a|.
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Accordingly,
�
�u,i

α (∅)

= EEE
A

⎡⎣ PrPrPr
X⊂∼A
X �⊂∼A

[
Xu(i) = X �

u(i)
∣∣∣�]− 1

2

⎤⎦
= EEE

A
X �⊂∼A

[
PrPrPr

X⊂∼A

[
Xu(i) = X �

u(i)
∣∣∣�]− 1

2

]

= EEE
A�

X �⊂∼A�

⎡⎣ PrPrPr
A

X⊂∼A

[
Xu(i) = X �

u(i)
∣∣∣�,A = A�]− 1

2

⎤⎦,

where � stands for Xu([i − 1]) = X �
u([i − 1]) and A� is

distributed identically to A.
Denote W = (A, Xu([i − 1])) and W � = (A�, X �

u([i − 1])).
As the marginal distribution of X is uniform, we can apply
the second part of Claim 4 with respect to W and Xu(i):

�
�u,i

α (∅)

= EEE
W �,X �

u(i)

[
PrPrPr

W,Xu(i)

[
Xu(i) = X �

u(i)
∣∣∣W = W �]− 1

2

]
∈ 


(
III
[

Xu(i) : W
])

= 

(

III
[

Xu(i) : α(X), Xu([i − 1])
])

= 


(
III

X⊂∼{0,1}n

[
Xu(i) : Al(X), Xu([i − 1])

])
.

Applying similar reasoning to �
�u,i

β (∅) and plugging into
(12) leads to

|u|∑
i=1

III
X⊂∼{0,1}n

[
Xu(i) : Al(X), Xu([i − 1])

]
· III

Y⊂∼{0,1}n

[
Yu(i) : Bo(Y ), Yu([i − 1])

]
∈ �

(
ln

(
1

εT + 2−|u|

))
− O

(
(
√

εT + δ) · |u|).
By monotonicity of mutual information,∑

i∈u

III
X⊂∼{0,1}n

[
Xi : Al(X), Xu\{i}

]
· III

Y⊂∼{0,1}n

[
Yi : Bo(Y ), Yu\{i}

]
∈ �

(
ln

(
1

εT + 2−|u|

))
− O

(
(
√

εT + δ) · |u|),
as required. Lemma 4

C. Characterizing Protocols for ẼqT

Lemma 5. For sufficiently large n, some δ ∈ 

( 1

n

)
, any δ-

biased space T of size 2o(n) and some ε ∈ 

(

1
|T |·n3

)
, any

protocol P that solves ẼqT (X, Y ) in D�
μẼqT

,ε satisfies
n∑

i=1

EEE
u1

[
III

X⊂∼{0,1}n

[
Xi : Xu1, Al(X)

]]
· EEE

u2

[
III

Y⊂∼{0,1}n

[
Yi : Yu2 , Bo(Y )

]]
> log n,

where u1, u2 ⊂∼ ([n]\{i}
2n/3

)
.

Proof. Suppose that a protocol solves ẼqT with respect to μẼqT
with error at most ε�, and let ε�

u be the error that the same
protocol makes in solving Equ,T with respect to μEqu,T

.
By the definition of the two distributions (Sect. II-A.1),

μẼqT
= EEE

u⊂∼([n]
n/3)

[
μEqu,T

]
.

Therefore, (X, Y ) ∼ μẼqT
can be sampled by first choosing

u ⊂∼ ([n]
n/3

)
, followed by (X, Y ) ∼ μEqu,T

. Then∣∣∣∣∣∣ EEE
u⊂∼([n]

n/3)

[
ε�

u

]− ε�
∣∣∣∣∣∣

≤ EEE
u⊂∼([n]

n/3)

[
PrPrPr

(X,Y )∼μEqu,T

[
ẼqT (X, Y ) �= Equ,T (X, Y )

]]

≤ EEE
u⊂∼([n]

n/3)

[
PrPrPr

(X,Y )∼μEqu,T

[
ẼqT (X, Y ) �= Equ,T (X, Y )

]]
+ 2−�(n),

where the latter inequality is Claim 1. As our construction of
T is such that |τ1 ⊕ τ2| ∈ n

2 ± o(n) for every τ1 �= τ2 ∈ T
(cf. Fact 2), it follows from the Chernoff bound (Fact 1) that

PrPrPr
u⊂∼([n]

n/3)

[
|(τ1 ⊕ τ2)u | ∈

(
9n

60
,

11n

60

)]
∈ 1 − 2−�(n),

and, on the other hand, it follows by the same Fact 1 from the
definitions of μEqu,T

, ẼqT and Equ,T that

|(τ1 ⊕ τ2)u | ∈
(

9n

60
,

11n

60

)
�⇒

PrPrPr
(X,Y )∼μEqu,T

[
ẼqT (X, Y ) �= Equ,T (X, Y )

] ∈ 2−�(n).

Accordingly,

EEE
u⊂∼([n]

n/3)

[
ε�

u

] ≤ ε� + 2−�(n).

From Lemma 4, our assumption about |T | and the concavity
of log(1/x), there exist choices of ε and δ in the range given
by our statement, so that

EEE
u⊂∼([n]

n/3)

[∑
i∈u

III
X⊂∼{0,1}n

[
Xi : Al(X), Xu\{i}

]
· �

]
≥ 2 log n,

where � stands for III Y⊂∼{0,1}n
[
Yi : Bo(Y ), Yu\{i}

]
, and there-

fore for sufficiently large n,

EEE
u1,u2⊂∼( [n]

2n/3)

⎡⎣ ∑
i∈u1∩u2

III
X

[
Xi : Al(X), Xu1∩u2\{i}

]
· �

⎤⎦
≥ PrPrPr

u1,u2⊂∼( [n]
2n/3)

[|u1 ∩ u2| ≥ n/3] · 2 > log n,

where � stands for III Y
[
Yi : Bo(Y ), Yu1∩u2\{i}

]
.
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By the monotonicity of mutual information,

log n

< EEE
...

⎡⎣ ∑
i∈u1∩u2

III
X

[
Xi : Al(X), Xu1\{i}

]
· �

⎤⎦
≤

n∑
i=1

EEE
...

[
III
X

[
Xi : Al(X), Xu1

]
· III

Y

[
Yi : Bo(Y ), Yu2

]]
,

where “�” stands for III Y
[
Yi : Bo(Y ), Yu2\{i}

]
, the expectations

are taken with respect to u1, u2 ⊂∼ ( [n]
2n/3

)
in the first case

and with respect to u1, u2 ⊂∼ ([n]\{i}
2n/3

)
in the second, as

required. Lemma 5

D. Characterizing Protocols for �cEqT

Lemma 6. For sufficiently large n, some δ ∈ 

( 1

n

)
, any δ-

biased space T of size 2o(n) and some ε ∈ 

(

1
|T |·n3

)
, any

protocol P that solves �cEqT (X, Y ) in D�
μ̃cEqT

,ε satisfies

EEE
i1,u1

[
III

X⊂∼{0,1}n

[
Xi1 : Xu1, Al(X)

]]
· EEE

i2,u2

[
III

Y⊂∼{0,1}n

[
Yi2 : Yu2, Bo(Y )

]]
>

log n

2n
,

where i1, i2 ⊂∼ [n], u1 ⊂∼ ([n]\{i1}
2n/3

)
and u2 ⊂∼ ([n]\{i2}

2n/3

)
.

Proof. Suppose that a protocol solves �cEqT with respect to
μ̃cEqT

with error at most ε�.
By the definition of the input distributions (Sect. II-A.1),

μ̃cEqT
= EEE

j∈[n]

[
μ

j
˜cEqT

]
.

Therefore, with probability at least 1/2 with respect to j ⊂∼ [n],
the same protocol solves �cEqT with error at most 2ε� with
respect to μ

j
˜cEqT

and – according to Claim 1 – with error at

most 2ε� + 2−�(n) with respect to μ
j
˜cEqT

. Let J ⊆ [n] be the

set of indices j for which the above holds, then |J | ≥ n/2.
Let j0 ∈ J . It follows by the Chernoff bound (Fact 1) from

the definitions of μ
j
˜cEqT

, �cEqT and ẼqT that

PrPrPr
(X,Y )∼μ

j0
˜cEqT

[
�cEqT (X, Y ) �= ẼqT (σ j0(X), Y )

]
∈ 2−�(n),

and therefore our protocol solves ẼqT (σ j0(X), Y ) with error

at most 2ε� + 2−�(n) with respect to (X, Y ) ∼ μ
j0
˜cEqT

,

which corresponds to (σ j0(X), Y ) ∼ μẼqT
. Via another

application of Claim 1, this means that the protocol solves
ẼqT (σ j0(X), Y ) with error at most 2ε�+2−�(n) with respect to
(σ j0(X), Y ) ∼ μẼqT

.
Accordingly, Lemma 5 implies that for some choices of ε

and δ in the range allowed by our statement the following

holds:

EEE
j∈[n]

[
n∑

i=1

EEE
u1

[�] · EEE
u2

[��]

]

≥ 1

2
· EEE

j∈J

[
n∑

i=1

EEE
u1

[�] · EEE
u2

[��]

]
>

log n

2
,

where “�” stands for III X⊂∼{0,1}n
[
Xi : Xu1 , Al(X)

]
, “��”

stands for III Y⊂∼{0,1}n
[
Yσ j (i) : Yσ j (u2), Bo(Y )

]
u1, u2 ⊂∼ ([n]\{i}

2n/3

)
. That is,

log n

2n
< EEE

i1,i2⊂∼[n]

[
EEE
u1

[�] · EEE
u2

[
III
Y

[
Yi2 : Yu2, Bo(Y )

]]]
,

where “�” stands for III X
[
Xi1 : Xu1, Al(X)

]
, u1 ⊂∼ ([n]\{i1}

2n/3

)
and u2 ⊂∼ ([n]\{i2}

2n/3

)
, as required. Lemma 6

Corollary 4. There exists a family T = T1, T2, . . . , where
every Ti ⊆ {0, 1}i can be constructed deterministically in time
poly(i), such that for the corresponding �cEqT it holds that

R�,pub(�cEqT ) ≥ D�
μ̃cEqT

, 1
3
(�cEqT ) ∈ �

(√
n

log n

)
.

Proof. Let n be sufficiently large, δ ∈ 

( 1

n

)
be sufficiently

small, T be a δ-biased space of size poly(n/δ) (as guaranteed by
Fact 2) and ε ∈ 1

poly(n) be sufficiently small, so that Lemma 6

guarantees that for any protocol P solving �cEqT in D�
μ̃cEqT

,ε

it holds that

EEE
i1,u1

[
III

X⊂∼{0,1}n

[
Xi1 : Xu1, Al(X)

]]
· EEE

i2,u2

[
III

Y⊂∼{0,1}n

[
Yi2 : Yu2 , Bo(Y )

]]
>

log n

2n
.

Without loss of generality, assume that

EEE
i1,u1

[
III

X⊂∼{0,1}n

[
Xi1 : Xu1, Al(X)

]]
>

√
log n

2n

for i1 ⊂∼ [n] and u1 ⊂∼ ([n]\{i1}
2n/3

)
, then

∃ u ∈
( [n]

2n/3

)
:
∑
i �∈u

III
X⊂∼{0,1}n

[
Xi : Xu, Al(X)

]
>

n

3
·
√

log n

2n
,

and therefore the complexity of P is at least

III
X⊂∼{0,1}n

[
Al(X) : X

∣∣∣Xu

]
>

√
n · log n

6
.

If, on the other hand, a protocol solves �cEqT in D�
μ̃cEqT

, 1
3
,

then repeated k times in parallel for a sufficient k ∈ O(log n),
it would solve �cEqT with error at most ε. Corollary 4

VII. CONCLUSION

From Corollaries 4 and 1:

Corollary 5. There exists a family T = T1, T2, . . . , where
every Ti ⊆ {0, 1}i can be constructed deterministically in time
poly(i) and for the corresponding�cEqT it holds that

Q�(�cEqT ) ∈ O
(
(log n)2

)
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and

R�,pub(�cEqT ) ∈ �

(√
n

log n

)
.

a) The landscape of quantum superiority and further
questions: One of the main questions related to quantum
communication complexity is “When can quantum outperform
classical?” – formally, for which pairs of quantum and classical
communication models the former is super-polynomially20

more efficient than the latter in solving a specific problem.
There are three main types of communication problems used

for model separations: functions, total functions and relations.
Functions – probably, the most natural class of communication
problems – are a special case of relations. Total functions
are a restricted special case of functions, where the support
is required to be the product set of the players’ individual
sets of input.21 There are known cases where a quantum
communication complexity class can be separated from a
classical one via a relation, while a functional separation is
provably impossible (see [1], [9]).

The history of (super-polynomial) separations that showed
advantage of quantum communication can be briefly outlined
as follows.

• In 1999 Raz [14] demonstrated a function that had
an efficient quantum two-way protocol, but no efficient
classical two-way protocol.

• In 2001 Buhrman et al. [3] demonstrated a total function
(namely, Eq) that had an efficient quantum simultaneous-
messages protocol without shared randomness, but no
efficient classical simultaneous-messages protocol with-
out shared randomness.

• In 2004 Bar-Yossef et al. [4] demonstrated a relation that
had an efficient quantum simultaneous-messages protocol
without shared randomness, but no efficient classical one-
way protocol.

• In 2007 in a joint work with Gavinsky et al. [7] a function
was demonstrated, that had an efficient quantum one-way
protocol, but no efficient classical one-way protocol.

• In 2008 a relation was demonstrated [5] with an efficient
quantum one-way protocol, but no efficient classical two-
way protocol.

• In 2010 Klartag and Regev [11] demonstrated a function
with an efficient quantum one-way protocol, but no
efficient classical two-way protocol.

• In 2016 a function was demonstrated [6] with an efficient
quantum simultaneous-messages protocol with entangle-
ment, but no efficient classical two-way protocol.

• This work presents a function with an efficient quantum
simultaneous-messages protocol without shared random-
ness, but no efficient classical simultaneous-messages
protocol with shared randomness.

Is it the case that “everything separable” has already been
discovered – in other words, that for the pairs of a quantum
and a classical model, where we do not yet have an example of

20All known super-polynomial separations are, in fact, exponential.
21To emphasize the distinction from total functions in the context of

communication complexity, the term partial functions is often used to address
the unrestricted functions.

quantum superiority, such examples do not exist? Our current
knowledge of “limitations to separability” is very limited: in
particular, virtually nothing is known in this respect regarding
the models considered in this work.

To summarize what is known and what is still missing, let us
consider the three “canonical” randomized models: two-way
(R), one-way (R1) and SMP (R�,pub), and add to our picture
the “purposely weakened” SMP (R�). We are interested in
their “strength relationship” with the quantum counterparts –
both the closest (e.g., R vs. Q) and “topologically” weaker
(e.g., R vs. Q�).

• If we only allow functions and only consider the closest
pairs, then our knowledge has been completed by this
work:

R� < R�,pub < R1 < R
∧ ∧ ∧ ∧
Q� < Q�,pub < Q1 < Q

(we have just seen that Q�,pub > R�,pub, the rest has been
known for some time).

• As for “diagonal” relationship via functions, it has been
known that Q1 can be stronger than R and we have just
seen that Q� can be stronger than R�,pub.

Question 1. Can some of
{
Q�,Q�,pub

}
be stronger than

some of
{
R1,R

}
with respect to a function?22

• If we allow relational problems, then one additional
“diagonal” separation is known: Q� can be stronger
than R1.

Question 2. Can Q� or Q�,pub be stronger than R with
respect to a relation?

As we mentioned earlier, looking for the weakest quan-
tum model that can outperform R and for the strongest
classical model that can be outperformed by Q� are,
probably, the two most natural approaches towards under-
standing the strength and the limits of quantum commu-
nication. Ultimately, we would like the two approaches
to “meet” – that is, to find a communication prob-
lem (even a relational one), easy for Q� but hard
for R.

• For the case of total functions our current lack of
understanding is almost perfect. We know nothing about
“diagonal” relationship and nearly nothing about the
closest pairs:

R� < R�,pub < R1 < R
∧ ? ? ?
Q� < Q�,pub < Q1 < Q

Question 3. In the case of total functions, can Q�,pub be
stronger than R�,pub? How about Q1 vs. R1? Q vs. R?
Can Q�, Q�,pub or Q1 be stronger than R? Can Q� be
stronger than R�,pub or R1?

Lastly, we would like to mention

22Although not directly related to quantum superiority, nonetheless an
interesting question is: Can R�,pub be stronger than Q� with respect to a
function? For relations this possibility has been demonstrated in [8].
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Question 4. What is the complexity of our �cEqT in the model
of classical SMP with shared entanglement (R�,ent)?

If it has an efficient solution, that would imply a functional
separation between R�,ent and R�,pub, which we do not have
yet (a relational separation is known); if, on the other hand,
�cEqT is hard for R�,ent , that would imply the possibility of
qualitative advantage of Q� over R�,ent , which is currently not
known even for relational problems.
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