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Abstract
We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in 
graphs of low highway dimension. This graph parameter roughly measures how 
many central nodes are visited by all shortest paths of a certain length. It has been 
shown that transportation networks, on which TSP and STP naturally occur for vari-
ous applications in logistics, typically have a small highway dimension. While it was 
previously shown that these problems admit a quasi-polynomial time approximation 
scheme on graphs of constant highway dimension, we demonstrate that a significant 
improvement is possible in the special case when the highway dimension is 1. Spe-
cifically, we present a fully-polynomial time approximation scheme (FPTAS). We 
also prove that both TSP and STP are weakly ��-hard for these restricted graphs.
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1 Introduction

Two fundamental optimization problems already included in Karp’s initial list of 
21 ��-complete problems [38] are the Travelling SaleSperSon problem (TSp) and 
the STeiner Tree problem (STp). Given an undirected graph G = (V ,E) with non-
negative edge weights w ∶ E → ℝ

+ , the TSp asks to find the shortest closed walk 
in G visiting all nodes of V. Besides its fundamental role in computational com-
plexity and combinatorial optimization, this problem has a variety of applications 
ranging from circuit manufacturing [33, 46] and scientific imaging [13] to vehicle 
routing problems [45] in transportation networks. For the STp, a subset R ⊆ V  of 
nodes is marked as terminals. The task is to find a weight-minimal connected sub-
graph of G containing the terminals. It has plenty of fundamental applications in 
network design including telecommunication networks [47], computer vision [19], 
circuit design [34], and computational biology [21, 48], but also lies at the heart of 
line planning in public transportation [16].

Both TSp and STp are ���-hard in general [6, 12, 20, 39, 44, 51] implying that, 
unless  � = �� , none of these problems admit a polynomial-time approximation 
scheme (PTAS), i.e., an algorithm that computes a (1 + �)-approximation in poly-
nomial time for any given constant 𝜀 > 0 . On the other hand, for restricted inputs 
PTASs do exist, e.g., for planar graphs [5, 17, 32, 41], Euclidean and Manhattan 
metrics [5, 49], and more generally low doubling1 metrics [7].

We study another class of graphs captured by the notion of highway dimension 
proposed by Abraham et  al. [3]. This graph parameter models transportation net-
works and is thus of particular importance in terms of applications for both TSp and 
STp. On a high level, the highway dimension is based on the empirical observation 
of Bast et al. [8, 9] that travelling from a point in a network to a sufficiently distant 
point on a shortest path always passes through a sparse set of “hubs”. The follow-
ing formal definition is taken from [25] and follows the lines of Abraham et al. [3].2 
Here the distance between two vertices is the length of the shortest path between 
them, according to the edge weights. The ball Bv(r) of radius r around a vertex v 
contains all vertices with distance at most r from v.

Definition 1 For a scale r ∈ ℝ>0 , let P(r,2r] denote the set of all vertex sets of shortest 
paths with length in (r, 2r]. A shortest path cover for scale r is a hitting set for P(r,2r] , 
i.e., a set SPC (r) ⊆ V  such that | SPC (r) ∩ P| ≠ � for all P ∈ P(r,2r] . The vertices of 
SPC (r) are the hubs for scale  r. A shortest path cover SPC (r) is locally h-sparse, 
if | SPC (r) ∩ Bv(2r)| ≤ h for all vertices v ∈ V  . The highway dimension of G is the 
smallest integer h such that there is a locally h-sparse shortest path cover SPC (r) for 
every scale r ∈ ℝ>0 in G.

1 A metric is said to have doubling dimension d if for all r > 0 every ball of radius r can be covered by at 
most 2d balls of half the radius r/2.
2 It is often assumed that all shortest paths are unique when defining the highway dimension, since this 
allows good polynomial approximations of this graph parameter [1]. In this work however, we do not rely 
on these approximations, and thus do not require uniqueness of shortest paths.
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The algorithmic consequences of this graph parameter were originally studied in 
the context of road networks [1–3], which have been shown to have small highway 
dimension [9]. Road networks are generally non-planar due to overpasses and tun-
nels, and are also not Euclidean due to different driving or transmission speeds. This 
is even more pronounced in public transportation networks, where large stations 
have many incoming connections and plenty of crossing links, making Euclidean 
(or more generally low doubling) and planar metrics unsuitable as models. Here the 
highway dimension is better suited, since longer connections are serviced by larger 
and sparser stations (such as train stations and airports) that can act as hubs. For 
example, in so-called hub-and-spoke networks of air traffic networks, smaller air-
ports provide connections to close-by larger airports, from which long distance con-
nections are available. This implies a star-like structure of such transportation net-
works (cf. Sect. 1.3).

The main question posed in this paper is whether the structure of graphs with 
low highway dimension admits PTASs for problems such as TSp and STp, similar 
to Euclidean or planar instances. It was shown that quasi-polynomial time approxi-
mation schemes (QPTASs) exist for these problems [26], i.e., (1 + �)-approximation 
algorithms with runtime 2polylog(n) assuming that � and the highway dimension of the 
input graph are constants. However it was left open whether this can be improved 
to polynomial time. This paper answers this open question for graphs of highway 
dimension 1, by giving both lower and upper bounds on the algorithmic complexity 
for TSp and STp.

1.1  Our Results

Our main result concerns graphs of the smallest possible highway dimension, and 
shows that for these fully polynomial time approximation schemes (FPTASs) exist, 
i.e., a (1 + �)-approximation can be computed in time polynomial in both the input 
size and 1∕� . Thus at least for this restricted case we obtain a significant improve-
ment over the previously known QPTAS [26]. In particular, the following theorem 
implies that TSp and STp are polynomial-time solvable on graphs with polynomi-
ally bounded edge weights, if the highway dimension is 1.

Theorem  1 Both Travelling SaleSperSon and STeiner Tree admit an FPTAS on 
graphs with highway dimension 1.

We also show that both the TSp and the STp problem are non-trivial on graphs 
highway dimension 1, since they are still ��-hard even on this restricted case. This 
answers an open problem in [26] about the hardness of TSp and STp on graphs 
of constant highway dimension. Interestingly, together with Theorem 1 this implies 
that both TSp and STp are weakly ��-hard on graphs of highway dimension 1, since 
strongly NP-hard problems do not admit FPTASs [56], unless � = �� . This is in 
contrast to planar graphs or Euclidean metrics, for which TSP and STP are strongly 
��-hard [29, 30, 50].
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Theorem 2 The Travelling SaleSperSon problem is weakly ��-hard on graphs with 
highway dimension 1.

Theorem  3 The STeiner Tree problem is weakly ��-hard on graphs with highway 
dimension 1.

1.2  Techniques

We present a step towards a better understanding of low highway dimension graphs 
by giving new structural insights on graphs of highway dimension 1. It is not hard to 
find examples of (weighted) complete graphs on arbitrary many vertices with high-
way dimension 1 (cf. [26]), and thus the class of these graphs does not exclude any 
minors. Nevertheless, it was suggested in [26] that the treewidth of low highway 
dimension graphs might be bounded polylogarithmically in terms of the aspect ratio 
� , which is the maximum distance divided by the minimum distance between any 
two vertices of the input graph.

Definition 2 A tree decomposition of a graph G = (V ,E) is a tree D where each node 
v is labelled with a bag Xv ⊆ V  of vertices of G, such that the following holds: 

(a) 
⋃

v∈V(D) Xv = V ,
(b) for every edge {u,w} ∈ E there is a node v ∈ V(D) such that Xv contains both u 

and w, and
(c) for every v ∈ V  the set {u ∈ V(D) ∣ v ∈ Xu} induces a connected subtree of D.

The width of the tree decomposition is max{|Xv| − 1 ∣ v ∈ V(D)} . The treewidth of 
a graph G is the minimum width among all tree decompositions for G.

As suggested in [26], one may hope to prove that the treewidth of any graph of 
highway dimension h is, say, O(h log(�)) . As argued in Sect. 5, under standard com-
plexity assumptions unfortunately such a bound is generally impossible. In con-
trast to this, our main structural insight on graphs of highway dimension 1 is that 
they have treewidth O(log �) . This implies FPTASs for TSp and STP, since we may 
reduce the aspect ratio of any graph with n vertices to O(n∕�) and then use algo-
rithms by Bodlaender et al. [15] to compute optimum solutions to TSp and STp in 
graphs of treewidth t in 2O(t)n time. Since reducing the aspect ratio distorts the solu-
tion by a factor of 1 + � , this results in an approximation scheme. Although these are 
fairly standard techniques for metrics (cf. [26]), in our case we need to take special 
care, since we need to bound the treewidth of the graphs resulting from this reduc-
tion, which the standard techniques do not guarantee.

To bound the treewidth of graphs of highway dimension 1, on a high level our 
technique resembles one that has been used for embeddings of low highway dimen-
sion graphs [26] but also low doubling metrics [54] into bounded treewidth graphs. 
That is, we first find a decomposition of a given graph into a laminar family of 
clusters (for Euclidean and low doubling metrics this is referred to as a split-tree 
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decomposition). The laminarity naturally gives rise to a tree structure, and for each 
cluster we then identify a bag for the corresponding node in the tree. In previous 
work, the bags were found by selecting a small subset of the vertices contained in 
the cluster (which approximate the distances well enough to obtain an embedding 
with small distortion). The novelty of our approach is to shift the focus from the 
interior of the clusters to the exterior. That is, a bag will contain so-called inter-
face points of the cluster, which are vertices that connect the cluster vertices to the 
outside. In particular, these interface points may not be part of the cluster itself but 
instead can lie in completely different clusters.

Very recently, this novel shift in perspective has been successfully utilized to 
obtain the first PTASs for clustering problems such as k -Median and k -MeanS in 
graphs of low highway dimension [28]. Whether this will also lead to PTASs for 
TSp and STp in graphs of bounded highway dimension larger than 1 remains an 
intriguing open problem. More generally, it remains an open problem to understand 
the structure of graphs of constant highway dimension larger than 1.

Throughout this paper we use standard graph theoretic notions. For definitions 
see [23].

1.3  Related Work

The Travelling SaleSperSon problem (TSp) is among Karp’s initial list of 21 ��
-complete problems [38]. For general metric instances, for several decades the best 
known approximation algorithm was due to Christophides [22], which computes a 
solution with cost at most 3/2 times the LP value. Very recently, an algorithm com-
puting a (3∕2 − �)-approximation (for some 𝜀 > 10−36 ) has been found by Karlin 
et al. [37]. For unweighted instances, the best known approximation guarantee is 7/5 
and is due to Sebő and Vygen [53]. In general the problem is ���-hard [39, 44, 51]. 
For geometric instances where the nodes are points in ℝd and distances are given by 
some lp-norm, there exists a PTAS [4, 49] for fixed d. When d = log n , the problem 
is ���-hard [55]. Krauthgamer and Lee [43] generalized the PTAS to hyperbolic 
space. Grigni et al. [32] gave a PTAS for unweighted planar graphs which was later 
generalized by Arora et al. [5] to the weighted case. For improvements of the run-
ning time, see Klein [41].

The STeiner Tree problem (STp) is contained in Karp’s list of ��-complete 
problems as well [38]. The best approximation algorithm known for general met-
ric instances is due to Byrka et al. [18] and computes a solution with cost at most 
ln(4) + 𝜖 < 1.39 times that of an LP relaxation. Their algorithm improved upon pre-
vious results by, e.g., Robins and Zelikovsky [52] and Hougardy and Prömel [36]. 
Also the STp is ���-hard [20] in general. For Euclidean distances and nodes in 
ℝ

d with d constant there is a PTAS due to Arora [4]. For d = log |R|∕ log log |R| 
where R is the terminal set, the problem is ���-hard [55]. For planar graphs, there 
is a PTAS for STp [17], and even for the more general STeiner ForeST problem for 
graphs with bounded genus [10]. Note that STp remains ��-complete for planar 
graphs [30].
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It is worth mentioning that alternate definitions of the highway dimension exist.3 
In particular, in a follow-up paper to [3], Abraham et al. [2] define a version of the 
highway dimension, which implies that the graphs also have bounded doubling 
dimension. A related model for transportation networks was given by Kosowski 
and Viennot [42] via the so-called skeleton dimension, which also implies bounded 
doubling dimension. Hence for these definitions, Bartal et al. [7] already provide a 
PTAS for TSp. The highway dimension definition used here (cf.  Definition 1) on 
the other hand allows for metrics of large doubling dimension as noted by Abra-
ham et  al. [3]: a star has highway dimension  1 (by using the center vertex to hit 
all paths), but its doubling dimension is unbounded. While it may be reasonable to 
assume that road networks (which are the main concern in the works of Abraham 
et al. [1–3]) have low doubling dimension, there are metrics modelling transporta-
tion networks for which it can be argued that the doubling dimension is large, while 
the highway dimension should be small. These settings are better captured by Defi-
nition 1. For instance, the so-called hub-and-spoke networks that can typically be 
seen in air traffic networks are star-like networks and are unlikely to have small dou-
bling dimension while still having very small highway dimension close to 1. Thus in 
these examples it is reasonable to assume that the doubling dimension is a lot larger 
than the highway dimension.

Feldmann et  al. [26] showed that graphs with low highway dimension can be 
embedded into graphs with low treewidth. This embedding gives rise to a QPTAS 
for both TSp and STp but also other problems. However, the result in [26] is only 
valid for a less general definition of the highway dimension from [1], i.e., there 
are graphs which have constant highway dimension according to Definition 1 but 
for which the algorithm of [26] cannot be applied. For the less general definition 
from [1], Becker et al. [11] give a PTAS for Bounded-CapaCiTy vehiCle rouTing in 
graphs of bounded highway dimension. Also the k -CenTer problem has been stud-
ied on graphs of bounded highway dimension, both for the less general definition 
[11] and the more general one used here [25, 27].

2  Structure of Graphs with Highway Dimension 1

In this section, we analyse the structure of graphs with highway dimension 1. To this 
end, let us fix a graph G with highway dimension 1 and a shortest path cover SPC (r) 
for each scale r ∈ ℝ

+ . As a preprocessing, we remove edges that are longer than the 
shortest path between their endpoints. This implies that the triangle inequality holds, 
i.e., the graph has no short cuts.

We begin by analysing the structure of the graph G≤2r , which is spanned by all 
edges of the input graph G of length at most 2r, i.e., we remove all edges of length 
more than 2r from G to obtain G≤2r . If G has highway dimension 1 it exhibits the 
following key property.

3 See [26, Section 9] and [14] for detailed discussions on different definitions of the highway dimension.
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Lemma 1 Let G be a metric graph with highway dimension 1, r ∈ ℝ
+ a scale, and 

SPC (r) a shortest path cover for scale r. Then, every connected component of G≤2r 
contains at most one hub of SPC (r).

Proof For the sake of contradiction, let r ∈ ℝ
+ and let x, y ∈ SPC (r) be a closest 

pair of distinct hubs in some connected component of G≤2r . Furthermore, let P be 
a shortest path in G≤2r between x and y, which hence uses only edges of length at 
most 2r. (Note that P need not be a shortest path between x and y in G.) In particu-
lar, there is no other hub from SPC (r) ⧵ {x, y} along P. This implies that every edge 
of P that is not incident to either x or y must be of length at most r, since otherwise 
the edge would be a shortest path of length (r, 2r] between its endpoints (using that 
G is metric) contradicting the fact that SPC (r) is a shortest path cover for scale r.

Since the highway dimension of G is 1, any ball Bw(2r) around a vertex w ∈ V(P) 
contains at most one of the hubs x, y ∈ SPC (r) . Let x�, y� ∈ P be the vertices adja-
cent to x and y along P, respectively. Since the length of the edge {x, x�} is at most 2r, 
the ball Bx� (2r) must contain x and, by the observation above, it cannot contain y (in 
particular {x, y} is not an edge). Symmetrically, the ball By� (2r) contains y but not x. 
Consequently, x′ ≠ y′ and neither of these two vertices can be a hub of scale r, i.e., 
the path P contains at least two vertices different from x and y.

Let Vx = {w ∈ V ∶ dist (x,w) < dist (y,w)} contain all vertices closer to x than 
to y, where dist (⋅, ⋅) refers to the distance in the original graph  G. As all edge 
weights are strictly positive, we have that dist (x, y) > 0 and thus  y ∉ Vx . Since P 
starts with vertex x ∈ Vx and ends with vertex y ∉ Vx we deduce that there is an 
edge {u, v} of P such that u ∈ Vx and v ∉ Vx . In particular, dist (x, u) < dist (y, u) 
and dist (y, v) ≤ dist (x, v) . We must have  {u, v} ≠ {y�, y} , since otherwise 
dist (x, y�) < dist (y, y�) ≤ 2r and hence By� (2r) would contain x. Similarly, we have 
{u, v} ≠ {x, x�} , since otherwise Bx� (2r) would contain  y. Note that, by definition, 
u ≠ y and v ≠ x , and hence x, y ∉ {u, v} . Consequently, since every edge of P not 
incident to either x or  y must have length at most r, we conclude that {u, v} has 
length at most r.

Finally, consider the scale r� ∈ ℝ
+ , defined such that 2r� = dist (x, u) + dist (u, v) . 

W.l.o.g., assume that  dist (x, u) ≤ dist (v, y) (otherwise consider scale 
2r� = dist (y, v) + dist (u, v) and the ball  Bu(2r

�) in the following argu-
ment). Let Q and Q′ denote shortest paths between x,  u and v,  y in  G, respec-
tively. Then the ball Bv(2r

�) around v contains Q by definition of  r′ . From 
dist (y, v) ≤ dist (x, v) ≤ dist (x, u) + dist (u, v) = 2r� it follows that Bv(2r

�) 
contains Q′ as well. Also, dist (y, v) ≤ dist (x, v) means that  Bv(2r) can-
not contain  x, and hence 2r� = dist (x, u) + dist (u, v) ≥ dist (x, v) > 2r , 
which implies  r′ > r . Our earlier observation that  dist (u, v) ≤ r with  r < r′ 
yields dist (v, y) ≥ dist (x, u) = 2r� − dist (u, v) > r� . In other words, the lengths of 
both paths Q and Q′ are in (r�, 2r�] , and so they both need to contain a hub of SPC (r�) . 
However, by definition of u, v, the paths Q and Q′ are vertex disjoint, which means 
that the ball Bv(2r

�) , which contains Q and Q′ , also contains at least two hubs from 
SPC (r�) . This is a contradiction with G having highway dimension 1.   ◻
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Given a graph G, we now consider graphs G≤2r for exponentially growing scales. 
In particular, for any integer i ≥ 0 we define the scale ri = 2i and call a connected 
component of G≤2ri

 a level-i component. Note that the level-i components partition 
the graph G, and that the level-i components are a refinement of the level-(i + 1) 
components, i.e., every level-i component is contained in some level-(i + 1) compo-
nent. W.l.o.g., we scale the edge weights of the graph such that mine∈E w(e) = 3 , so 
that there are no edges on level 0, and every level-0 component is a singleton. Recall 
that � =

maxu≠v dist (u,v)

minu≠v dist (u,v)
=

maxu≠v dist (u,v)

3
 is the aspect ratio of G. In our applications we 

may assume that G is connected, so that there is exactly one level-(1 + ⌈log2(�)⌉) 
component containing all of G.

Since every edge is a shortest path between its endpoints, every edge e = {u, v} 
that connects a vertex u of a level-i component C with a vertex v outside C is hit by 
a hub of SPC (rj) , where j is the level for which w(e) ∈ (rj, 2rj] . Moreover, since v lies 
outside C, we have w(e) > 2ri and, thus, j ≥ i + 1 . The following definition captures 
the set of the hubs through which edges can possibly leave C.

Definition 3 Let C be a level-i component of G. We define the set of interface points 
of C as IC ∶=

⋃
j≥i{u ∈ SPC (rj) ∶ dist C(u) ≤ 2rj}, where dist C(u) denotes the min-

imum distance from u to a vertex in C (if u ∈ C , dist C(u) = 0).

Note that, for technical reasons, we explicitly add every hub at level i of a com-
ponent to its set of interface points as well, even if such a hub does not connect the 
component with any vertex outside at distance more than 2ri.

Lemma 2 If G has highway dimension 1, then each interface IC of a level-i compo-
nent C contains at most one hub for each level j ≥ i.

Proof Assume that there are two hubs u, v ∈ SPC (rj) in IC , and recall that we pre-
processed the graph so that the triangle inequality holds. Then u and v must be con-
tained in the same level-j component C′ , since u and v are connected to C with edges 
of length at most 2rj (or are contained in C) and C ⊆ C′ . This contradicts Lemma 1.  
 ◻

Using level-i components and their interface points we can prove that the tree-
width of a graph with highway dimension 1 is bounded in terms of the aspect ratio.

Lemma 3 If a graph G has highway dimension 1 and aspect ratio � , its treewidth is 
at most 1 + ⌈log2(�)⌉.

Proof The tree decomposition of G is given by the refinement property of level-i 
components. That is, let D be a tree that contains a node vC for every level-i compo-
nent C for all levels 0 ≤ i ≤ 1 + ⌈log2(�)⌉ . For every node vC we add an edge in D 
to node vC′ , if C is a level-i component, C′ is a level-(i + 1) component, and C ⊆ C′ . 
The bag XC for node vC contains the interface points IC . For a level-0 component C 
the bag XC additionally contains the single vertex u contained in C.
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Clearly, the tree decomposition has Property (a) of Definition 2, since the level-0 
components partition the vertices of G and every vertex of G is contained in a bag 
XC corresponding to a level-0 component C. Also, Property (b) is given by the bags 
XC for level-0 components C, since for every edge e of G one of its endpoints u is a 
hub of SPC (ri) where i is such that w(e) ∈ (ri, 2ri] , and the other endpoint w is con-
tained in a level-0 component C, for which XC contains u and w.

For Property (c), first consider a vertex u of G, which is not contained in any set 
of interface points for any level-i component and any 0 ≤ i ≤ log2(�) . Such a vertex 
only appears in the bag XC for the level-0 component C containing u, and thus the 
node vC for which the bag contains u trivially induces a connected subtree of D.

Any other vertex u of G is an interface point. Let i be the highest level for which 
u ∈ IC for some level-i component C. We claim that u ∈ C , which implies that C 
is the unique level-i component containing  u in its interface. To show our claim, 
assume u ∉ C . Then, by definition, IC contains u because u ∈ SPC (rj) for some j ≥ i 
and u has some neighbour at distance at most 2rj in C. Since we preprocessed the 
graph such that every edge is a shortest path between its endpoints, this means that 
there must be an edge e = {u, v} with w(e) ∈ (rj, 2rj] and v ∈ C . Since u ∉ C , we 
have i < j . Let C′ be the unique level-j component with C ⊆ C′ . Then, by definition, 
u ∈ IC� , which contradicts the maximality of i. This proves our claim and shows that 
the highest level component C with u ∈ XC is uniquely defined. Moreover, we obtain 
u ∈ SPC (ri).

Now consider a level-i′ component C′ with i′ < i , such that u ∈ XC� , and let C′′ 
be the unique level-(i� + 1) component containing C′ . We claim that u ∈ XC�� . If 
u ∈ C� ⊆ C�� , then u ∈ XC�� , since u ∈ SPC (ri) , dist C�� (u) = 0 ≤ 2ri and i� + 1 ≤ i . 
If u ∉ C� , then u ∈ XC� implies u ∈ IC� , which means that there must be a ver-
tex w ∈ C� with dist (u,w) ≤ 2ri . But then w ∈ C�� and thus dist C�� (u) ≤ 2ri . Together 
with u ∈ SPC (ri) , this implies u ∈ XC�� , as claimed. Since vC′ is a child of vC′′ in the 
tree D, it follows inductively that the nodes of D with bags containing u induce a 
subtree of D with root vC , which establishes Property (c).

By Lemma 2 each set of interface points contains at most one hub of each level. 
Since all edges have length at least 3, there are no hubs in SPC (r0) on level 0. This 
means that each bag of the tree decomposition contains at most 1 + ⌈log2(�)⌉ inter-
face points. The bags for level-0 components contain one additional vertex. Thus the 
treewidth of G is at most 1 + ⌈log2(�)⌉ , as claimed.   ◻

An additional property that we will exploit for our algorithms is the follow-
ing. A (�, �)-net N ⊆ V  is a subset of vertices such that (a) the distance between 
any two distinct net points u,w ∈ N is more than � , and (b)  for every vertex 
v ∈ V  there is some net point w ∈ N at distance at most � . For graphs of highway 
dimension 1, we can obtain nets with additional favourable properties, as the next 
lemma shows.

Lemma 4 For any graph G of highway dimension 1 and any r > 0 , there is an 
(r,  3r)-net such that every connected component of G≤r contains exactly one net 
point. Moreover this net can be computed in polynomial time.
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Proof We first derive an upper bound of 3r for the diameter of any connected com-
ponent of G≤r . Lemma 1 implies that a connected component C contains at most 
one hub x of SPC (r∕2) . By definition, any shortest path in C of length in (r/2,  r] 
must pass through x. We also know that every edge of C has length at most r. Con-
sequently, every edge in C not incident to x must have length at most r/2, since each 
edge constitutes a shortest path between its endpoints. This implies that any shortest 
path in C that is not hit by x must have length at most r/2: if C contains a shortest 
path P with length more than r/2 not containing x we could repeatedly remove edges 
of length at most r/2 from P until we obtain a shortest path of length in (r/2, r] not 
hit by x, a contradiction. Now consider a shortest path P in G of length more than r/2 
from some vertex v ∈ C to x (note that this path may not be entirely contained in C). 
Let {u,w} be the unique edge of P such that dist (v, u) ≤ r∕2 and dist (v,w) > r∕2 . 
If the length of the edge {u,w} is at most r/2 then dist (v,w) ≤ r , and thus w = x , 
since the part of the path from v to w is a shortest path of length in (r/2, r] and thus 
needs to pass through x. Otherwise the length of the edge {u,w} is in the interval 
(r/2, r], which again implies w = x , since the edge must contain x. In either case, 
dist (v, x) ≤ 3r∕2 . This implies that every vertex in C is at distance at most 3r/2 from 
x, and thus the diameter of C is at most 3r.

To compute the (r, 3r)-net, we greedily pick an arbitrary vertex of each connected 
component of G≤r . As the distances between components of G≤r is greater than r, 
and every vertex lies in some component containing a net point, we get the desired 
distance bounds. Clearly this net can be computed in polynomial time.   ◻

3  Approximation Schemes

In general the aspect ratio of a graph may be exponential in the input size. We need 
to reduce the aspect ratio � of the input graph G = (V ,E) to a polynomial. For both 
STp and TSP, standard techniques can be used to reduce the aspect ratio to O(n∕�) 
when aiming for a (1 + �)-approximation. This was for instance also used in [26] for 
low highway dimension graphs, but here we need to take special care not to destroy 
the structural properties given by Lemma 3 in this process. In particular, we need to 
reduce the aspect ratio and maintain the fact that the treewidth is bounded.

Therefore, we reduce the aspect ratio of our graphs by the following preproc-
essing. Both metric TSp and STp admit constant factor approximations in poly-
nomial time using well-known algorithms [18, 22]. We first compute a solution of 
cost c using a �-approximation algorithm for the problem at hand (TSp or STp). 
For TSp, the diameter of the graph G clearly is at most c/2. For STp we remove 
every vertex of V that is at distance more than c from any terminal, since such a 
vertex cannot be part of the optimum solution. After having removed all such ver-
tices in this way, we obtain a graph G of diameter at most 3c. Thus, in the follow-
ing, we may assume that our graph G has diameter at most 3c. We then set r = �c

3n
 

in Lemma 4 to obtain a ( �c
3n
,
�c

n
)-net N ⊆ V  . As a consequence the metric induced 

by  N (with distances of G) has aspect ratio at most 3c

�c∕(3n)
= O(n∕�) , since the 
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minimum distance between any two net points of N is at least �c
3n

 and the maxi-
mum distance is at most 3c. We will exploit this property in the following.

By Lemma 4, each connected component of G≤
�c

3n

 contains exactly one net point 
of N. Let � ∶ V ↦ N  map each vertex of G to the unique net point in the same 
connected component of G≤

�c

3n

 . We define a new graph G′ with vertex set N ⊆ V  
and edge set {{�(u), �(v)} ∶ {u, v} ∈ E ∧ �(u) ≠ �(v)} . The length of each edge 
{w,w�} of G′ is the shortest path distance between w and w′ in G. This new 
graph G′ may not have bounded highway dimension, but we claim that it has tree-
width O(log(n∕�)).

Lemma 5 If G has highway dimension 1, the graph G′ with vertex set N has tree-
width O(log(n∕�)) . Moreover, a tree decomposition for G′ of width O(log(n∕�)) can 
be computed in polynomial time.

Proof We construct a tree decomposition D′ of G′ as follows. In light of Lemma 
3, we can compute a tree decomposition D of width at most 1 + ⌈log2(�)⌉ , where 
� is the aspect ratio of G: for this we need to compute a locally 1-sparse shortest 
path cover SPC (ri) for each level i, which can be done in polynomial time via an XP 
algorithm [26] if the highway dimension is 1. We then find the level-i components 
and their interface points, from which the tree decomposition D and its bags can be 
constructed. Since there are O(log �) levels and � is at most exponential in the input 
size (which includes the encoding length of the edge weights), we can compute D in 
polynomial time.

We construct  D′ from  D by replacing every bag  X of  D by a new bag 
X� = {�(v) ∶ v ∈ X} containing the net points for the vertices in X. It is not hard to 
see that Properties (a) and (b) of Definition 2 are fulfilled by D′ , since they are true 
for D. For Property (c), note that for any edge {u, v} of G, the set of all bags of D that 
contain u or v form a connected subtree of D. This is because the bags containing u 
form a connected subtree (Property (c)), the same is true for v, and both these sub-
trees share at least one node labelled by a bag containing the edge {u, v} (Property 
(b)). Consequently, the set of all bags containing vertices of any connected subgraph 
of  G form a connected subtree. In particular, for any connected component  A 
of G≤

�c

3n

 , the set of bags of D containing at least one vertex of A form a connected 
subtree. This implies Property (c) for D′ . Thus, D′ is indeed a tree decomposition of 
G′ according to Definition 2. Note that D′ can be computed in polynomial time.

To bound the width of D′ , recall that a bag X of the tree decomposition D of G 
contains the interface points IC of a level-i component C, in addition to one more 
vertex of C on the lowest level i = 0 . Each interface point is a hub from SPC (rj) at 
some level j ≥ i and is at distance at most 2rj from C. In particular, if 2ri ≤

�c

3n
 then C 

is a component of G≤2ri
⊆ G≤

𝜀c

3n

 , and all hubs of IC ∩ SPC (rj) for which 2rj ≤
�c

3n
 lie 

in the same connected component A of G≤
�c

3n

 as C. These hubs are therefore all 
mapped to the same net point w in A by � . In addition to w, the bag 
X� = {�(v) ∶ v ∈ X} resulting from X and � contains at most one vertex for every 
level j such that 2rj >

𝜀c

3n
 . As rj = 2j , this condition is equivalent to j > log2(

𝜀c

3n
) − 1 . 
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As there are 1 + ⌈log2(�)⌉ levels in total, there are O(log( �n
�c
)) hubs in X′ . This bound 

is obviously also valid in case 2ri >
𝜀c

3n
 . We preprocessed the graph G so that its 

diameter is at most 3c and its minimum distance is 3, which implies an aspect ratio � 
of at most c for G. This means that every bag X′ contains O(log(n∕�)) vertices, and 
thus the claimed treewidth bound for G′ follows.   ◻

We are now ready to prove our main result.

Proof of of Theorem 1 To solve TSp or STp on G we first use the above reduction 
to obtain G′ and its tree decomposition D′ , and then compute an optimum solution 
for G′ . For TSP, G′ is already a valid input instance, but for STp we need to define a 
terminal set, which simply is R� = {�(v) ∣ v ∈ R} if R is the terminal set of G. Bod-
laender et al. [15] proved that for both TSp and STp there are deterministic algo-
rithms to solve these problems exactly in time 2O(t)n , given a tree decomposition of 
the input graph of width t. By Lemma 5 we can thus compute the optimum to G′ in 
time 2O(log(n∕�)) ⋅ n = (n∕�)O(1) . Afterwards, we convert the solution for G′ back to a 
solution for G, as follows.

For TSp we may greedily add vertices of V to the tour on N by connecting every 
vertex v ∈ V  to the net point �(v) . As the vertices N of G′ form a ( �c

3n
,
�c

n
)-net of V, this 

incurs an additional cost of at most 2 �c

n
 per vertex, which sums up to at most 2�c . Let 

OPT and OPT
′ denote the costs of the optimum tours in G and G′ , respectively. We 

know that c ≤ � ⋅ OPT , since we used a �-approximation algorithm to compute  c. 
Furthermore, the optimum tour in G can be converted to a tour in G′ of cost at most 
OPT by short-cutting, due to the triangle inequality. Thus OPT

′
≤ OPT , which means 

that the cost of the computed tour in G is at most OPT
� + 2�c ≤ (1 + 2��)OPT.

Similarly, for STp we may greedily connect a terminal v of G to the terminal �(v) 
of G′ in the computed Steiner tree in G′ . This adds an additional cost of at most �c

n
 , 

which sums up to at most �c . Let now OPT and OPT
′ be the costs of the optimum 

Steiner trees in G and G′ , respectively. We may convert a Steiner tree T in G into a 
tree T ′ in G′ by using edge {�(u), �(v)} for each edge {u, v} of T. Note that the result-
ing tree T ′ contains all terminals of G′ , since R� = {�(v) ∣ v ∈ R} . As the vertices 
N of G′ form a ( �c

3n
,
�c

n
)-net of V, the cost of T ′ is at most OPT + 2�c if the cost of 

T is OPT (by the same argument as used for the proof of Lemma 5). As before, we 
know that c ≤ � ⋅ OPT , and thus the cost of the computed Steiner tree in G is at most 
OPT

� + �c ≤ OPT + 3�c ≤ (1 + 3��)OPT.
Hence we obtain FPTASs for both TSp and STP computing (1 + �)-approxima-

tions within a runtime that is polynomial in the input size and 1∕� .   ◻

4  Hardness Proofs

In this section, we prove next that both TSp and STp are ��-hard on graphs of high-
way dimension 1 implying that these problems are weakly ��-hard for these inputs 
(cf. [56]).
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4.1  Hardness of Travelling SaleSperSon for Highway Dimension 1

We present a reduction from haMilTonian CyCle which was shown to be ��-com-
plete by Karp [38]. For this problem, we are given an undirected graph G = (V ,E) 
and the task is to decide whether G admits a Hamiltonian cycle, i.e., a cycle that 
visits each vertex exactly once.

Proof of Theorem  2 we reduce from haMilTonian CyCle, let an undirected graph 
G be given. For the reduction, we endow the edges of G with a weight function 
w ∶ E → ℝ such that the resulting weighted graph has highway dimension 1 and 
the value of an optimal TSP tour decides the Hamiltonicity of G. Specifically, let 
V = {v0,… , vn−1} , and for each edge e = {vi, vj} ∈ E , we let w(e) = 11i + 11j.  ◻

Claim 1 The resulting edge-weighted graph G has highway dimension 1.

Proof Fix an arbitrary scale r > 0 . Since there is no edge with weight less than 
12, we may assume without loss of generality that r ≥ 6 . Let i = ⌈log11(r∕5)⌉ ≥ 0 
and define SPC (r) = {vi} . It is left to show that every shortest path with length in 
(r, 2r] uses vi . Note that any edge incident to a vertex vj with j ≥ i + 1 has length at 
least 11i+1 + 1 ≥ 11r∕5 + 1 > 2r . On the other hand, consider dividing each edge 
e = {vi, vj} into two half-edges with length 11i and 11j , respectively. Then, visit-
ing vertex vi involves using two half-edges with length 11i each, one for entering vi 
and one for leaving vi . Thus all shortest paths that do not use any vj with j ≥ i have 
length at most

since each shortest path is simple and thus visits the vertices v0, v1,… , vi−1 at most 
once, and every visit of a vertex vj with j ∈ {0,… , i − 1} contributes at most 2 ⋅ 11i 
to the cost of the path. We obtain

Thus, the only shortest paths with length in (r, 2r] are those passing through vi , as 
claimed.   ◻

To finish the reduction, we show that G is Hamiltonian if and only if the optimal 
TSP tour in the weighted version of G has length 2

∑n−1

i=0
11i =

11n

5
−

1

5
 . First note 

that every tour needs to visit every vertex once. For each i ∈ {0,… , n − 1} , a visit 
of vertex vi contributes 2 ⋅ 11i to the cost of the tour. Thus, the cost of an optimal 
TSP tour is at least 11

n

5
−

1

5
 , and this cost is realized if G is Hamiltonian. If, on the 

other hand, G is not Hamiltonian, an optimal TSP tour needs to visit at least one 

i−1∑

j=0

2 ⋅ 11j,

2

i−1∑

j=0

11j = 2
11i − 1

11 − 1
=

11i

5
−

1

5
<

11i

5
≤

11log11(r∕5)+1

5
=

11

25
r < r.
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vertex at least twice, so that in this case the length of the optimal TSP tour is at least 
11n

5
−

1

5
+ 2 .   ◻

4.2  Hardness of STeiner Tree for Highway Dimension 1

We present a reduction from the ��-hard satisfiability problem (SAT) [31], in which 
a Boolean formula � in conjunctive normal form is given, and a satisfying assign-
ment of its variables needs to be found.

Proof of of Theorem 3 For a given SAT formula � with k variables and � clauses we 
construct a graph G� as follows (cf. Fig. 1). For each variable x we introduce a path 
Px = (tx, ux, fx) with two edges of length 1 each. The vertex ux is a terminal. Addi-
tionally we introduce a terminal v0 , which we call the root, and add the edges {v0, tx} 
and {v0, fx} for every variable x. Every edge incident to v0 has length 11. For each 
clause Ci , where i ∈ {1,… ,�} , we introduce a terminal vi and add the edge {vi, tx} 
for each variable x such that Ci contains x as a positive literal, and we add the edge 
{vi, fx} for each x for which Ci contains x as a negative literal. Every edge incident to 
vi has length 11i+1 . Note that the edges incident to the root v0 also have length 11i+1 
for i = 0.

Claim 2 The constructed graph G� has highway dimension 1.

Proof Fix a scale r > 0 . If r ≤ 5 then the shortest path cover SPC (r) only needs to hit 
shortest paths of length at most 2r ≤ 10 . Since all edges incident to terminals vj with 
j ∈ {0,… ,�} have length at least 11, any such path contains only edges of paths Px . 
Thus it suffices to include all vertices ux in SPC (r) . A ball Bw(2r) of radius 2r ≤ 10 
can also only contain some subset of vertices of a single path Px , or a single vertex 

v0

tx ux fx

ty uy fy

tz uz fz

vi

1 1

1 1

1 1

11i+1

11i+1

11i+1

11
11

11
11

11

11

Fig. 1  Illustration of the part of the construction involving vertices x, y, z and a clause C
i
= (x ∨ ȳ ∨ z̄) . 

Terminals are marked as boxes
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vj . In the former case the ball contains at most the vertex ux ∈ SPC (r) , and in the lat-
ter none of SPC (r).

If r > 5 , let i = ⌊log11(r∕5)⌋ ≥ 0 and SPC (r) = {vi} . Since there is only one hub, 
this shortest path cover is locally 1-sparse. Note that any edge incident to a vertex vj 
with j ≥ i + 1 has length at least 11i+2 ≥ 11r∕5 > 2r . Also, all paths that do not use 
any vj with j ≥ i have length at most 2 +

∑i−1

j=0
(2 ⋅ 11j+1 + 2) , since such a path can 

contain at most two edges incident to a vertex vj with j ≤ i − 1 and the paths Px of 
length 2 are connected only through edges incident to vertices vj . The length of such 
a path is thus shorter than

where the first inequality holds since i + 1 ≤ 11i whenever i ≥ 0 . Hence the only 
paths that need to be hit by hubs on scale r are those passing through vi , which is a 
hub of SPC (r) .   ◻

To finish the reduction, we claim that there is a satisfying assignment for � if and 
only if there is a Steiner tree T for G� with cost at most 12k +

∑�

i=1
11i+1 . If there is a 

satisfying assignment for � , then the tree T contains the edges {ux, tx} and {v0, tx} for 
variables x that are set to true, and the edges {ux, fx} and {v0, fx} for variables x that 
are set to false. This connects every terminal ux with the root v0 , and the cost of these 
edges is 12k. For every terminal vi where i ≥ 1 we can now add the edge {vi, sx} for 
sx ∈ {tx, fx} that corresponds to a literal of Ci that is true in the satisfying assign-
ment. Since this Steiner vertex sx is connected to the root v0 , we obtain a Steiner tree T. 
The latter edges add another 

∑�

i=1
11i+1 to the solution cost, and thus the total cost is 

as claimed.
Conversely, consider a minimum cost Steiner tree T in G� . Note that for any ter-

minal ux the tree must contain an incident edge of cost 1, while for any terminal vi 
with i ≥ 1 the tree must contain an incident edge of cost 11i+1 . This adds up to a cost 
of k +

∑�

i=1
11i+1 . Assume that there is some variable x such that T contains neither 

{v0, tx} nor {v0, fx} . This means that in T the terminal ux is connected to the root v0 
through an edge {vi, sx} for sx ∈ {tx, fx} and some i ≥ 1 . The edge {v0, sx} forms a 
fundamental cycle with the tree T, which however has a shorter length of 11 com-
pared to the edge {vi, sx} , which has length 11i+1 . Thus removing {v0, sx} and adding 
{vi, sx} instead, would yield a cheaper Steiner tree. As this would contradict that T 
has minimum cost, T contains at least one of the edges {v0, tx} and {v0, fx} for every 
variable x. This adds another 11k to the cost, so that T costs at least 12k +

∑�

i=1
11i+1.

If we assume that 12k +
∑�

i=1
11i+1 is also an upper bound on the cost of T, by the 

above observations the tree T contains exactly one edge incident to every terminal ux 
and vi for i ≥ 1 , and exactly k edges incident to v0 . Furthermore, for every variable x 
the latter edges contain exactly one of {v0, tx} and {v0, fx} . Thus T encodes a satisfy-
ing assignment for � , as follows. For every edge {v0, tx} we may set x to true, and for 
every edge {v0, fx} we may set x to false. For every clause Ci the corresponding ter-
minal vi connects through one of the Steiner vertices sx ∈ {tx, fx} of a corresponding 
literal contained in Ci . The only incident vertices to sx in G� are some terminals vj , 

2 + 2
11i+1

11 − 1
+ 2i ≤ 3 ⋅ 11i + 2 ⋅ 11i ≤ 5 ⋅ 11i ≤ r,
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the terminal ux , and the root v0 . As each vj and also ux only has one incident edge 
contained in the tree T, the tree must contain the edge {v0, sx} so that the root can 
be reached from sx in T. Hence sx corresponds to a literal that is true in Ci . Using 
Lemma 2, which bounds the highway dimension of G� , we obtain Theorem 3.   ◻

5  Conclusions

We showed that, somewhat surprisingly, graphs of highway dimension 1 exhibit 
a rich combinatorial structure. On one hand, it was already known [26] that these 
graphs do not exclude any minors and thus their treewidth is unbounded. Here we 
additionally showed that STp and TSp are weakly ��-hard on such graphs, further 
confirming that these graphs have non-trivial properties. On the other hand, we 
proved in Lemma 3 that the treewidth of a graph of highway dimension 1 is logarith-
mically bounded in the aspect ratio � . This in turn can be exploited to obtain a very 
efficient FPTAS for both STp and TSp.

At this point one may wonder whether it is possible to generalize Lemma 3 
to larger values of the highway dimension. In particular, in [26] it was suggested 
that the treewidth of a graph of highway dimension h might be bounded by, say, 
O(h log(�)) . However such a bound is highly unlikely in general, since it would have 
the following consequence for the k -CenTer problem, for which k vertices (cent-
ers) need to be selected in a graph such that the maximum distance of any vertex to 
its closest center is minimized. It was shown in [25] that it is ��-hard to compute a 
(2 − �)-approximation for k -CenTer on graphs of highway dimension O(log2 n) , for 
any 𝜀 > 0 . Given such a graph, the same preprocessing of Sect. 3 could be used to 
derive an analogue of Lemma 5, i.e., a graph G′ of treewidth O(polylog(n∕�)) could 
be computed for the net N. Moreover, a 2-approximation for k -CenTer can be com-
puted in polynomial time on any graph [35], and if the input has treewidth t a (1 + �)

-approximation can be computed in (t∕�)O(t)nO(1) time [40]. Using the same argu-
ments to prove Theorem 1 for STp and TSp, it would now be possible to compute a 
(1 + �)-approximation for k -CenTer in quasi-polynomial time (cf. [27]). That is, we 
would obtain a QPTAS for graphs of highway dimension O(log2 n) , which is highly 
unlikely given that computing a (2 − �)-approximation is ��-hard on such graphs.

The above argument in fact rules out any bound of (h log �)O(1) for graphs of high-
way dimension h and aspect ratio � , unless ��-hard problems admit quasi-polyno-
mial time algorithms. In fact, we conjecture that the k -CenTer problem is ��-hard to 
approximate within a factor of 2 − � for graphs of constant highway dimension (for 
some constant larger than 1). If this is true, then the above argument even rules out 
a treewidth bound of (log �)f (h) for any function f. Thus, in order to answer the open 
problem of [26] and obtain a PTAS for graphs of constant highway dimension, a dif-
ferent approach seems to be needed.
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